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Preface

As the sequencing phase of the human and other genome projects nears comple-
tion, we are faced with the task of understanding how the vast strings of Cs, As, Ts,
and Gs encode a being. With the recent advent of microarrays and other high
throughput biologic technologies, we have moved from trying to understand single
molecules and pathways to that of integrative systems. We are only beginning to
grasp the questions we can ask as we are now challenged to understand these large in
silico, in vitro, and in vivo data sets. The new field of Bioinformatics was born of a
series of meetings among “wet-bench” scientists, in the early 1980s, to meet this
challenge. With the recruitment of mathematicians, computer scientists, statisticians,
and astrophysicists to this field, we have now begun to design and implement some
of the basic tools that will enable data integration and multidimensional analyses of
these varied but unified data sets. For those new to Bioinformatics, this cross
pollenization of the Life, Physical, and Theoretical sciences wants for a common
language. With this in mind, Introduction to Bioinformatics: A Theoretical and Prac-
tical Approach was written as an introductory text for the undergraduate, graduate,
or professional.

At once, this text provides the physical scientist, whether mathematician, computer
scientist, statistician or astrophysicist, with a biological framework to understand the
questions a life scientist would pose in the context of the computational issues and
currently available tools. At the same time, it provides the life scientist with a source
for the various computational tools now available, along with an introduction to their
underlying mathematical foundations. As such, this book can be used as a bridge
toward homologation of these fields. By bringing these disciplines together we may
begin our journey toward understanding the nuances of the genetic code.

Introduction to Bioinformatics: A Theoretical and Practical Approach is divided
into four main sections. The first two sections are well suited to the physical scientist
who is new to studying biological systems. They provide the biological vocabulary,
i.e., an overview of the various biological processes that govern an organism and
impact health. The first section, Biochemistry, Cell, and Molecular Biology, describes
basic cellular structure and the biological decoding of the genome. In silico detection
of the promoter elements that modulate genome decoding is also explained. The sec-
ond section, Molecular Genetics, will lead the reader through a discussion of the long
range regulation of genomes, the in silico detection of the elements that impact long
range control, and the molecular genetic basis of disease as a consequence of replica-
tion. Clinical human genetics and the various clinical databases are reviewed, fol-
lowed by a discussion of the various issues within population genetics that can be used
to address the question: “How do we evolve as we respond to our environment?”

The third section, The UNIX Operating System, was written for the life scientist, to
demystify the UNIX operating system that is commonly used to support advanced
computational tools. Along with understanding the installation and management of
UNIX-based software tools, examples of command line sequence analyses are pre-
sented. These chapters should enable the life scientist to become as comfortable in a
command line environment as in the Graphical-User Interface environment.
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The Computer Applications section provides a common area for the physical and
life scientist to meet. The management and analysis of DNA sequencing projects is
presented, along with a review of how DNA can be modeled as a statistical series of
patterns. The latter forms the basis of most protein and nucleic acid sequence analysis
routines. These considerations are followed by a discussion of the various
genome databases, the representation of genomes, and methods for their large scale
analyses. This culminates in addressing the question: “Can I learn about my
sequence from what is known about a similar sequence?” To directly answer this
question a discussion of the various methods of pattern discovery follows, including
basic multiple sequence alignment to identify both functionally and structurally
related components. The accompanying protein visualization chapter outlines how
these tools can aid in predicting structures that often represent homologous segments
from evolutionarily conserved gene families. This final section concludes with a re-
view of how multiple sequence alignment can be used to infer both functional and
structural biological relationships. In closing, the final chapters of the book review
the new field of Transcription Profiling, examining the current state of analysis soft-
ware for systems biology. We conclude our journey with a discussion of the in silico
analysis and prediction of patterns of gene expression that will ultimately guide our
understanding of living systems.

Though the text provides a detailed description and examples, the CD supplement
also contains a complete set of illustrations from each chapter, many of which are
present in color. This provides a visual resource for both the student and the teacher
that should prove invaluable for those of us preparing our next Bioinformatics lecture
or seminar. In addition, several full version and limited trial versions of the programs
that are discussed in the text are included. These encompass a broad spectrum, from
DNA sequencing project management to microarray analysis, offering the reader the
opportunity to easily access some of the software tools that are discussed. It is our
hope that the current and next generation of physical and life scientists will use these
resources as a springboard to help us move forward in the important quest for an inte-
grated understanding of our physical being.

Stephen A. Krawetz
David D. Womble

vi—Preface
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5

Nucleic Acids and Proteins
Modern Linguistics for the Genomics and Bioinformatics Era

Bradley C. Hyman

Introduction

Genomics and Bioinformatics have the power to transform all facets of society.
From anthropology to agriculture, medicine to manufacturing, virtually all disci-
plines undeniably will be changed by these promising fields. The goal of genomics
is to mine the genomes of all relevant organisms to identify genes and their encoded
products that govern the biological reactions that provide fuels, food, fiber, and other
materials essential for our health. In addition to feeding the burgeoning world popu-
lation, genomics/bioinformatics-based discovery will lead us to safer and more
nutritious foods; self-resistant crops; disease-resistant animals; foods with prolonged
shelf life; an understanding of why pathogens are virulent; and novel bio-based
“smart molecules”such as alternative fuels, pharmaceuticals, and environmental sen-
sors. Access to the genetic codes of microbes, plants, and animals will enable a
clearer understanding of how life evolved on our planet.

Training in genomics/bioinformatics requires a unique amalgam of skills in statis-
tics, computer science (including algorithm development and database management),
engineering, analytical chemistry, and of course, genetics and molecular biology. This
chapter introduces venerable, fundamental concepts in molecular biology from a con-
temporary genomics/bioinformatics perspective using a language-based approach.

Building Definitions in the Genomic Era

What is Meant by Molecular Biology?

Many different kinds of molecules are components of living cells: carbohydrates,
lipids, proteins, nucleic acids. All can be studied at the molecular level, including
biosynthesis and assembly, atomic and molecular architecture, physiochemical prop-
erties, cellular targeting, and function. The common denominator among these
avenues of investigation is the genes aligned along lengthy DNA strands. Stretched
end-to-end, the genome would extend 2 to 3 meters in a normal human cell. Genes
encode information for synthesizing molecules and their assembly into cellular struc-
tures. Molecular biology focuses on the structure and activity of these genes, which
can be defined in two broad, fundamental ways:
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1) The flow of information within a cell. One very famous descriptor of this activ-
ity is the Central Dogma of Molecular Biology. In its original concept, the Dogma was
stated as seen in Scheme 1:

➥ transcription ➥ translation

DNA → RNA → PROTEIN [Scheme 1]

←
reverse transcription

By this scheme, DNA was considered to be self-replicating ( ➥ ), providing infor-
mation in the form of a template for the precise duplication of one DNA molecule,
the double helix, into two copies; the intracellular flow of information would con-
tinue to follow a strict path by transcription of a gene copy in the form of RNA,
followed by interpreting the language of nucleic acids (nucleotides) into the lan-
guage of proteins (amino acids) via translation of the RNA into a polypeptide chain.
As seminal advances were made in the 1970s and 1980s, modifications were added
to the central dogma that involved reverse transcription of RNA into DNA (typical
of many dangerous retroviruses such as HIV-1, the AIDS virus), and self-replica-
tion of RNA molecules.

2) Heredity, or the flow of information between cells (as during cell division; binary
fission in bacteria and mitosis in higher cells) and through the generations of an organ-
ism (typically mediated by eggs and sperm, produced through meiosis). The chromo-
somal basis of inheritance is founded on the process of DNA replication, and requires
an intimate understanding of the functional architecture of the DNA molecule.

How Does Molecular Biology Help Us Define,
in Contemporary Terms, Genomics and Bioinformatics?

The term genome, coined in the 1930s, refers to the complete set of genetic infor-
mation found within an individual organism. Our understanding of molecular biol-
ogy has enabled the establishment of a simple organizational hierarchy (see Fig. 1)
that provides a useful scaffold for this discussion. We see that the genome is the all
encompassing term for hereditary instructions, whereas the nucleotide is the funda-
mental chemical building block for the genetic material. Therefore, the genome is
composed of the entire collection of nucleotides polymerized into long DNA strands.
In the human genome, approx 3 × 109 nucleotides comprise one copy of our
genome, condensed into each egg and sperm cell. This hierarchy can be annotated for
humans by adding additional numerical values (see Fig. 2) to illustrate the interrela-
tionship between the genome and other molecular units that collectively define our
genetic material.

In Fig. 2, we find that each copy of the human genome is subdivided into 23 chro-
mosomes. (When an egg and sperm unite during fertilization, the newly formed
zygote contains 46 chromosomes, or two genome copies; most cells in our body are in
this diploid state; eggs and sperm in the offspring remain haploid with one genomic
copy). Individual chromosomes contain one DNA double helix, so each haploid
genome is composed of 23 individual DNA duplexes. Distributed among these
23 helicies are an estimated 30,000 genes (although human gene approximations have
ranged from 30,000–100,000). Nucleotides are bonded together to create the 23 indi-
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vidual DNA chains. Sizes of the 23 chromosomes range from 50 × 106 to greater than
250 × 106 nucleotides.

This hierarchy now allows us to define a “completely sequenced genome.” Using
high-throughput molecular technology and robotics in concert with sophisticated com-
puter algorithms, it is now possible to assemble the precise order of the four nucleotide
building blocks that comprise the single DNA helix within each chromosome. When
such sequences are available for all chromosomes in an organism, the genome has
been sequenced. Genome sizes range from about 2 million nucleotides for single bac-
terial chromosomes to 100,000 × 106 for some amphibians and plants. Each report of a
completely sequenced genome represents an explosion of data that adds to the rapidly
expanding international databases.

How Can All This Data be Stored, Accessed,
Manipulated, Managed, and Analyzed?

Here, computer science and molecular biology partner into the new and rapidly
emergent field of Bioinformatics. It is the goal of Bioinformatics to make sense of
nucleotide sequence data (and for proteins, or Proteomics, amino acid sequence data).
Assume that as we read this sentence, there are no spaces between words nor punctua-
tion marks delimiting the boundaries of written thought. This same sentence might
appear as:

assumethataswereadthissentencetherearenospacesbetweenwordsnorpunctuationmarks
delimitingtheboundariesofwrittenthought

If this were a DNA sequence written in the language of the four nucleotide build-
ing blocks, or a protein sequence inscribed in the language of the 20 amino acids,
informatic methodologies would be employed to extract and make sense of informa-
tion encrypted in what superficially appears as a nonsense string. Bioinformatics as
applied to DNA sequences would be exploited to find individual genes in the form of
protein coding sequences (exons), expanses of nucleotides that might interrupt gene
regions (introns), domains within the DNA that might control the expression of indi-
vidual genes (e.g., promoters, enhancers, silencers, splice sites), repeated elements
(insertion sequences and transposons in prokaryotes; micro- and mini-satellites in
eukaryotic genomes), and other elements important for chromosome and gene main-

Fig. 1. Simple organizational hierarchy
of genetic material.

Fig. 2. Numerically annotated hierarchy
of genetic material.

GENOME (1)
↕

CHROMOSOME (23)
↕

DNA (23)
↕

GENE (~30,000)
↕

NUCLEOTIDE (3 × 109)

GENOME
↕

CHROMOSOME
↕

GENE
↕

DNA
↕

NUCLEOTIDE
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tenance. For proteins, identifying important domains within polypeptides, such as
catalytic active sites, substrate binding sites, regions of protein-protein interaction,
and the prediction of protein-folding pathways are important applications of
bioinformatics. Exhuming this information is often conducted by aligning unknown
nucleotide (or amino acid) strings with well-understood expanses of DNA or protein
sequences to assist in the identification and determination of functional architecture.
One popular avenue of research within Bioinformatics is the development and imple-
mentation of sophisticated alignment algorithms for the purpose of mining informa-
tion from DNA and protein sequences.

The Language of DNA in the Genomics Era:
Nucleotides and the Primary Structure of Nucleic Acid

This chapter is written in the English language that is composed of a 26-letter
alphabet. Users of the language string letters into words, words into sentences, sen-
tences into paragraphs, and so forth. The precise order of the letters conveys definition
and meaning. Similarly, chains of DNA (and RNA) are polymers of four different
chemical letters, or nucleotide bases; the precise order of polymerization is called the
primary structure of nucleic acid and embedded within the primary structure is the
definition of gene content.

The molecular structure of nucleotides also dictates important chemical properties
of DNA. Nucleotides are composed of three chemically distinct precincts that confer
functionality (see Fig. 3). These include a deoxyribose (DNA) or ribose (RNA) sugar,
phosphate groups bonded to the 5' carbon in the deoxyribose (or ribose) sugar, and
one of four nitrogenous bases (B; Fig. 3) that are attached to the 1' carbon. For DNA,
the bases are: the purines, adenine (A) and guanine (G); the pyrimidines, cytosine (C)
and thymine (T). Uracil (U), a pyrimidine that replaces T in RNA. When the complete
DNA sequence of a genome is reported, it is actually the primary structure, or precise
polymerization order, of the nitrogenous bases that are published as a simple string of
As, Gs, Cs, and Ts. Sugars and phosphate groups remain invariant in the DNA chain
(see Fig. 4).

The phosphate groups and deoxyribose (or ribose) sugars are highly polar and
confer upon DNA (and RNA) the property of solubility in aqueous environments
such as the interior of cells. At physiological pH, the phosphate group is ionized
(deprotonated) conferring a net negative charge onto the nucleic acid polymer
(see Fig. 4). In contrast, the nitrogenous bases are nonpolar entities that are “driven”
into seclusion, away from aqueous environments. The interior of a DNA double
helix provides such an environment; it is these hydrophobic forces, along with the
additive Van der Waals interactions (0.1–0.2 kcal/mole) among the bases now
stacked in the interior of the helix, that help stabilize the double helical structure.
However, it is the unique arrangement of atoms within the nitrogenous bases that
provides most of the stability to the double helix. When A is juxtaposed with T, and
G is adjacent to C, the opportunity now exists for hydrogen bonding between hydro-
gen atoms of lower electronegativity resulting in a partially positive character, and
oxygen atoms of high electronegativity with a partially negative character
(see Fig. 5). This pairing behavior is often referred to as complementarity between
bases (A and T, G and C). Hydrogen bonds (1–10 kcal/mole) formed precisely
between the two complementary base pairs (A and T; G and C) stabilize the associa-
tion between the two DNA chains resulting in the double helix.

See
companion CD
for color Fig. 4
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Fig. 3. Molecular structure of nucleotides, the building blocks of DNA and RNA. The 1' → 5'
numbering convention used to designate carbons in the deoxyribose and ribose sugars is annotated
only on the deoxyribose sugar. “B” extending from the 1' carbon of deoxyribo- and ribonucleotides
represent the purine and pyrimidine nitrogenous bases. Designation of the different phosphate groups
(α, β, γ) are depicted on the deoxyribose nucleotide.
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Fig. 4. Molecular structure of the tetranucleotide GTAG. The H present at 2' carbon of each sugar
indicates that this is a DNA chain composed of deoxynucleotides. Phosphates involved in cement-
ing adjacent nucleotides together with a phosphodiester bond are shown in red (on CD). A single
free, 5' phosphate is pictured in blue. A free 3'-OH group at the opposite end of the chain is also
depicted in blue.

Fig. 5. Complementarity between specific nitrogenous bases. Pictured are the A-T and G-C base
pairs present in a DNA double helix. (- - - -) represent hydrogen bonds between participating atoms.
A purine juxtaposed with a pyrimidine after hydrogen bond formation generates a dimension of 20
angstroms, the width of a DNA double helix.
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As immediately recognized in their classic 1953 paper that first described the
double-helical nature of the genetic material (see Suggested Reading), Watson and
Crick explained

“...the specific pairing we have postulated immediately suggests a possible
 copying mechanism for the genetic material.”

What this statement was intended to convey is that each of the two strands in a
DNA duplex, by virtue of their complementary, can act as an informational template
to specify the primary structure of the second strand in a double helix (see Fig. 6). It is
the principle of complementarity that provides the foundation for the faithful duplica-
tion of DNA, requisite to transmitting the genetic material at cell division and across
generations. Semi-conservative DNA replication, in which the new daughter helices
each contain one parental and one newly synthesized strand (see Fig. 6) is the initial
step in the Central Dogma of Molecular Biology and at the mechanistic level provides
the foundation for many procedures involved in genome sequencing This is discussed
further in Chapter 4.

Nucleotides represent the basic chemical building blocks of the DNA or RNA
chain. However, chromosomes are extremely long polymers of nucleotides cemented
together. The glue between adjacent nucleotides in a nucleic acid chain is the

Fig. 6. Base pair complementarity is the basis for faithful duplication of the double helix. Chains
of a DNA helix are pictured in an antiparallel configuration. Horizontal lines between the comple-
menting bases denote hydrogen bonds (see Fig. 4). DNA polymerase (oval) polymerizes DNA in a
5' to 3' in an antiparallel direction on each strand. Each new daughter helix is composed of an
original stand and a newly synthesized chain, indicative of semi-conservative replication.

See
companion CD
for color Fig. 6



1 2 — Hyman

phosphodiester bond (see Fig. 4). Formation of the phosphodiester bond in
nature is catalyzed by the enzyme DNA polymerase (Figure 6, oval). Amazingly,
the enzyme recognizes three substrates in a simultaneous fashion: 1) a free 3'-OH
group of the nucleotide representing the growing end of a DNA chain (see Fig. 4,
-OH); 2) the template DNA (the “opposite strand in a double helix) that provides
instructions for the next nucleotide to be added in the form of complementary infor-
mation (see Fig. 6, DNA strands); and 3) the appropriate nucleotide to be added to
the growing end of the chain. The nucleotide to be added next into the polymer is in
the form of a high energy deoxynucleotide triphosphate (dNTP; see Fig. 3). Note
that the phospho-diester bond cementing two adjacent nucleotides together in the
DNA chain contains but a single phosphate group (see Fig. 4, red). The energy
released by the excision of two phosphate groups from the dNTP during polymer-
ization is recruited by DNA polymerase to catalyze the formation of a a new cova-
lent bond between the 3'-OH of the preceding nucleotide and the α-phosphate of the
nucleotide that will be added (see Fig. 3). The overall chemical reaction for the
polymerization of DNA can be written as shown in Equation 1:

(dNMP)n + dNTP → (dNMP)n+1 + PPi [Eq. 1]

In Equation 1, n represents the number of nucleotides already polymerized in the
DNA chain, dNMP represents any nucleotide polymerized into a DNA chain (note
only one phosphate, a Monophosphate defines the precise structure of a phosphodiester
bond), and PPi is inorganic phosphate, the two phosphates released from the
deoxynucleotide triphosphate during addition of a nucleotide to a growing DNA chain.

DNA strands have a chemical directionality, or polarity. Specifically, the func-
tional groups that make up the two ends of a DNA chain are different. We noted that
a phosphate group resides at the 5' end nucleotide (see Fig. 4, phosphate group). That
means that one end of the chain terminates in a phosphate group that is not otherwise
occupied in a phosphodiester bond holding two adjacent nucleotides together. There
will also be one 3'-OH group (see Fig. 4, -OH group) not engaged in cementing two
nucleotides together in the polymer. This unoccupied -OH group will be found at the
opposite end of the chain. Thus, the polarity of a DNA chain is arbitrarily defined as
5' → 3' and DNA sequences are recorded and read in this fashion. Hence, the
sequence 5'P-GTAG-OH3' (shown in Fig. 4) would offer very different informational
content than 5'P-GATG-OH3', the simple reversal of the above sequence. Importantly,
the two extended chains in a double helix reveal an opposite, or antiparallel polarity
(see Fig. 6). If we again take the tetranucleotide sequence: 5'P-GTAG-OH3' and now
write this molecule in the form of a double helix, obeying all the rules of base pair
complementarity, the correct depiction would be:

HO3'

P5'

–

–
|
C

G
|

A

T
|
T

A
|
C

G

–

–

P 5'

O H 3'

where the vertical lines denote hydrogen bonds between the complementing nucle-
otide bases in each strand.

Complementarity provides an important check for the precision of sequencing in
the laboratory. When a nucleotide sequence is determined for one strand of a DNA
duplex, the sequence of the opposite strand is easily predicted. Sequencing both strands
of a gene region permits an infallible determination of a DNA sequence because of the
cross-check provided by base pairing within the double helix. You may see the term
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“single pass” in some reports of genomic sequencing efforts, meaning that only one
strand of the DNA was sequenced, but a single time. There is some inherent error
as the sequence is not experimentally validated by its complement, but single-pass
sequencing is useful for rapidly deducing the information content of a genomic region.

Transcription: Converting the Informatics
of DNA into a Working RNA Copy

Transcription, or gene expression is the second step in the Central Dogma. Control-
ling gene expression at the level of transcriptional regulation is the subject of more
papers published in Molecular Biology than any other topic. The process of transcrip-
tion involves duplicating a gene sequence encoded in the DNA into an RNA copy.
RNA, like DNA, is written in the language of nucleotides, although uracil (U) is sub-
stituted for thymine (T) in RNA molecules. The structural similarities between T and
U (see Fig. 3) allow for either base to hydrogen bond with A. Chemical languages are
not changed for RNA synthesis because both DNA and RNA are polymerized nucle-
otide chains. Information in DNA is simply copied, and this process is referred to as
transcription. If the gene encodes a protein, the RNA draft is called messenger, or
mRNA. The end-products of some genes are simply RNA copies, not protein. Typi-
cally, these are genes that encode transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs), both components of the translation apparatus.

Transcription, in biochemical terms, proceeds much like replication. The process
can be described by the familiar Equation 2:

(rNMP)n + rNTP → (rNMP)n+1 + PPi [Eq. 2]

The deoxyribonucleotides building blocks of DNA have been replaced with ribo-
nucleotides, one of which carries the nitrogenous base uracil (U; see Fig. 3). The ribo-
nucleotides contain a ribose sugar (see Fig. 3). When ribonucleotides are polymerized
into RNA, the resulting chain is chemically unstable relative to its close DNA relative.
Hydroxyl group (-OH) on the 2' carbon of the ribose sugar (see Fig. 3) in RNA can
undergo a nucleophilic attack upon an adjacent phosphodiester bond in an RNA poly-
mer and break the bond, fragmenting the RNA polymer. In contrast, deoxyribose sug-
ars, the constituent of the DNA backbone, contain a chemically benign hydrogen at
the 2' position (see Fig. 3). Although RNA is thought to be the Earth’s first informa-
tional macromolecule, DNA has likely replaced RNA as the primary source of heri-
table genetic material because of its chemical stability.

RNA, like DNA, can assume various secondary structures. Whereas DNA is usu-
ally found as a rigid rod-like double helix as a consequence of hydrogen bonding
between chains, RNA polymers typically exhibit intra-strand base pairing, G to C (as
in DNA) and A to U (remember U replaces T in RNA). The result is a highly folded
RNA chain. A classic example of RNA secondary structure is that assumed by tRNA,
which folds into the well-recognized cloverleaf conformation (depicted in Fig. 7).
RNA secondary structures provide important architectural features that influence func-
tion. Many RNA molecules, for example, are catalytic ribozymes, including the
peptidyltransferase activity of the ribosome (which catalyzes the formation of peptide
bonds). Its precise folding is required for this activity. Secondary structure at the 5'
end of an mRNA molecule often influences the ability of the ribosome to engage the
initiation of protein synthesis and provides a check point for controlling gene expres-
sion at the post-transcriptional level.

See
companion CD
for color Fig. 7
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Embedded within the primary sequence of DNA are sequences that control the
initiation or termination of transcription. In effect, these are the primary regulators of
gene expression. These signals are promoters, enhancers, silencers, terminators, and
other sites along the DNA chains that are targets for DNA binding proteins. For
example, promoters may be targets for RNA polymerases and other general tran-
scription factors (TFs); enhancers provide docking sites for the proteins that are also
needed to activate transcription, called transcriptional activation factors (TAFs);
silencers bind proteins that inhibit or suppress transcription. One goal of genomics
and bioinformatics initiatives is to identify these elements within genomic sequences,
and address questions regarding commonalities among controlling elements for dif-
ferent genes. These strategies are helpful in providing a means to understand how
genes residing at great distances along the DNA chain, or on different chromosomes,
may be co-regulated in response to environmental cues.

The Language of Protein in the Genomics Era:
Amino Acids and the Functional Architechure of Proteins

The central goal of genomics and bioinformatics is to understand the complete set
of information encoded in a genome. Most of this information will reside in the

Fig. 7. A transfer RNA (tRNA) molecule acting as an interpreter between the language of nucleic
acids (DNA and RNA) and the language of amino acids (proteins). A tRNA, pictured as a polymer of
76 individual ribonucleotides (individual squares), is folded into the universal cloverleaf structure
by virtue of intra-molecular hydrogen bonding between complementing bases. The black dots de-
note base-pairing by hydrogen bonds to form stems. Gray squares are unpaired nucleotides, form-
ing loops. The triplet anticodon nucleotides (34–36) are shown recognizing and interacting via
hydrogen bonding with the appropriate triplet codon within an mRNA molecule.
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ensemble of genes that dictates cellular functionality and the “assembly” of an organ-
ism. The end-product of most expressed genes is a protein, and the entire set of pro-
teins elaborated by a specific cell type or by an organism is defined as the proteome.

The language of proteins is composed of an elaborate, 20 amino acid chemical
alphabet. As with nucleic acids, the primary structure of a protein (the precise order of
its amino acids) helps dictate the structure of a polypeptide. By analogy with nucle-
otides, we can dissect the chemical anatomy of amino acids to understand their role in
directing protein structure. The typical structure of an amino acid is:

R
|

       NH 2-CH-COOH

There are two important chemical features characteristic of this simple structure that
are important for understanding the conformation of proteins. First, we note a chemi-
cal polarity to amino acids, with an N- or amino- terminal end (the NH2 - amino group)
and a C- or carboxy-terminal end (the -COOH or carboxylic acid group). Here we can
draw an analogy with the chemical polarity of nucleotides defined by the 5' phosphate
and 3'-OH groups. The NH2-CH-COOH “backbone” is common among all 20 amino
acids. Just as nucleotide bases are distinguished by one of four nitrogenous bases,
amino acids differ from each other by the presence of one of 20 side chains, or
R-groups. These R-groups are the information content of amino acids when polymer-
ized into proteins, just as the nitrogenous bases are the informational component of
nucleic acid chains.

The 20 side chains can be catalogued into three major groups depending on whether
the R-group is nonpolar, polar, or charged at physiological pH (+ charge = basic; -
charge = acidic). Figure 8 catalogues all 20 amino acids in these groups. When poly-
merized into proteins, amino acids will dictate whether a portion of the polypeptide is
soluble in an aqueous environment (hydrophilic) usually if the protein region is rich in
polar or charged amino acids, or is repelled by a water-like environment (hydropho-
bic) if the protein chain is locally rich in nonpolar R-groups. By sequestering nonpolar
amino acids within the interior of a globular protein, and exposing polar and charged
amino acids to the exterior, proteins in an aqueous environment are forced to assume a
three dimensional, or “tertiary” conformation.

Proteins involved in membrane function provide an excellent example of how the
precise distribution of amino acids within a polypeptide polymer govern structure/
function relationships within a biological system (see Fig. 9). Membranes are com-
posed of lipids, nonpolar hydrocarbons that present a hydrophobic environment. Pro-
teins embedded in membranes serve many functions, including communicating with
the environment and providing channels for transit of essential metabolites into and
out of cells. A typical membrane protein (see Fig. 9) contains a series of trans-mem-
brane domains composed almost exclusively of nonpolar, uncharged amino acids
(small darker dots) that seek a hydrophobic environment within the interior of a mem-
brane, as well as segments that interact with the aqueous interior and exterior of cells
comprised by runs of polar and charged amino acids (small lighter dots).

Amino acids represent the building blocks of proteins. Adjacent amino acids are
glued together via a peptide bond (see Scheme 2 on page 17). Two adjacent amino
acids would exhibit the following structure shown in Scheme 2:

As with the synthesis of DNA, polymerization of amino acids into proteins
involves a condensation/dehydration reaction that results in a peptide bond. R1 and R2

See
companion CD
for color Fig. 9
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Fig. 8. (opposite page) Molecular structure of the 20 amino acid side-chains (R-groups), listed
according to chemical character (A, polar or B, charged). Beneath each structure is the name of the
R-group, is three-letter designation, and its single letter designation. In an amino acid, the individual
side-chain is attached to by a covalent bond to the common backbone NH2 -CH-COOH, where C
indicates the position of attachment.

Fig. 9. Membrane proteins: An example of how amino acid distribution dictates structure and
function. Pictured in black are phospholipids that create the hydrophobic interior of a lipid bi-layer
membrane. Small darker dots indicate nonpolar, hydrophobic amino acid constituents of a polypep-
tide chain. Small lighter dots represent polar, charged, amino acid residues that are capable of inter-
acting with the aqueous, hydrophilic environments on either side of the cell membrane. Such
trans-membrane protein domains typify proteins that serve as channels and as receptors to perceive
external stimuli.

represent two different side chains. Each amino acid with their unique side-chain is
typically given a three letter or a single letter designation (see Fig. 8). If the dipeptide
depicted above is composed of the amino acids glycine and phenylalanine, the peptide
would be written NH2 -GLY-PHE-COOH or NH2 - GP-COOH, or most often “GP.”
Note that proteins also have a chemical polarity, arbitrarily written from the N-termi-
nal → C-terminal direction. Thus the dipeptide “GP” would be a very different from
“PG.” Chemical polarity serves an important role in the informational content of
nucleic acids and proteins, as well as in how we annotate the primary structure of both
macromolecules.

NH 2–

R1

|
CH–

O
||
C

δ+

–

δ –

N
|

H

–

R2

|
CH–COOH

[Scheme 2]
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The oxygen and nitrogen atoms present in the peptide bond are electronegative. As
such, the oxygen takes on a partial negative charge (δ–) and the hydrogen covalently
bonded to nitrogen a partial positive charge (δ+). In a protein with hundreds of peptide
bonds, this charge distribution is a recurrent theme, and hydrogen bonding (as in
nucleic acids) between the partially charged H and O atoms occurs resulting in impor-
tant secondary structures known as the α-helix and the β-pleated sheet. The α-helix is
a coil, much like the a telephone handset cord; the β-pleated sheet adds a flattened,
sheet-like topology to specific domains of the folded protein, much like a tightly routed
“switchback” on a hiking trail.

One additional contributor to protein folding is offered by the chemical composi-
tion of the side-chain featured by the amino acid cysteine. The R-group for CYS
(or C) is:

When two CYS residues in different regions of a folded protein chain find them-
selves in the vicinity of each other as a consequence of protein folding, oxidation
allows a convalent bond (below) to form between the S atoms in each participating
side chain, resulting in a disulfide bridge:

  H
   |
- C - S - H
   |
  H

We observe that folded protein chains can become stabilized by the formation of
disulfide bridges, contributing to the overall topography of the polypeptide. Unlike
DNA, every individual protein assumes a unique three-dimensional, tertiary confor-
mation that is necessary for catalytic activity (in the case for enzymes) or to play
structural roles within the cell. Tertiary structure, then, is determined by a combina-
tion of factors that include the precise order of amino acids (the primary structure),
formation of secondary structures in the form of α- helicies or β-pleated sheets and
folding due to the generation of disulfide bridges, then driven by hydrophobic and
hydrophilic interactions between amino acids and their environment. An even higher
level of structure is achieved because many active proteins are not monomers (one
properly-folded polypeptide chain), but subunits that must interact with other prop-
erly folded proteins to form an active quarternary structure. One popular example
is the protein hemoglobin, the oxygen carrier protein in our red blood cells. Active
hemoglobin is a tetramer comprised of two α and two β subunits in erythrocytes of
adult humans. In isolation, these individual protein subunits are inactive, but when
they come together they bind and carry oxygen.

  H              H
   |                |
- C - S —S - C -
   |                |
  H              H
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Translation: Converting the Language
of Nucleic Acids into the Language of Proteins

Proteins are composed of amino acids; however, the information for directing the
precise order of amino acids within a peptide (the primary structure) is encoded within
DNA and its constituent nucleotides. Conversion between any two languages requires
a translator, and no less is true in the cell. The molecular interpreter is the ribosome,
the cellular site where polymerization of amino acids into protein occurs. Translation
is the final step in the Central Dogma.

The primary sequence of the nucleotides within DNA, and its RNA copies, can be
considered a code that requires deciphering. Proteins are composed of 20 different
amino acids, and the first question regarding the code is “How many nucleotides are
required to specify one amino acid in a protein sequence?” This question led to the
concept of the coding ratio: number of nucleotides required to encode one amino acid,
or the number of nucleotides/amino acid.

There are four nucleotides (A,G, C, T). Thus if one nucleotide encoded one amino
acid (coding ratio = 1), the genetic code could only accommodate 4 amino acids. This
is not suffient to encode 20 amino acids. If the coding ratio were two, there are 42 = 16
possible dinucleotide combinations, and 16 amino acids could be encoded. The
requirement to encode 20 amino acid is not quite achieved with a doublet code. A
coding potential of 64 amino acids (43) is achieved with a coding ratio of three, and
hence the triplet codon (three contiguous nucleotides along the DNA or RNA chain)
encodes the information for a single amino acid (see Table 1). The 64 codon carrying
capacity of this code far exceeds the necessary requirement to encode 20 amino acids.
However, the code is redundant; i.e., the same amino acid is often encoded by several
different nucleotide codons that are synonyms. For example, the amino acid leucine
(LEU) is encoded by six different triplets (see Table 1).

Three codons do not encode any amino acid. They are termination or stop codons
that delimit the C-terminal end of the protein, where translation stops. Continuing with
our analogy of languages, termination codons serve as the period to end a sentence.

The mRNA copy of the information encoded in DNA is translated into a protein in
groups of three nucleotides. Translation typically commences at an AUG (methionine,
MET) codon that also signals the initiation of translation. This sets the reading frame,
one of three possible ways any mRNA molecule can be read in groups of triplets. To
illustrate the concept of a reading frame, let us create an mRNA molecule as a sen-
tence in the English language that consists of words with only three letters: “The fat
cat ate the big rat.” When read as triplets, this rendition makes sense to us. But read in
triplets from a different start point, the sentence could also be read “..T hef atc ata tet
heb igr at..” or even in a third frame as “..Th efa tca tat eth ebi gra t..” A triplet code
implies there are three possible reading frames within a mRNA molecule. The AUG
start codon establishes the correct reading frame, the one that makes sense. This is
defined as an open reading frame that typically begins with a start codon (AUG) and
ends with one of three termination codons (UAG, UGA, UAA). Gene discovery within
genomic sequences, annotating genes, and using sequence information for alignments
relies on these features of the nearly universal genetic code (see Table 1).

Clearly, a molecular adaptor is required to decipher each triplet codon and deliver
the correct amino acid into the growing protein chain. This adaptor is a specific tRNA
molecule of about 76–80 nucleotides in length (see Fig. 7). Typically residing at nucle-
otides 34–36 is a set of three continguous nucleotides, a triplet anticodon with base
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pair complementarity to a codon along the mRNA chain (see Fig. 7). At the 3' end of
this molecule the corresponding amino acid cargo is carried (see Fig. 7, Table 1). The
mRNA and tRNAs congregate at the ribosome, a complex cellular organelle with
multiple functions that include: 1) transiting along the mRNA chain in three nucle-
otide (codon) intervals; 2) capturing the tRNA dictated by the appropriate anticodon/
tRNA combination; 3) catalyzing the hydrolytic removal of the amino acid from the
tRNA adaptor and 4) condensing the same amino acid to the growing peptide by for-
mation of a peptide bond. This same series of reactions occurs in a sequential fashion,
three nucleotides at a time, for each codon found in the mRNA. Translation is an
energetically expensive and complex process; three high energy molecules at ATP or
GTP are invested to add each amino acid to a growing protein chain as further dis-
cussed in Chapter 5.

A Perspective

Modern genomics and bioinformatics is really a new kind of linguistics. Nature,
through dynamic evolutionary forces, inscribes genetic information in the form of
long nucleotide chains, or genomes. Deciphered by the cell using steps in the Cen-
tral Dogma, the end-products of sensible nucleotide strings (the genes) are highly
versatile proteins whose three-dimensional structure dictates function. The univer-
sal genetic code was cracked over four decades ago. Yet, how genomes encode traits
that make each organism and species different from each other and each individual
within a species unique, remained encrypted information until now. With the advent
of DNA and protein methodologies, genomes no longer present themselves as
molecular hieroglyphics.

Table 1
Universal Genetic Code

First Second Third

5' U C A G 3'

U Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser Tyr Stop A
Leu Ser Tyr Trp G

C Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G

A Ile Thr Asn Ser U
Ile Thr Asn Ser C
Ile Thr Lys Arg A

Met Thr Lys Arg G

G Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G
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Glossary and Abbreviations

Amino Acids  Building blocks of protein chains.

Amino Terminal End  The end of a protein chain with a free amino group;  some-
times called the N-terminal end.

Antiparallel  DNA chains in a double helix polymerized in the opposite polarity.

βββββ-Pleated Sheet  One of two major secondary strcuture conformations assumed by
protein chains.

Bioinformatics  Analysis of nucleic acid or protein sequence data.

Coding Ratio  Number of nucleotides required to encode a single amino acid .

Complementary  Describes the precise base pairing of A with T and G with C by
hydrogen bonding.

Cracked  Decoded.

Diploid  A cell containing two complete sets of chromosomes or genetic informa-
tion, as found in most body cells.

dNTP  Deoxynucleotide triphosphate, the building block of DNA chains.

dNMP  deoxynucleotide monophosphate, the form of the building block that even-
tually becomes incorporated into DNA chains.

DNA  Deoxyribonucleic acid.

DNA Replication  The act of duplicating DNA from one double helix to two new
helicies.

Double Helix  The famous two stranded secondary structure of DNA.

Enhancer  Binding site in DNA, upstream or downstream from a promoter, for
transcription factors that enhance gene expression.

Gene Expression  Converting a segment of DNA (gene) into a RNA copy.

General Transcription  Proteins necessary to turn on transcription of gene factors.

Genome  The complete set of genetic information found in an organism.

Haploid  A cell containing one complete set of chromosomes or genetic informa-
tion, as found in sperm and eggs.

ααααα-Helix  One of two major secondary structure conformations assumed by protein
chains.

Messenger RNA  RNA copy of the gene that encodes a protein.

MRNA  Messenger RNA.

N-Terminal End  The end of a protein chain with a free amino group;  also called
the amino terminal end.

Nucleotide  The monomer building block of nucleic acid chains.

Nucleotide Bases  One of five ring structures, A, G, C, T, U that provides informa-
tion content to nucleic acid chains.

Open Reading Frame  A nucleotide sequence beginning at AUG (the start codon),
then read for many consecutive triplets, and ending with one of three stop codons.

Petidyltransferase  Catalytic activity of ribosomes that create peptide bonds when
amino acids are polymerized into proteins.

Phosphodiester Bond  The bond that cements two adjacent nucleotides together in
a DNA or RNA chain.
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Polarity  The chemical directionality of a nucleic acid or protein chain.
Primary Structure  The precise order of nucleotide bases or amino acids in a

nucleic acid or protein chain,  respectively.
Promoter  Binding site in the DNA for transcription factors and RNA polymerase;

The on/off switch for gene expression.
Proteome  Entire collection of proteins in a cell or organism.
Proteomics  The study of the entire ensemble of proteins in a cell or organism.
Quarternary Structure  Level of structural organization when two or more indi-

vidual protein chains (subunits) interact to form an active complex.
R-Group  One of 20 amino acid side chains that specify chemical properties to

each amino acid.
Reading Frame  Lengthy contiguous stretches within a gene that specify consecu-

tive triplet codons without encountering a stop codon;  this specifies the coding region
of a gene; also known as an open reading frame.

Reverse Transcription  Synthesizing DNA from an RNA template, as is the case
for the AIDS virus.

Ribosomal RNA  RNA that forms the structural and catalytic cores of ribosomes.
Ribosome  Multisubunit organelle in all cells that is the site of protein synthesis.
Ribozymes  RNA molecules that exhibit a catalytic activity.
RNA  Ribonucleic acid.
rNTP  Ribonucleotide triphosphate, the building block of DNA chains.
rNMP  Ribonucleotide monophosphate, the form of the building block that even-

tually becomes incorporated into DNA chains.
rRNA  Ribosomal RNA.
Side Chain  One of 20 different chemical groups that confer properties to different

amino acids.
Silencer  Binding site in DNA for proteins that suppress transcription (gene

expression).
Start Codon  The triplet AUG that specifies where protein synthesis begins and

sets the reading frame.
Stop Codon  One of three triplet codons, UAG, UAA, UGA that specify where an

mRNA is to stop being translated into protein.
TAF  Transcription activation factor.
Terminator  Segment of DNA where transcription ends.
Termination Codon  One of three triplet codons, UAG, UAA, UGA that specify

where an mRNA is to stop being translated into protein.
TF  Transcription factor.
Transcription  Synthesizing RNA from a DNA template using RNA polymerase

transcription activation factor accessory proteins needed for gene expression.
Translation  Synthesizing a protein (polypeptide) from mRNA instructions with

the ribosome.
Transfer RNA  Small RNA molecule that adapts the language of nucleic acids to

the language of proteins.
Triplet Codon  A string of 3 consecutive nucleotides in an mRNA molecule that

specifies one of the 20 amino acids.
TRNA  Transfer RNA.
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Structure and Function
of Cell Organelles

Jon Holy

Introduction

The myriad biochemical reactions that comprise life processes are too numerous
and complex to be carried out entirely by simple diffusion-mediated interactions
between enzymes and substrates. Instead, sequences of biochemical reactions must be
efficiently organized and integrated with other sets of reactions by the cell. Two fun-
damental structural elements are used by eukaryotic cells to organize and integrate
these reactions: membranes and a cytoskeletal system. An elaborate system of cellular
membranes, in the form of the plasma membrane, membrane-bound organelles, and
the nuclear envelope, has evolved to provide reaction surfaces and to organize and
compartmentalize molecules involved in specific metabolic pathways. Other cytosolic
biochemical reactions, as well as the organization of membranous organelles within
the cell, are regulated by interactions with the cytoskeletal system. Consequently,
enzymes and proteins involved in biochemical reactions can be located in the cytosol,
within membranes, on the surfaces of membranes, within the interior of membrane-
bound compartments, or in association with the cytoskeleton. The elaboration of these
structural elements has allowed for the sophisticated level of biochemical integration
that exists in living eukaryotic cells.

Over two hundred different types of cells are found in higher animals, including
humans, and the interaction of these diverse cell types is responsible for the forma-
tion and functioning of tissues and organs. Different types of cells carry out special-
ized functions, but all cells face similar sets of challenges to exist. In general, cells
must maintain a barrier against, and sensing mechanisms to interact with, their exter-
nal environment; synthesize and recycle their structural and enzymatic components;
repair physical or chemical damage; grow and reproduce; and generate energy for all
of these activities. These generalized functions, as well as the more specialized func-
tions of individual cell types, are all performed by cell organelles. Cell organelles
perform the basic functions that allow cells to survive and replicate, and are dynamic
entities that become modified to help specialized cells carry out specific functions.
For example, all cells contain a cytoskeletal filamentous system that functions in
maintenance of cell shape and allows for some degree of movement, but muscle cells
contain far greater numbers of these filaments to carry out the contractile activity that
comprises muscle activity.
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Classically, the phrase cell organelle has been used to denote distinct membrane-
bound structures that are readily visible by light or electron microscopy and possess
characteristic morphological features that make them readily identifiable in essen-
tially all eukaryotic cells. Such structures include the plasma membrane, ER, Golgi
apparatus, lysosomes, peroxisomes, and mitochondria (Fig. 1). The structure and
function of these organelles, as well as the cytoskeleton and nucleus, are described
in this chapter. Because membrane structure plays fundamental roles in organelle
function, the basic features of membrane organization will be considered first.

Membrane Structure

Cell membranes are composed of lipid and protein, which are assembled into two
opposing layers called the lipid bilayer. Four major types of phospholipids and cho-
lesterol comprise most of the lipid portion of the bilayer. The phospholipids include
the choline-containing lipids phosphatidylcholine and sphingomyelin, and the amine-
containing lipids phosphatidylethanolamine and phosphatidylserine. All of these phos-
pholipids possess hydrophilic polar heads, and two hydrophobic fatty acid tails. The
membrane bilayer represents an energetically favorable conformation of these lipids
in that the tails associate with each other to form a hydrophobic environment in the
center of the bilayer, with the polar heads facing outward to interact with the charged
aqueous environment of the cytoplasm, organelle lumen, or extracellular space. The
hydrophobic region resulting from the association of lipid tails creates a barrier to the
passage of charged molecules, and only small uncharged molecules, or lipid-soluble
molecules, can freely penetrate the lipid bilayer. Cholesterol, which is shorter and
stiffer than phospholipids, can comprise up to about 50% of the total membrane lipid.
The hydroxyl end of cholesterol interacts with the polar heads of phospholipid mol-
ecules, with the rest of the molecule in the same plane as the fatty acid tails of phos-
pholipids. Its presence in membranes is thought to help prevent phase transitions by
stiffening membranes at higher temperatures, while also maintaining membrane fluid-
ity at lower temperatures. Although cholesterol is prevalent and equally represented

Fig. 1.  (opposite page) Overview of cell organization. (A) Diagram of the major cell organelles,
including the cytoskeleton and nucleus. This drawing depicts a single idealized cell, and so does not
include the cell-cell and cell-ECM junctions elaborated by cells in tissues. (B–D) Examples of low-
power electron micrographs of thin sections of rat tissues showing how cell organization reflects cell
function. (B) Shows intestinal epithelial cells, which are modified to aid in the digestion and absorp-
tion of food. The apical membranes of these cells develop highly organized microvilli (MV), which
are supported by bundles of microfilaments, to increase the surface area of these cells. The epithelial
cells are bound to each other by junctional complexes (JC) consisting of a cluster of tight junctions,
zonulae adherens junctions, and desmosomes. The tight junctions prevent material in the intestinal
lumen from diffusing between cells into the body cavity, and the adherens and desmosomal junc-
tions firmly anchor cells to each other. A migrating immune cell (LYM, lymphocyte) is also present in
this section. (C) Shows salivary gland cells, which are specialized to produce and release large
amounts of secretory glycoproteins. These cells contain extensive arrays of rough endoplasmic reticu-
lum (RER), and become filled with secretory vesicles (SV). Two nuclei are present in this section, and
both display prominent nucleoli (NU). (D) Shows cells of the esophageal epithelium, which are
specialized to accomodate and resist mechanical stresses. These cells are constantly
renewed by the mitotic activity of a basal layer of cells (MC, mitotic cell). As cells are produced and
differentiate, they move toward the lumen of the esophagus, become flattened, and form extensive
desmosomal connections (D) with neighboring cells.



Organelle Function —27



2 8 — Holy

Fig. 2. Electron micrographs illustrating the structural features of various cell organelles. (A) Epi-
thelial cells from a tadpole (Rana pipiens) tail; (B), (F), (G), and (H)  show endocrine cells from a rat
pituitary gland; (C) sea urchin coelomocyte; (D) and (E) secretory cells from digenetic trematodes
(Halipegus eccentricus and Quinqueserialis quinqueserialis). (A) Low-power electron micrograph of
an epidermal cell, showing a number of cell-cell and cell-extracellular matrix junctions. These cells
elaborate numerous desmosomes (D) and hemidesmosomes (H), and the cytoplasm is filled with
prominent bundles of intermediate filaments (IF), which interconnect these junctions. ECM, extracel-
lular matrix. (B) Cytoplasm of an endocrine cell, showing a mitochondrion (M), smooth endoplasmic
reticulum (SER), and flattened cisternae of the Golgi apparatus (G). Also present are small clusters of
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in both bilayers of a membrane, the major phospholipids are asymmetrically distrib-
uted, with higher concentrations of choline-containing phospholipids present in the
noncytoplasmic layer (i.e., the layer facing organelle lumens and the layer of the
plasma membrane facing the extracellular matrix), and higher concentrations of amine-
containing phospholipids in the layer facing the cytoplasm.

In addition to lipid, membranes are also composed of protein. Membrane proteins
are either classified as integral membrane proteins if they penetrate or are anchored in
the bilayer, or as peripheral membrane proteins if they are just associated with the
surfaces of the bilayer. Integral membrane proteins are difficult to remove from mem-
branes, usually requiring disruption of the lipid bilayer (e.g., with detergents) to be
released. Peripheral proteins are easier to remove from membranes, as they are gener-
ally held in place by protein-protein interactions. Integral membrane proteins can pen-
etrate the bilayer completely a single time (single-pass proteins) or multiple times
(multi-pass proteins). They can also be anchored in the membrane through covalent
attachments to lipid molecules in the bilayer.

A number of membrane lipids and proteins are glycosylated. Glycosylation of mem-
brane components takes place in the ER and Golgi apparatus. Because glycosylation
occurs exclusively within the interior (or lumen) of these organelles, the sugar groups
of glycoproteins and glycolipids all face toward the lumenal surface of membranes of
organelles, and the extracellular matrix (ECM) side of the plasma membrane.
Glycosylation of membrane lipids and proteins is thought to help protect membranes,
and in the case of the plasma membrane, to help identify the cell and to assist in the
adhesion of cells to the ECM.

Membrane lipids and proteins carry out a number of functions. In addition to serv-
ing as the structural framework of the membrane, they mediate the functions of all
membranes of the cell. Membrane lipids can form specialized subdomains composed
of specific lipid populations (lipid rafts) that appear to facilitate localized membrane
function, and some membrane lipids are intimately involved in signal transduction
events. Membrane proteins carry out a wide variety of functions, including serving as
membrane channels, carriers, and pumps; transducing cytoplasmic and extracellular
signals; targeting membranes to specific locations; and adhering membranes to each
other and to the ECM.

Fig. 2—(continued)

free ribosomes, secretory vesicles, and part of the nucleus (upper left corner). (C) Low-voltage scan-
ning electron micrograph of an extracted cell (the plasma membrane and soluble cytoplasmic pro-
teins were removed by detergent), showing a few tubular extensions of SER embedded in a network
of microfilaments (MF). This type of microscopy shows the surface features of organelles.
(D) A dense array of RER from a secretory cell; note the high level of organization in the parallel
alignment of cisternae. Attached ribosomes (R) appear as small granular bodies. (E) Section of cyto-
plasm containing a number of mitochondria. Their striped appearance is due to the invagination of
the inner mitochondrial membrane, which forms cristae (C). (F) Endocrine cell cytoplasm, showing
two small lysosomes (L), secretory vesicles (SV), and a centriole pair of a centrosome. In this section,
pericentriolar material and attached microtubules are not clearly displayed. (G) Exocytosis in an
endocrine cell. This micrograph shows the periphery of the cell, and the deep invagination of the
plasma membrane indicates the site where a secretory vesicle has undergone exocytosis (arrow). A
mitochondrion (M), some strands of RER, and clusters of free ribosomes (R) are also shown.
(H) Pinocytosis in an endocrine cell. The plasma membrane of this cell displays numerous small,
smooth invaginations (arrows), characteristic of non-clathrin mediated internalization of material.
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The Plasma Membrane
The plasma membrane encloses the cytoplasm of a cell and carries out multiple

functions. It forms both a barrier to, and an interface with, the cellular environment.
The plasma membrane is a selectively permeable barrier that, by regulating what
enters and exits a cell, is a primary determinant of the composition of the cytoplasm.
The plasma membrane is associated with sensing mechanisms that transduce environ-
mental information into a cytoplasmic or nuclear response. The plasma membrane is
involved in cell-cell and cell-ECM attachments, and also contains cell-specific mol-
ecules that help identify cells, thereby helping to establish the appropriate position
and arrangement of each cell in the body.

Barrier Functions
The hydrophobic nature of the central region of the lipid bilayer serves as a barrier

to charged or large hydrophilic molecules; thus, the lipid bilayer is impermeable to
small ions (e.g., Na+, K+, Cl–) and proteins. Only small, uncharged molecules (e.g.,
CO2, H2O), or molecules freely soluble in lipid (e.g., steroid hormones, dioxin) are
able to pass directly through the lipid bilayer. In this way, the plasma membrane is
selectively permeable. However, materials can be transported into and out of the cell
by specific transport mechanisms carried out by the plasma membrane (see Transport
Functions). The carbohydrate moieties of glycolipids and glycoproteins also serve as
barriers by impeding the access of molecules to the surface of the plasma membrane,
which can also serve to protect plasma membranes exposed to harsh environments
(e.g., the stomach and intestinal lumen).

Transport Functions
Because the lipid bilayer is impermeable to most types of organic molecules, the

cell must possess mechanisms to move materials between the cytoplasm and the
external environment. Two approaches are used by the cell to move material into
and out of the cytoplasm: 1) transport through the membrane, and 2) transport
involving membrane flow.

Transport Through the Plasma Membrane
Transport through membranes is mediated by integral membrane proteins, which

help conduct material past the hydrophobic lipid bilayer in a number of ways. Inte-
gral membrane proteins can form channels by associating to form pore-like struc-
tures in the membrane. Such channels allow for diffusion of molecules small enough
to fit through them. This type of transport allows for the flow of molecules down
their concentration gradient and an expenditure of energy is not needed if the chan-
nel is open. Thus, molecules can move through protein channels by passive diffu-
sion. Examples include ion channels that allow for the passage of ions such as Na+

and K+, and the connexons in gap junctions, which allow for the passage of mol-
ecules <1000 daltons through the plasma membrane. Whether these channels are
open or closed is tightly regulated in order to prevent the constant leakage of small
molecules into or out of the cell.

Integral membrane proteins can also act as carriers that bind specific molecules
and help them traverse the lipid bilayer. Binding of the appropriate molecule to carrier
proteins results in a conformational change in carrier protein structure such that the
ligand is conveyed across the membrane. This type of transport is also driven by the
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concentration gradient of the ligand, and does not require the expenditure of energy by
the cell. An example of transport by this method of facilitated diffusion includes glu-
cose transporters in the basolateral membranes of intestinal epithelial cells.

Cells must also transport molecules against their concentration gradients, and this
type of transport is carried out by integral membrane proteins that act as pumps and
requires the expenditure of energy. This is referred to as active transport and is an
essential process in living cells. Examples include a number of different ion pumps,
which keep the cytoplasm relatively low in Na+ and high in K+. Ion pumps are vital
elements of the plasma membrane and it has been estimated that as much as one-third
or more of the energy consumed by a living cell is used to actively transport Na+ out of
the cell. The concentration gradient of certain ions established by these membrane
pumps can itself serve as a motive force for other transport mechanisms. For example,
in addition to moving out of a cell by facilitated diffusion, glucose is actively trans-
ported into cells by integral membrane proteins that bind both glucose and Na+.
Because these transporters bind both Na+ and glucose, the high concentration of Na+

outside the cell relative to the cytoplasm drives the movement of both Na+ and glucose
into the cell, against the concentration gradient of glucose.

Acquisition of glucose from the small intestine is an elegant example of how
active transport can be coupled with facilitated diffusion to move molecules past
epithelia. The apical membrane of intestinal epithelial cells contain Na+-coupled
active transporters that move glucose against its concentration gradient to
accumulate in the cytoplasm. Consequently, the concentration of glucose is higher
in the cytoplasm of these cells than in the extracellular spaces underlying them, and
carrier proteins in the basolateral membranes of these cells allow for the facilitated
diffusion of glucose out of the cell (down its concentration gradient) and into the
circulation. It can be seen from this example that directional transport of molecules
past epithelial cells requires that integral membrane transport proteins occupy
specific locations within the plasma membrane (i.e., either the apical or basolateral
membrane). How transporters are organized within the plasma membrane is deter-
mined by specific targeting mechanisms acting in conjunction with cell junctions
and the cytoskeleton.

Transport Involving Membrane Flow

In addition to movement of materials through membrane channels, carriers, and
pumps, the plasma membrane mediates the transport of material into and out of cells
by membrane flow. Internalization of extracellular material can occur by entrapment
in membrane-bound vesicles that pinch off from the plasma membrane and are trans-
ported into the cytoplasm for processing. This process, called endocytosis, can be sub-
divided into a number of different categories based on the mechanics of how the
formation of vesicles occurs at the plasma membrane, and includes the formation of
clathrin-coated vesicles from coated pits, and the formation of nonclathrin-coated
vesicles derived from structures called caveolae.

Clathrin-coated vesicles comprise a major pathway in which specific extracellular
molecules are recognized and bound to the plasma membrane prior to internalization.
This process involves membrane receptors, which are integral membrane proteins of
the plasma membrane that recognize specific ligands. The best understood example
of this process involves how cholesterol is taken up by cells. In the circulation, cho-
lesterol is packaged in low-density lipoprotein (LDL) particles, which are small par-
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ticles composed of protein and cholesterol esters. Specific LDL receptors are present
in the plasma membrane that bind and anchor LDL particles to the surface of the cell.
Occupied LDL receptors form clusters in the membrane that recruit adapter proteins
and the cytoplasmic protein clathrin. Clathrin molecules assemble beneath receptor
clusters to form a basketwork that deforms the plasma membrane into an invagina-
tion referred to as a coated pit. Continued assembly of the clathrin coating results in
the continued invagination, pinching off and release of a membrane-bound coated
vesicle containing LDL receptor and LDL cargo into the cytoplasm. Once the vesicle
is formed, the clathrin coating is disassembled and the clathrin recycled to the plasma
membrane to assist in the formation of more coated pits. The clathrin-free vesicle then
fuses with a membrane-bound compartment called an endosome, which, in addition to
receiving vesicles from the plasma membrane, also receives lysosomal vesicles filled
with hydrolytic enzymes packaged by the Golgi apparatus. Membrane-bound struc-
tures containing a mixture of LDL particles and acid hydrolases then arise from the
endosome to form mature lysosomes. During this process, LDL dissociates from the
LDL receptor in the acidic endosomal environment, and vesicles enriched in LDL
receptor pinch off from the endosome to be recycled back to the plasma membrane.
Digestion of LDL particles occurs in the lysosome, followed by the release of choles-
terol from the lysosome into the cytoplasm of the cell. This process of receptor-medi-
ated endocytosis is used to concentrate and internalize a number of extracellular
molecules. Other common features of receptor-mediated endocytosis include the
recycling of both clathrin and the receptor; the fusion of internalized vesicles with
endosomes; and the formation of lysosomes (digestive organelles) for material inter-
nalized by this route.

A second endocytotic pathway exists that does not involve clathrin, and may
bypass delivery of internalized material to lysosomes. In this pathway, which
appears to involve both receptor-mediated endocytosis as well as the nonspecific
internalization of extracellular fluid, vesicles are created from clathrin-free invagi-
nated membrane regions called caveolae. Caveolae are associated with specialized
membrane domains with distinct phospholipid contents called lipid rafts. Invagina-
tion and formation of vesicles in these areas does not require clathrin, and the vesicles
formed may be transported directly to the Golgi apparatus or endoplasmic reticulum
instead of the endosomes and lysosomes. Presumably this route is used for material
that would be damaged or degraded by exposure to lysosomal enzymes. Many cells
display a constitutive formation and internalization of these vesicles in a process
sometimes referred to as pinocytosis, or cell drinking.

Signaling Functions
The plasma membrane serves as the interface with the cell environment and pos-

sesses a number of mechanisms to detect and transduce specific extracellular signals.
Integral membrane proteins that serve as signal receptors can be categorized into three
broad classes: ion channel-linked receptors, G-protein-linked receptors and enzyme-
linked receptors.

Ion channel-linked receptors undergo conformational changes upon ligand bind-
ing, opening a membrane channel permeable to small ions. Examples of this type of
receptor include some types of neurotransmitter receptors. G-protein-linked receptors
are integral membrane proteins that, upon ligand binding, activate small GTP-binding
proteins (G-proteins), which in turn activate other effector molecules, including ion
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channel-linked receptors and various enzymes (e.g., adenylate cyclase). Thus, G-pro-
tein-linked receptor activity can lead to ion transients across the plasma membrane, or
the generation of second messengers such as cAMP. Examples of G-protein-linked
receptors include polypeptide hormone receptors. The third class of membrane-asso-
ciated signaling molecules are enzyme-linked receptors, which upon ligand binding
activate an enzyme activity, which is usually a protein kinase or a guanylyl cyclase.
Examples of enzyme-linked receptors are growth factor receptors, whose tyrosine
kinase activity is an important regulator of the cell cycle.

In addition to membrane receptors involved in signal transduction events, cells pos-
sess other types of receptors not associated with the plasma membrane. For example,
steroid hormones (e.g., estrogen and testosterone) are lipid soluble and pass directly
through the lipid bilayer without the need to bind to proteins exposed on the external
face of the plasma membrane. Receptors for these types of signaling molecules are
found in the cytoplasm and nucleus.

Cell Junctions

Specializations of the plasma membrane also help cells adhere to each other and to
the ECM. They form barriers against the diffusion of material between cells of an
epithelium, and form channels between adjacent cells. All of these functions are car-
ried out by cell junctions.

Cell-Cell Barrier Junctions
It is important for the body to prevent the passage of material between epithelial

cells. For example, a major function of intestinal and bladder epithelia is to prevent
the direct passage of the contents of the intestine and bladder into the body cavity.
The ability of epithelia to form effective barriers between different compartments is
owing to the presence of special cell-cell junctions called occluding, or tight, junc-
tions. Tight junctions are composed of linear arrays of the integral membrane pro-
teins occludin and claudin; forming a barrier between cells as strands of occludin
encircling the apical part of adjacent epithelial cells line up and bind to each other.
Epithelia that form strong barriers to intercellular leakage contain many tight junc-
tion strands, whereas more leaky epithelia generally display fewer strands. Occludin
and claudin molecules are associated with other cytoplasmic proteins that appear to
furnish some linkages with the cytoskeleton. Extensive cytoskeletal interactions,
such as those associated with adhesive-type cell junctions, are not readily apparent
in tight junctions.

Cell-Cell Adhesive Junctions
These specializations of the plasma membrane allow cells in an epithelium to bind

tightly to each other, and can be subdivided into two categories: adherens junctions
and desmosomes. Adherens-type cell-cell junctions form belt-like arrays encircling
the apical part of epithelial cells and are associated with a thick band of microfila-
ments. Zonulae adherens are comprised of integral membrane proteins belonging to
the cadherin family of proteins, a number of the linking proteins that interconnect
cadherins to microfilaments, including vinculin and catenin, and associated microfila-
ments. Cadherins from adjacent cells bind tightly to each other in the presence of Ca2+,
and the chelate of Ca2+ promotes cell dissociation. Interestingly, β-catenin functions
not only as an adherens plaque protein, but also as a transcription factor in the nucleus.



3 4 — Holy

Thus, β-catenin may serve as a sensing device that translates changes in cell-cell ad-
hesion into changes in gene activity.

Desmosomes are punctate cell-cell adhesive junctions that are associated with the
intermediate filament cytoskeleton. Like adherens junctions, they are also composed
of cadherin integral membrane proteins and proteins that interlink cadherins and the
associated cytoskeletal filament system. One type of desmosomal cadherin is a pro-
tein called desmoglein, and the major linking protein of desmosomes is a member of
the plakin family of proteins called desmoplakin. Desmosomal intermediate filaments
form dense bundles that interconnect desmosomal plaques, thus strengthening cell-
cell attachments that contribute to the mechanical integrity the epithelium.

Cell-Cell Communicating Junctions
Two types of cell-cell junctions, gap junctions and synapses, constitute specializa-

tions of the plasma membrane that allow cells to communicate with each other. Gap
junctions are punctate structures that electrically couple cells through channels that
provide for direct cytoplasmic communication between adjacent cells. Gap junctions
are composed of clusters of pore-like structures, called connexons, that span the lipid
bilayer and allow passage of molecules smaller than 1000 daltons. Connexons, made
up of hexameric arrays of the integral membrane protein connexin, line up between
adjacent cells to form continuous, tightly sealed channels from cell to cell. These
connections maintain a barrier against leakage of material to, or from the extracellular
compartment, but ions and small molecules can diffuse from cell-to-cell to permit
electrical coupling. The electrical coupling of gap junctions perform vital functions in
propagating the contraction of cardiac muscle. The conformation of connexons is regu-
lated by Ca2+ such that they remain open in low concentrations of Ca2+, but close in
the presence of higher concentrations Ca2+.

In addition to the direct coupling of cells at gap junctions, neurons also commu-
nicate with each other at synapses. At synapses, cells release neurotransmitters in
quantal fashion by the regulated exocytosis of membrane-bound vesicles. Neu-
rotransmitters rapidly diffuse across a narrow extracellular space to bind to specific
receptors on the plasma membrane of the adjacent cell. These receptors are either
ion channels, or, in some cases, G-protein-linked receptors. When stimulated by a
neurotransmitter, ion channels open, allowing Na+ to enter the cell by diffusing down
its concentration gradient, thereby depolarizing the plasma membrane. G-protein-
linked receptors that bind neurotransmitter release activated G-proteins that may
subsequently activate and open other ion channels. Depolarization of the plasma
membrane is conducted down the body of the stimulated cell, and can trigger the
release of the neurotransmitter at synaptic junctions between the stimulated cell and
other adjacent cells. In this way, signaling activity is propagated between cells in-
terconnected by synapses.

Cell-ECM Adhesive Junctions
Cells elaborate two types of cell-ECM junctions that assist in their adherence to

the ECM. Hemidesmosomes anchor epithelial cells to underlying connective tissue
and are associated with intermediate filament cytoskeletal fibers, whereas focal con-
tacts can be formed by many types of cells and involve microfilament-associated
linkages with the extracellular matrix. Hemidesmosomes resemble half-desmosomes
where proteins called integrins form the integral membrane component, linked to



Organelle Function —35

intermediate filaments by members of the plakin family of proteins. Integrins are
also the integral membrane proteins of focal contacts, and are connected to bundles
of microfilaments by vinculin, talin, and other linking proteins. Focal contacts are
associated with protein kinases, called focal adhesion kinases (FAKs). FAKs are
thought to help transmit the status of cell-ECM linkage at focal contacts to the cyto-
plasm and nucleus. Normal (noncancerous) cells must usually be in contact with a
substrate to divide, and FAKs may be involved in relaying contact information to
regulatory elements of the cell cycle.

Cell Protection and Cell Identity
Many proteins and lipids of the plasma membrane possess covalently-linked sugar

groups. These sugar groups are asymmetrically distributed, and are presented exclu-
sively on the ECM side of the membrane. Plasma membrane glycoproteins and gly-
colipids serve important roles in both protecting the membrane, and in identifying
specific cell types. Epithelial cells lining the small intestine elaborate a thick
glycocalyx that helps to protect them against the harsh digestive conditions of the
intestinal lumen. Examples of cell recognition processes involving glycoproteins and
glycolipids include the patterns of antigens on red blood cells responsible for blood
groupings. Another example involves the initial adhesion of neutrophils to capillary
endothelium in areas of inflammation. During inflammation, endothelial cells express
the integral membrane protein P-selectin, which contains a lectin domain that recog-
nizes a four sugar group (N-acetylglucosamine, galactose, fucose, and sialic acid)
present on glycoproteins and glycolipids of neutrophils. Neutrophils adhere to endot-
helial cells expressing P-selectin. This facilitates their subsequent migration past the
capillary bed to reach the sites of inflammation.

Endoplasmic Reticulum
The ER is a prominent organelle in most cells, and its total membrane area can

constitute more than half of all the membrane of a cell. ER membranes delimit
enclosed spaces that vary in shape from flattened sheets, or cisternae, to branching
tubules, to distended sacs; the total enclosed lumenal space can occupy 10% or more
of the cell volume. A number of distinct functions are carried out by the ER. The ER is
the primary site of synthesis of membrane lipids and integral membrane proteins for
all membranous organelles (ER, Golgi, lysosomes, endosomes, secretory vesicles, and
plasma membrane) except mitochondria and peroxisomes. It is also the site of produc-
tion of secreted proteins and lumenal proteins of ER, Golgi, and lysosomes. In addi-
tion, the ER functions in lipid synthesis, detoxification reactions, and Ca2+ regulation.

ER can be categorized as either rough (RER) or smooth (SER). RER is so desig-
nated owing to the presence of numerous ribosomes bound to the cytoplasmic surface
of the cisternal membranes, whereas SER lacks associated ribosomes. These different
forms of ER are specialized for different functions; RER is the site where integral,
lumenal, and secretory proteins are synthesized, whereas SER is the major site of
detoxification and lipid synthesis.

Protein Synthesis
Protein synthesis takes place on ribosomes, which are either located free in the

cytoplasm, or attached to membranes of the ER (forming RER). Cytoplasmic proteins
(e.g., cytoskeletal proteins) are synthesized by free ribosomes, whereas proteins asso-
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ciated with membranes (including the plasma membrane) or the lumenal compart-
ments of membrane-bound organelles, as well as proteins destined for secretion, are
synthesized by RER. The lipid components of membranes are also made by the ER,
and both protein and lipid are delivered to the plasma membrane and most organelles
by membrane flow. This involves the transport and fusion of membrane-bound
vesicles between ER, the Golgi apparatus, and other target organelles. Exceptions to
this pattern of membrane biogenesis and renewal include mitochondria and peroxi-
somes. Interestingly, most proteins of mitochondria, and all peroxisome proteins, are
made by free ribosomes and subsequently delivered to these organelles via transport
mechanisms that move individual proteins into or past their membranes. Membrane
lipids are delivered to these organelles by transport proteins that extract lipid from ER
membranes and insert them in the membranes of mitochondria and peroxisomes.

Whether ribosomes remain free in the cytoplasm or are bound to ER is determined
by the amino acid sequence of the polypeptide chain as it emerges from the ribo-
some. ER-associated proteins possess a signal sequence that functions in docking the
polypeptide to the membranes of the ER. The signal sequence is recognized and
bound by a signal recognition particle, or SRP. The SRP in turn binds to a SRP recep-
tor in the membrane of the ER. A protein translocator apparatus forms a pore in the
ER membrane through which growing polypeptide chains can pass. It also associates
with the SRP and SRP receptor, and receives the protein as translation proceeds.
Thus, proteins with signal sequences are injected directly into the membrane of the
ER as they are synthesized. The signal sequence, which is hydrophobic, remains
inserted into the lipid bilayer while the rest of the protein spools past as it elongates.
The relative orientation of the signal sequence influences whether the N- or C-termi-
nus of the polypeptide is threaded into the ER lumen. Soluble lumenal proteins spool
all the way through the bilayer, and a signal peptidase then clips the protein at the
signal sequence, liberating the protein into the lumen. Single- and multi-pass mem-
brane proteins are thought to achieve their conformations by internal stop-transfer
and start-transfer sequences, which interact with the bilayer to either promote the
passage of the growing polypeptide chain through the bilayer (start-transfer
sequences), or halt the transmembrane passage (stop-transfer sequences). Multiple
start- and stop-transfer sequences therefore can result in a polypeptide chain that
doubles back and forth to penetrate the bilayer at multiple points, forming loops in
both the cytoplasm and ER lumen.

A number of post-translational modifications of proteins occur in the ER, as well
as in the Golgi apparatus. Chaperone proteins that help direct the correct folding of
newly synthesized protein are present in the ER cisternae; disulfide bonds form and
many proteins are glycosylated, or may have glycolipid anchors added. Glycosylation
is carried out by the initial assembly of sugars into polymeric structures attached to
the membrane lipid dolichol. The assembled carbohydrate group is then transferred
from dolichol to the protein. The glycoprotein may be processed in the ER by trim-
ming some sugars, and addition of others. Further processing of glycoproteins, and
the formation of glycolipids, are major functions of the Golgi apparatus.

Lipid Synthesis

In addition to synthesis of proteins for membranes, lysosomes, and secretory
vesicles, the ER is also responsible for the synthesis of most membrane lipid for all
organelles (including mitochondria and peroxisomes). Enzymes involved in lipid syn-
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thesis are embedded in the membrane of the ER, with their active sites facing the
cytoplasm. Fatty acids are added to glycerol phosphate to form phosphatidic acid,
which then receives various head groups. Phosphatidylcholine, phosphatidylserine,
and phosphatidylethanolamine are formed in this way and initially added to the cyto-
plasmic leaflet of the ER lipid bilayer. Phospholipid translocators (flippases) are
present in the membrane that transfer choline-containing phospholipids from the cyto-
plasmic half to the lumenal half of the bilayer. These translocators keep the total num-
bers of phospholipid molecules approximately equal between the two layers, but give
rise to membrane asymmetry in the distribution of these lipids. Sphingomyelin syn-
thesis is more complex; serine is first attached to fatty acids to form ceramide, which
is exported to the Golgi apparatus, where phosphocholine head groups are added.
Mitochondria and peroxisomes appear to receive their membrane lipid from the ER
through the activity of phospholipid exchange proteins, which transfer phospholipids
between membrane systems by extraction and insertion of individual lipid molecules.
In addition to membrane lipid synthesis, the ER plays important roles in other aspects
of lipid metabolism. For example, steroid hormones are synthesized from cholesterol
in the SER.

Detoxification
Harmful substances that are relatively insoluble are difficult to clear from the cell.

Such substances can occur as either environmental contaminants or as products of
metabolism. SER contain a variety of enzymes that are able to process insoluble toxi-
cants to make them more water-soluble and amenable for excretion. The best studied
detoxification enzymes are members of the cytochrome P450 family of enzymes. Liver
hepatocytes are among the most active cells involved in detoxification reactions, and
contain large amounts of SER that house the P450 enzymes. The quantity of SER within
a cell can fluctuate in response to different levels of exposure to toxic compounds.

Ca2+ Regulation
The ER membrane contains Ca2+-ATPases that actively transport cytoplasmic

Ca2+ into the ER lumen. This activity keeps cytoplasmic Ca2+ levels very low, which
is necessary to allow Ca2+ to effectively function as a signaling molecule. In electri-
cally excitable cells, depolarization of the plasma membrane promotes influx of Ca2+

from outside the cell; in nonexcitable cells, however, most of the Ca2+ released into
the cytoplasm comes from the ER. ER membranes contain Ca2+ release channels
that are activated by inositol triphosphate (IP3), a signaling molecule released by
the activation of certain G-protein-linked receptor proteins at the plasma membrane.
The contraction of muscle cells is triggered by Ca2+, and these cells possess an
extensive and specialized SER system, the sarcoplasmic reticulum, that contains a
second type of Ca2+-release channel in the SER membrane. After release from the
ER, Ca2+ concentrations are lowered in the cytoplasm by the activity of plasma mem-
brane and ER pumps.

Golgi Apparatus
The Golgi apparatus functions as the post office of a cell, packaging and directing

different types of cargo from the ER to different organelles and the plasma membrane.
In addition to packaging and targeting membrane-associated protein and lipid, as well
as secreted protein, to their appropriate destinations, the Golgi apparatus modifies cer-
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tain proteins and lipid received from the ER. Glycolipids are formed in the Golgi by
the addition of oligosaccharide chains to ceramide; in addition, further processing of
glycoproteins continues in the Golgi.

The Golgi apparatus is made up of a set of flattened, membrane-bound cisternae
and associated tubulovesicular elements and membrane-bound vesicles in the process
of being transported between ER, Golgi, and other locations. The stacks of Golgi
cisternae are biochemically distinct, and the entire stack is polarized, so that a cis, or
entry face, and a trans, or exit face, exist. The cis face lies adjacent to ER, and is the
site of vesicular traffic back and forth between the ER and Golgi. The trans face is the
site of formation of a number of types of vesicles that convey material to the plasma
membrane, produce secretory vesicles, and form lysosomes. Integral membrane pro-
teins, membrane lipids and soluble cisternal protein formed by the ER traverse the
Golgi and are targeted to their appropriate destinations by this organelle. Three major
routes of export from the Golgi occur: 1) constitutive delivery of membrane-bound
vesicles to the plasma membrane; 2) formation of secretory vesicles whose exocytosis
is regulated; and 3) formation of lysosomes. Specific targeting signals are associated
with the formation of lysosomal vesicles and secretory vesicles; however, the path-
way from the Golgi apparatus to the plasma membrane appears to be largely constitu-
tive and unregulated, forming a default pathway.

Proteins destined to be secreted in a regulated manner (e.g. release of hormones
from endocrine cells) are concentrated and packaged in membrane-bound vesicles
formed by the trans Golgi. These secretory vesicles are stored in the cytoplasm until
signals to fuse with the plasma membrane are received, resulting in the liberation of
their contents outside the cell. Targeting mechanisms exist that direct secretory
vesicles to the appropriate cellular location for release. For example, some secretory
vesicles are released from the apical plasma membranes of epithelial cells, whereas
others fuse with basolateral membranes.

Proteins destined for lysosomes are tagged with mannose-6-phosphate (M6P) groups
in the Golgi. M6P receptors are present in Golgi membranes, and vesicles containing
lysosomal proteins bound to M6P receptors bud off from the Golgi and fuse with
endosomes to form mature lysosomes. During this process, M6P receptors are recycled
for repeated use by vesicular trafficking from endosome to Golgi apparatus.

Lysosomes

Lysosomes are the digestive organelles of the cell, and are filled with acid hydro-
lases that are most active at a pH of about 5.0. Lysosomal vesicles from the Golgi
apparatus fuse with endosomes that have received material from endocytotic
vesicles. Endosomes have a moderately acidic pH of about 6.0 that promotes disso-
ciation of ligand from internalized plasma membrane receptors as well as dissocia-
tion of lysosomal hydrolases from M6P receptors. Both types of receptors are
recycled by being routed back toward the plasma membrane and the Golgi appara-
tus in membranous vesicles that are pinched off from endosomes. The endosome
then matures to form a lysosome by condensing into a spherical or irregular mem-
brane-bound structure. Proton pumps in the membrane of the maturing lysosome
lower the pH inside the organelle to maximally activate the acid hydrolases to digest
the internalized material. Other transporters exist in the lysosomal membrane to
allow digested organic molecules to enter the cytoplasm for use by the cell.
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In addition to the confluence of lysosomal and endocytotic vesicles at endosomes,
material can be targeted for lysosomal degradation by at least two other mechanisms.
Neutrophils and macrophages are cells specialized for the engulfment of bacteria and
other large particulate material, which are internalized by phagocytosis. Lysosomes
fuse with these large phagocytotic vesicles to deliver their hydrolases, resulting in the
formation of phagosomes. Lysosomes also contribute to the breakdown of cellular
material that is not needed or should be turned over. Excess, old, or malfunctioning
organelles can be targeted for destruction by becoming enveloped by cisternae of ER,
which then fuse with lysosomal vesicles to form autophagosomes. Recently, evidence
has been gathered suggesting that a fourth route to lysosomes may exist that involves
the transport of single cytoplasmic molecules through the lysosomal membrane by
specific transport proteins.

Membrane Flow

It is apparent that there is a complex, but effective and elegant, flow of mem-
branes and molecules between the various organelles and cytoplasmic compartments
of eukaryotic cells. With the exception of mitochondria and peroxisomes, the mem-
branes of all organelles, vesicles, and the plasma membrane are initially produced
by the ER, modified and packaged by the ER and Golgi, then targeted and delivered
via the trafficking of membrane-bound vesicles. A number of different types of sig-
nals and targeting mechanisms are used to regulate this flow of the membrane.
Between the ER and Golgi, vesicles are coated with coat proteins (COPs), that either
direct vesicles from the ER to the Golgi (COPII), or direct vesicles from the Golgi to
the ER (COPI). Although no mechanisms appear to exist that restrict the flow of
material from the ER to the Golgi, the amino acid sequences KDEL and KKXX
(where X is any amino acid) mark lumenal and integral membrane proteins, respec-
tively, for return transport from the Golgi to the ER. Thus, proteins with these
sequences are essentially restricted to the ER by being rapidly returned from the
Golgi apparatus. The exact mechanism of membrane flow through the Golgi appara-
tus has been a matter of some debate, but at least part of the flow appears to be
carried out by membrane-bound vesicles. The flow of membrane from the Golgi to
plasma membrane includes a constitutive, default pathway that operates in the
absence of specific targeting signals. However, delivery of material to secretory
vesicles and lysosomes requires defined targeting information. Interestingly, clathrin
is involved in the formation of lysosomal and secretory vesicles from the trans Golgi,
but not in the constitutive formation of vesicles destined for the plasma membrane.
In addition to the ER and Golgi apparatus, bi-directional membrane flow also occurs
between plasma membrane and endosome, and plasma membrane and Golgi.
Clathrin-coated endocytotic vesicles from the plasma membrane travel inward to
fuse with endosomes, and the receptors subsequently return to the plasma membrane
via small vesicles formed from endosomal membranes. Endocytotic vesicles formed
from caveolae may bypass lysosomes and fuse directly with Golgi or ER. Although
the details of vesicular targeting are not well understood, it has been proposed that
SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors)
proteins on the surfaces of membrane-bound vesicles (v-SNAREs) and target
organelles (t-SNAREs) mediate the correct patterns of docking between vesicles
and organelles.
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Mitochondria
The primary function of mitochondria is to convert energy sources into forms

that can be used to drive cellular reactions. Not surprisingly, they comprise a sig-
nificant volume of the cell—normally, about 20% of the total cell mass. Mito-
chondria replicate by a process involving growth and fission of pre-existing
mitochondria. Interestingly, mitochondria contain their own DNA that resembles
the genome of prokaryotes. Based on this and other lines of evidence, it appears that
mitochondria (and plastids in plant cells) arose by the colonization of eukaryotic
cells by prokaryotes early in their evolution. Although mitochondria contain DNA
and are able to carry out transcription and translation, they only produce about 5%
of their protein, the rest being encoded by nuclear genes and synthesized by cyto-
plasmic ribosomes. They also appear to obtain most of their membrane lipid from
the ER, mediated by of phospholipid transfer proteins that shuttle these molecules
from the ER to the various organelles, including mitochondria.

Cells use ATP as their primary energy source, and the main function of mito-
chondria is the production of ATP from food sources. Energy is obtained from the
oxidation of food by the sequential transfer of high energy electrons to lower energy
states; the released energy is used to drive membrane-bound proton pumps, thus estab-
lishing an electrochemical gradient. Protons are then allowed to flow back across the
membrane down their concentration gradient, and the released energy is used to drive
the synthesis of ATP from ADP and Pi. The electrons are ultimately transferred to O2,
and the entire process is therefore referred to as oxidative phosphorylation.

Mitochondrial Structure
Mitochondria are composed of two membranes, that enclose distinct compartments.

The outer mitochondrial membrane is somewhat permeable to small molecular weight
compounds (< 5000 daltons); conversely, the inner membrane contains a very high
ratio of protein to lipid, and movement of material past this membrane is tightly regu-
lated. The space between the two membranes is called the intermembrane space, and
the compartment delimited by the inner membrane is called the mitochondrial matrix.
The inner membrane is folded into sheet- or tube-like invaginations within the matrix,
thus increasing its surface area. The increased surface area of this membrane allows
mitochondria to house greater numbers of electron transport enzyme systems and
ATP synthase complexes. The intermembrane space resembles the cytoplasm, but the
internal matrix is biochemically distinct. The matrix is the site of conversion of pyru-
vate and fatty acids to acetyl CoA and is the location of the citric acid cycle, where
acetyl CoA is oxidized.

Chemiosmotic Generation of ATP
With respect to energy production, the pathways of carbohydrate and lipid

metabolism converge in the generation of acetyl CoA in the mitochondrial matrix.
Carbohydrate is converted to glucose-6-phosphate, which, as a substrate for glyco-
lysis, gives rise to two pyruvate molecules. Pyruvate is transported to the mitochon-
drial matrix were it is converted to acetyl CoA by the pyruvate dehydrogenase
complex. Fatty acids are oxidized in the mitochondrial matrix, releasing acetyl
groups that are then linked to CoA. Acetyl CoA derived from carbohydrate and fatty
acid metabolism is fed into the citric acid cycle, resulting in the production of CO2

and NADH. NADH conveys high energy electrons to the electron transport chain,
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which is located on inner mitochondrial membrane. The electron transport chain is a
complex composed of at least 40 different proteins. The actual transfer of electrons
is carried out by a number of different heme groups linked to various cytochromes,
iron-sulfur center-containing proteins, ubiquinone, copper atoms, and a flavin. These
are organized into three large enzyme complexes, with ubiquinone and cytochrome
C serving as carriers of electrons between the complexes. The three complexes are
the NADH dehydrogenase complex, the cytochrome B-C1 complex, and the cyto-
chrome oxidase complex. Electrons shuttled across these complexes move from high
to low energy states, with the released energy used to pump H+ from the matrix to
the intermembrane space. Then, H+ is allowed to flow down its concentration gradi-
ent (from the intermembrane space to the matrix) through the ATP synthase com-
plex. This is a large transmembrane complex of about 500,000 daltons that contains
multiple proteins, and constitutes about 15% of the total inner membrane protein.
The energy that is released is used to couple Pi to ADP to make ATP. Finally, the
electrons used to drive the H+ pumps are combined with O2 and H+. Thus, the gen-
eration of ATP from high energy electrons by this chemiosmotic mechanism con-
sumes O2 and produces water.

Other Mitochondrial Functions
In addition to converting food energy into ATP, mitochondria also are involved in

a number of other functions, including Ca2+ regulation and apoptotic signaling. Like
the ER, mitochondria sequester Ca2+ to help keep cytoplasmic levels low. In addition
to producing ATP, the H+ gradient can be used to import Ca2+ into the mitochondrial
matrix, where it is used in part to help regulate the activity of certain mitochondrial
enzymes. Deposits of calcium can be formed in mitochondria in response to high
cytoplasmic levels of Ca2+. Mitochondria are also involved in the regulation of pro-
grammed cell death, or apoptosis. A central mechanism by which apoptosis is carried
out involves activation of the caspase family of proteases. Release of cytochrome C
by mitochondria facilitates caspase activation by forming a complex with other mol-
ecules (e.g., APAF-1) and pro-caspases to activate the caspase cascade. Release of
cytochrome C from mitochondria can occur in response to specific membrane signal-
ing events, as well as from cytoplasmic, mitochondrial, or nuclear damage.

Peroxisomes

Peroxisomes are membrane-bound vesicular organelles that are involved in various
oxidative reactions. They contain high concentrations of enzymes that are able to form
H2O2 by the transfer of hydrogen atoms from substrates to molecular oxygen. In addi-
tion, peroxisomes contain catalase, which breaks down H2O2 to oxidize various sub-
strates, including some types of toxins. Like mitochondria, peroxisomes replicate by
fission and growth of pre-existing organelles. All protein and lipid of the peroxisome
is synthesized in the cytoplasm, and subsequently imported into the peroxisomal mem-
brane and lumen.

The Cytoskeleton

The cytoskeleton of eukaryotic cells is composed of a complex system of proteina-
ceous filaments that are present in both cytoplasm and nucleus. The three major
cytoskeletal systems elaborated by cells are microfilaments, microtubules, and inter-
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mediate filaments. These different cytoskeletal systems are biochemically and func-
tionally distinct.

Microfilaments
Microfilaments are small solid filaments about 6 nm in diameter, composed of the

45 kDa globular protein actin. Actin is one of the most abundant proteins in cells,
composing up to 5% or more of the total cell protein. Microfilaments help support and
organize the plasma membrane and are involved in cell motility and the maintenance
of cell shape, serving as the muscle of the cell.

A large number of actin-associated proteins mediate the functions of microfila-
ments, including regulating actin polymerization (e.g., profilin, WASp, and ARP),
cross-linking microfilaments to form organized arrays (e.g., filamin, fimbrin, and
villin), interacting with membrane proteins to establish and maintain distinct mem-
brane domains (e.g., vinculin, catenins, and Z0-1 of tight junctions), and functioning
as motor proteins (e.g., type I and II myosins) to carry out motility events. Much of the
actin in cells is present as soluble monomers (g-actin) bound to profilin. This interac-
tion inhibits the polymerization actin monomers into filaments (f-actin). Signals from
the plasma membrane, mediated in large part by small GTP-binding proteins (e.g., rac
and rho), activate WASp and ARP proteins, to promote the dissociation of profilin
from g-actin and seed the growth of new microfilaments from the sides of pre-existing
microfilaments. Microfilament polymerization is controlled by the addition of cap-
ping proteins to the end of growing filaments, and turnover of filaments occurs by the
actions of microfilament cutting proteins such as gelsolin, followed by depolymeriza-
tion of f-actin to g-actin and association of the latter with profilin.

Although some cell movements and membrane activities appear to be driven by
the polymerization and depolymerization of actin, many other types of actin-associ-
ated motility require the interaction of microfilaments with myosin motor molecules.
Myosin functions as an actin-activated ATPase, undergoing cycles of microfilament
attachment and detachment, with associated conformational changes, resulting in
power strokes. These events are linked to the binding, hydrolysis, and release of
ATP, Pi, and ADP. Myosin activity can slide microfilaments past each other, trans-
port vesicles and other cargo down microfilaments and deform membranes that are
attached to microfilaments.

A number of mutations are known that interfere with microfilament functioning.
WASp protein was discovered as the protein mutated in Wiscott-Aldrich syndrome,
which results from deficits in the ability of actin to polymerize. Dystrophin is a large
linking molecule that interconnects submembrane arrays of microfilaments to integral
membrane proteins and ECM proteins in skeletal muscle cells. Mutations in dystrophin
that interfere with its ability to link microfilaments with the plasma membrane weaken
the plasma membrane, causing the eventual death of the muscle cell and giving rise to
some forms of muscular dystrophy.

Microtubules

Microtubules are small hollow proteinaceous tubes about 25 nm in diameter, com-
posed of the protein tubulin. Microtubules function to organize the cytoplasm and
mediate intracellular motility events. They are associated with motor proteins that
interact with membrane-bound organelles and vesicles to help determine their loca-
tion and organization within the cytoplasm. They also carry out crucial functions in



Organelle Function —43

cell division, forming the spindle apparatus that segregates replicated chromosomes
among the daughter cells. Microtubules also support and power cilia and flagella,
which are highly motile appendages produced by ciliated epithelial cells and sperm.

Unlike microfilaments and intermediate filaments discussed below, microtubules
are associated with a distinct organizing center, called the centrosome (or MTOC,
for microtubule-organizing center). The centrosome is composed of a pair of centri-
oles surrounded by an amorphous mass of pericentriolar material. Centrioles them-
selves are short, barrel-like arrays of microtubules and are associated with the ability
of the centrosome to replicate. Pericentriolar material is a biochemically complex
layer of amorphous material that surrounds the centrioles, which both nucleates
microtubule growth and anchors the ends of microtubules. Three types of tubulin
genes are expressed in eukaryotic cells, including α-, β-, and γ-tubulin. Microtu-
bules are composed of heterodimers of α- and β-tubulin; γ -tubulin is a component
of the pericentriolar material. Microtubules possess an intrinsic polarity and are all
oriented so one end (the minus end) is anchored in the pericentriolar material, with
the free end (the plus end) extending into the cytoplasm. Microtubule polymeriza-
tion and depolymerization occurs at the plus end and involves the addition or
removal of α-β heterodimers. Heterodimers of α- and β-tubulin are associated with
GTP or GDP. GTP-containing heterodimers readily polymerize, whereas GDP-con-
taining heterodimers bind much more weakly to each other and tend to dissociate.
GTPases that hydrolyze microtubule-bound GTP to GDP are present in the cyto-
plasm; however, because heterodimer addition and removal occur at just the plus
end, as long as the terminal tubulin subunits are associated with GTP, the microtu-
bule will grow by the addition of GTP-containing heterodimers. Occasionally, the
GTPase activity catches up with a growing end of the microtubule, hydrolyzing GTP
to GDP in the terminal subunits. At this point, the microtubule rapidly disassembles,
shrinking in size back toward the centrosome. Depolymerizing microtubules can be
rescued and re-grown if sufficiently high concentrations of GTP-containing tubulin
heterodimers are present so that the GTP cap can be re-established. Because of these
events, most microtubules in the cell continuously oscillate between slow growth
and rapid depolymerization, a feature that has been called dynamic instability.

Like the microfilament cytoskeleton, the organization and functions of microtu-
bules are regulated and carried out by associated proteins. Microtubule-associated
proteins are generally categorized as either structural proteins or motor proteins.
Structural proteins include higher molecular weight proteins called MAPs
(for microtubule-associated protein), and lower molecular weight tau proteins. Struc-
tural MAPs and tau are thought to help organize microtubule arrays in the cytoplasm.
Microtubule-associated motor proteins include dynein and kinesin, both of which,
like myosin, undergo cycles of binding, conformational changes, and dissociation in
an ATP-dependent manner to move microtubules past each other, or to move cargo
along microtubules. Microtubule-mediated intracellular transport is carried out by
multiple members of both the dynein and kinesin families of protein, but ciliary
and flagellar motility selectively utilize dynein. The microtubule bundle, or axoneme,
supporting a cilium is anchored in a specialized centrosome called a basal body.
Unlike regular centrosomes, axoneme microtubules originate as direct extensions
from one of the centrioles in a basal body, and not from associated peri-centriolar
material. Axoneme microtubules form circular arrays of doublets surrounding a cen-
tral pair of microtubules. The outer microtubule doublets are associated with dynein,
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which spans adjacent microtubule pairs. Dynein motor activity attempts to slide
microtubule pairs past each other, which is converted into a bending of the cilium
because the bases of the microtubule pairs are attached to the basal body and are not
free to slide. In this way, hydrolysis of ATP by dynein powers the rapid, whip-like
movements of cilia and flagellae in a microtubule-dependent manner. Other forms of
microtubule-mediated motility occur in the cytoplasm, where membrane-bound
vesicles, organelles, and other cargo associated with dynein or kinesin move along
microtubules. Motor proteins exhibit a directionality which allows for vectorial trans-
port of material within the cell. Dyneins move cargo toward the minus ends of micro-
tubules and kinesins generally move cargo toward the plus ends of microtubules
(although minus end-directed members of the kinesin family are known).

In dividing cells, centrosomes replicate along with DNA in S-phase and subse-
quently participate in the formation of the mitotic spindle. Daughter centrosomes move
apart and promote the complete reorganization of the microtubular cytoskeleton prior
to, and during, nuclear envelope breakdown. The plus ends of microtubules radiating
from the centrosomes, now called spindle poles, bind and become stabilized by the
kinetochores of chromosomes, forming distinct bundles of kinetochore microtubules.
Microtubule-mediated motility events at the kinetochore line chromosomes up on the
metaphase plate and are subsequently responsible for the separation of daughter chro-
mosomes in anaphase of mitosis. Pinching the cell into two daughter cells (mediated
by bundles of microfilaments in association with the plasma membrane at the cleav-
age furrow) leads to the inheritance of the correct number of chromosomes and a
single centrosome by each daughter cell. Interestingly, other organelles such as mito-
chondria and peroxisomes appear to be randomly apportioned to each daughter cell by
virtue of the fact that they are distributed throughout the cytoplasm, whereas the ER
and Golgi apparatus vesiculate and disperse throughout the cytoplasm early in mitosis
to be inherited in the same way.

A number of drugs interfere with microtubule dynamics; examples include colchi-
cine, which actively promotes tubulin depolymerization; and taxol, which stabilizes
microtubules and inhibits depolymerization. Both of these drugs are toxic to cells,
indicating that the oscillation between polymerization and depolymerization is crucial
to microtubule function. A number of taxol-based compounds have been developed
for use in the chemotherapeutic treatment of cancer, highlighting the importance of
microtubule dynamics in cell division.

Intermediate Filaments
Intermediate filaments (IF) are solid filaments about 10 nm in diameter, made up of

one or more of a large family of intermediate filament proteins. Intermediate fila-
ments are found in both the cytoplasm and the nucleus. They function in strengthening
the cytoplasm of cells, as well as in mechanically integrating cells of a tissue by inter-
connecting desmosomes and hemidesmosomes.

The IF family of proteins is the most complex family of cytoskeletal proteins, with
over 50 different IF gene products elaborated by cells of higher vertebrates. IF pro-
teins can be divided into five groups: 1) acidic keratins, 2) neutral/basic keratins,
3) vimentin-like proteins, 4) neurofilament proteins, and 5) lamins. Intermediate fila-
ment proteins are expressed in tissue-specific patterns, with epithelial cells containing
keratins, cells of mesenchymal origin expressing vimentin-like IF proteins, and neu-
ronal cells expressing neurofilament IF proteins. Lamins are present in essentially all
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nucleated cells and form a filamentous network underlying and supporting the inner
membrane of the nuclear envelope. There is evidence that lamins help organize chro-
matin and are involved in some aspects of DNA synthesis, as well.

IF proteins are long, rod-like molecules that contain a central domain rich in
α-helices. The rod domain of IF proteins coil around each other to form coiled-coil
dimers, which then associate into higher order structures, much like weaving
together individual strands to form a rope. The polymerization state of IF proteins is
mediated by phosphorylation, and it has been suggested that hyperphosphorylation
of IF proteins leads to dissociation of IFs by repulsion of subunits bearing multiple
negative phosphate charges. One of the best studied examples is the depolymeriza-
tion and repolymerization of nuclear lamina filaments during cell division. At the
onset of mitosis, lamins are hyperphosphorylated and the nuclear lamina depoly-
merizes, facilitating nuclear envelope breakdown. At the end of mitosis, lamins are
dephosphorylated and the nuclear lamina and nuclear envelope re-forms around the
daughter nuclei.

Only a relatively few IF-associated proteins are known, and these appear to help
organize intermediate filaments and mediate interactions with other cytoskeletal pro-
teins and organelles. Intermediate filaments frequently form a dense basketwork
around the nucleus; thus, the nucleus of many cells is supported both by an internal IF
lamina, as well as protected by a cytoplasmic network of IF fibers.

Nuclear Organization

The largest and most prominent structure in most cells is the nucleus. It serves as
the repository and organizing center for the genome. In humans, chromosomal
DNA—of a total length of about two meters when fully extended—is packaged into
an average nuclear size of about 10 µM (1/100 of a millimeter) in diameter. The DNA
must be packaged in such a way as to allow access to transcriptional and replication
machinery, and extensive nuclear-cytoplasmic transport must occur. These functions
are mediated by the organization of DNA within the nucleus, and the organization of
the nuclear envelope.

The nucleus is bounded by the nuclear envelope, which is comprised of two mem-
branes (the inner and outer nuclear membranes), the nuclear lamina, and numerous
nuclear pores that span the inner and outer membranes. Nuclear pores are multimo-
lecular arrays exhibiting eight-fold symmetry that are involved in the exchange of
material between cytoplasm and nucleus. Material moves through nuclear pores by
both passive diffusion and by active transport; molecules smaller than 5000 daltons
are freely permeable between nucleus and cytoplasm, but those larger than about
60,000 daltons must be actively transported. Molecules between these sizes can
move between nucleus and cytoplasm without being actively transported, but take
longer to equilibrate with increasing size. Proteins actively transported into the
nucleus contain nuclear localization sequences that are recognized by the pore com-
plexes. Nuclear localization signals vary in amino acid sequence, but usually con-
tain a number of lysines and are positively charged.

The first step in DNA packaging involves the winding of DNA around octamers
of histone proteins, which are positively charged proteins that closely interact
with the negatively charged DNA. This first order of DNA packing gives rise to a
beads on a string appearance, with the beads, or nucleosomes, composed of about 200
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base pairs of DNA wrapped almost twice around a histone octamer core. Nucleosomes
are further coiled to form a 30 nm diameter solenoid fiber, which loops out to form
euchromatin (loosely compacted and generally active DNA), or becomes more tightly
compacted to form heterochromatin (tightly compacted and relatively inactive DNA).
Each chromosome usually consists of a mixture of heterochromatin and euchromatin,
and occupies a more-or-less defined region within the nucleus. Portions of a number of
chromosomes that contain amplified sequences encoding ribosomal RNA and riboso-
mal protein mRNAs cluster together and associate with a number of other protein ele-
ments in the nucleus to form the nucleolus. This is a specialized area where transcription
of ribosomal genes and assembly of ribosomal subunits occurs.

Mounting evidence suggests that chromosomes may be organized on a protein or
protein-RNA based scaffolding. This scaffolding, or nuclear matrix, is biochemically
ill-defined, but appears to be composed of filaments that form a three-dimensional
meshwork within the nucleus, which is surrounded by the denser filamentous mat of
lamin IFs underlying the nuclear envelope. Although the composition of the nuclear
matrix is not well-understood, it is possible that lamin IFs are not restricted to the
nuclear periphery, but contribute to at least some of the matrix fibers. Certain DNA
sequences bind to the nuclear matrix much more tightly than others, leading to the
proposal that distinct matrix attachment regions, or MARs, periodically link chromo-
somes to the matrix. These linkages result in the formation of large (20–200 kilobase)
loops of DNA tethered to the matrix at MAR domains. MAR DNA sequences do not
display a rigid consensus sequence, but have a number of distinguishing features,
including being relatively AT-rich, histone-poor, and possessing multiple topoi-
somerase II binding sequences. MAR domain DNA also may confer position indepen-
dent expression of exogenous DNA incorporated into random sites within the genome.
Thus, it has been proposed that MAR domains form long-range regulatory elements
helping to control gene expression.

The high concentrations of DNA, RNA and protein in the nucleus make it
challenging to study nuclear structure. However, some structural aspects of gene
expression and mRNA processing can be visualized by electron microscopy in the
form of perichromatin fibers and interchromatin granules. These structures repre-
sent sites of RNA processing, and include mRNA as well as associated ribonucle-
oproteins and RNAs that form elements of the splicing machinery, including
spliceosomes and splicing islands.

Conclusion

Living eukaryotic cells must carry out and coordinate an enormous number of bio-
chemical reactions in order to obtain and convert energy to usable forms, break down
and interconvert organic molecules to synthesize needed components, sense and
respond to environmental and internal stimuli, regulate gene activity, sense and repair
damage to structural and genomic elements, grow and reproduce. This level of com-
plexity requires that biochemical reactions be highly organized and compartmental-
ized, and this is the major function of cell organelles and the cytoskeleton. Cells have
elaborated an elegant cytoplasmic membrane system composed of the nuclear enve-
lope, endoplasmic reticulum (ER), Golgi apparatus, and associated endocytotic,
endosomal, lysosomal, and secretory vesicles. These membrane systems serve to both
organize and compartmentalize biochemical reactions involved in protein and lipid
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synthesis, targeting, and secretion. The cytoskeleton facilitates not only cytosolic
molecular interactions, but also serves to organize the entire cytoplasmic membrane
system. The key to cellular life is organization, and eukaryotic cells display a remark-
ably rich and elegant architecture to carry out the demands of life.

Glossary and Abbreviations

Actin  The protein used to form microfilaments. Actin can be either soluble (g-actin)
or polymerize to form microfilaments (f-actin).

Adherens Junction  A type of cell-cell adhesive junction in which bundles of
microfilaments are connected to the plasma membrane via linking proteins (e.g.,
catenin). The linking proteins connect microfilaments to integral membrane pro-
teins called cadherins, which bind to each other in the presence of Ca2+ to adhere
cells together.

ADP  Adenosine 5'-diphosphate. A nucleotide associated with cellular energy
regulation. The release of one of the three high-energy phosphate groups of ATP
yields usable energy and ADP (which contains two phosphate groups and is at a
lower energy state). ATP can be regenerated from ADP with the input of energy to
attach a third high-energy phosphate group.

Apoptosis  The process by which cells actively destroy themselves. Specific bio-
chemical pathways exist, that, when activated, result in the destruction of key cyto-
plasmic and nuclear proteins.

ATP  Adenosine 5'-triphosphate. High energy molecule, most of which is normally
generated by oxidative phosphorylation in mitochondria. ATP is the primary source of
cellular energy used to power enzymatic reactions.

Basal body  A specialized type of centrosome (or MTOC) that gives rise to a
cilium or flagellum.

Cadherin  An integral membrane protein found in desmosomes and adherens junc-
tions. In the presence of Ca2+ , cadherins from adjacent cells bind, adhering cells to
each other. Cadherins are connected to microfilaments at adherens junctions via link-
ing proteins such as catenin, and to the intermediate filament cytoskeleton at desmo-
somes via linking proteins such as desmoplakin.

Caspases  Proteases that are activated during apoptosis. Caspases destroy key cel-
lular components, as well as activate nucleases, thus promoting nuclear disassembly
and cell death.

Catenin  A type of linking protein found in adherens-type cell-cell junctions.
Catenins are particularly interesting in that they can translocate to the nucleus and
function as transcription factors, thus transducing events at the cell surface into
changes in nuclear activity.

Caveolae  Invaginations of the plasma membrane involved in endocytosis.
Caveolae are not associated with clathrin, but possess a distinct lipid makeup, and may
constitute a specialized type of lipid raft.

Cell Junction  Specializations of the plasma membrane that allow for anchorage
and communication between cells, and between cells and the extracellular matrix.

Centriole  A short, barrel-like structure composed of a cylindrical array of micro-
tubule triplets. Centrioles are associated with centrosomes, basal bodies, and spindle
poles, and function in the replication of these microtubule organizing centers.
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Centrosome  The organizing center for the microtubular cytoskeleton. Cen-
trosomes are composed of centrioles and pericentriolar material. Three forms of cen-
trosomes are found in cells, including the single centrosome of non-dividing cells, the
two spindle poles of dividing cells, and the basal bodies of ciliated cells.

Cilia  Motile, whip-like extensions of the cell, supported by a bundle of microtu-
bules that are connected to basal bodies. Cilia actively beat back and forth as a result
of interactions between microtubules and the motor protein dynein, in an ATP-requir-
ing process.

cis-Golgi  The portion of the Golgi apparatus that receives membrane-bound
vesicles from the ER.

Clathrin  A protein involved in receptor-mediated endocytosis. Clathrin forms a
coat around invaginations of the plasma membrane, forming coated pits, which subse-
quently pinch off into the cytoplasm to form coated vesicles.

Claudin  An integral membrane protein associated with tight junctions that helps
form a transcellular barrier between cells.

Coated Pit see Clathrin
Coated Vesicle see Clathrin
COPs  Proteins involved in directing membrane-bound vesicles between the ER

and the Golgi apparatus.
Cytochrome P-450  A group of proteins involved in detoxification reactions.
Cytoskeleton  A system of filaments and tubules in the cytoplasm and nucleus that

perform numerous functions, including maintaining cell shape, driving cell motility
and cell division, and organizing the cytoplasm. Three major types of fibers comprise
the cytoskeleton: microfilaments, microtubules, and intermediate filaments.

Dalton  A measure of the mass of a molecule; one dalton is about the mass of a
hydrogen atom. Small proteins are a few thousand daltons in size, medium and large
proteins range from tens of thousands to few hundred thousand daltons, respectively.

Desmosome  A type of cell-cell adhesive junction in which bundles of intermedi-
ate filaments are connected to the plasma membrane via linking proteins (e.g.,
desmoplakin). The linking proteins connect intermediate filaments to integral mem-
brane proteins called cadherins, which bind to each other in the presence of Ca2+

to adhere cells together. Numerous desmosomes are found in tissues subjected to
mechanical stress, such as epidermis and heart muscle.

DNA  Deoxyribonucleic acid.
ECM  Extracellular matrix.

Endocytosis  A process by which cells internalize material via the formation of
depressions in the plasma membrane which pinch off in the cytoplasm to form mem-
brane-bound vesicles containing the engulfed material. Specific extracellular mol-
ecules can be concentrated and internalized by this method in a process called
receptor-mediated endocytosis.

Endoplasmic Reticulum  An extensive, membrane-bound cytoplasmic organelle
involved in protein and lipid synthesis, as well as in detoxification reactions and Ca2+

regulation. Membranes of the ER form an enclosed compartment that range in mor-
phology from flattened sheets to an interconnected tubular network. Protein and lipid
products made by the ER can be delivered to other parts of the cell or secreted, via
membrane-bound vesicles that traffic between the ER, Golgi apparatus, and plasma
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membrane. Protein synthesis occurs in ER that possesses attached ribosomes (RER),
and lipid synthesis is primarily associated with ER lacking ribosomes (SER).

Endosome  A membrane-bound structure formed by the coalescence of endocy-
totic vesicles and vesicles containing lysosomal enzymes from the Golgi apparatus.
Endosomes can give rise to lysosomes, organelles that efficiently digest internalized
material.

ER  Endoplasmic reticulum.

Exocytosis  A process by which cells secrete material via fusion of membrane-
bound secretory vesicles with the plasma membrane.

Extracellular Matrix  An elaborate system of proteins and polysaccharides that
surrounds cells and tissues. Composed of structural elements, as well as soluble fac-
tors that influence cell growth, differentiation, and function.

FAK  Focal adhesion kinase.

Flippase  A membrane-associated enzyme that is able to transfer phospholipids
between each layer of the lipid bilayer.

Focal Adhesion Kinase  A protein kinase associated with focal contacts involved
in transducing contact information at the cell surface into a cellular response.

G-Protein  Small proteins involved in signaling functions that are able to bind GTP
or GDP. G-proteins cycle between active and inactive states, depending on whether
they are associated with GTP or GDP.

Gap Junction  A type of cell-cell communicating junction that allows for the direct
passage of small molecules between cells. Gap junctions are formed by the alignment
of membrane-spanning pores, or connexons, between cells.

GDP  Guanosine 5' diphosphate. A nucleoside formed by the hydrolytic removal of
a phosphate group from GTP.

Golgi Apparatus  The organelle associated with targeting protein and lipid synthe-
sized by the ER to their appropriate locations. Material is transported between ER and
Golgi, and between Golgi, lysosomes, and the plasma membrane by small membrane-
bound vesicles. Modification of proteins and lipids (e.g., glycosylation) also occurs in
the Golgi apparatus.

GTP  Guanosine 5' triphosphate. A nucleoside associated with cell signaling and
the regulation of cytoskeletal organization.

Hemidesmosome  A type of adhesive junction that attaches epithelial cells to
extracellular matrix. Bundles of intermediate filaments are connected to integral
membrane proteins called integrins via linking proteins. Hemidesmosomal integrins
bind to proteinaceous elements of the ECM, thereby providing mechanical linkage
between IFs and the ECM.

IF  Intermediate filament.

Inositol Triphosphate  A type of membrane-associated phospholipid molecule
involved in cell signaling.

Integral Membrane Protein  A protein that passes through a lipid bilayer one or
more times. Integral membrane proteins are strongly attached to membranes, and usu-
ally require disruption of membrane structure to be released.

Intermediate Filament  One of the three major cytoskeletal groups of proteina-
ceous fibers found in cells. Associated with desmosomes and hemidesmosomes, they
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function in strengthening the cytoplasm of cells, as well as in mechanically linking
cells of an epithelium with each other and with the ECM.

IP3  Inositol triphosphate.

LDL  Low density lipoprotein.

Lipid Bilayer  The structure phospholipid molecules adopt to form a membrane.
Composed of two layers of phospholipid molecules, where the hydrophobic tails face
each other and the polar heads face outward, creating a hydrophobic central region
sandwiched between charged surfaces.

Lipid Raft  A region of the plasma membrane exhibiting a specialized phospho-
lipid makeup. Associated with specific functions, including formation of caveolae
and signal transduction.

Lumen  An enclosed space, or chamber. Usually refers to the compartment enclosed
by a membranous organelle.

Lysosome  A digestive organelle formed by the ER and Golgi apparatus. Hydro-
lytic enzymes synthesized by the ER are concentrated and packaged by the Golgi
apparatus into lysosomal vesicles. Lysosomal vesicles fuse with either endosomes
or with old cell organelles to digest internalized material, or cellular material to be
recycled, respectively.

M6P  Mannose-6-phosphate.

MRNA  Messenger RNA; the type of RNA that encodes the sequence of amino
acids to be assembled into a specific protein in association with a ribosome.

Mannose-6-Phosphate  A polysaccharide “tag” attached to hydrolytic enzymes
that marks them for packaging into lysosomal vesicles by the Golgi apparatus.

MAR  Matrix attachment region.

Matrix Attachment Region  A specialized sequence of DNA that is bound to the
nuclear matrix.

Microfilament  One of the three major cytoskeletal groups of proteinaceous fibers
found in cells. Microfilaments are concentrated underneath the plasma membrane,
which they support and help organize. They are also associated with adherens junc-
tions, microvilli, and cleavage furrows. Microfilaments are involved with maintaining
cell shape and powering cell motility.

Microvilli  Finger-like extensions of the plasma membrane supported by core
bundles of microfilaments. Microvilli serve to increase the absorptive area of epithe-
lial cells.

Microtubule  One of the three major cytoskeletal groups of proteinaceous fibers
found in cells. Microtubules help organize the cytoplasm, participate in intracellular
transport, allow for ciliary and flagellar motility, and organize and segregate chromo-
somes during mitosis.

Microtubule Organizing Center (MTOC) see Centrosome.

Mitochondria  Double-membraned organelles primarily involved in converting
the energy from food molecules into a form usable by the cell. This is largely accom-
plished by using food energy to create a proton gradient across the inner mitochon-
drial membrane, which in turn is used to drive the synthesis of ATP.  Mitochondria
also function in calcium homeostasis and in the regulation of programmed cell death,
or apoptosis.
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Mitosis  The segregation of chromosomes during cell division. Cell division
includes mitosis, followed by cytokinesis, or the division of the parental cell into
two daughter cells.

MTOC  Microtubule organizing center.

Nuclear Envelope  A double-membraned structure enclosing the nucleus that
establishes and maintains a distinct nuclear environment. The nuclear envelope is
perforated by nuclear pores, which allow for the regulated transport of material
between nucleus and cytoplasm.

Nuclear Matrix  A protein (and possibly RNA) based scaffolding within the
nucleus that is thought to help organize chromatin. The molecular makeup of the
nuclear matrix is not well understood, but it appears to play important roles in DNA
synthesis and the regulation of gene activity.

Nucleolus  A specialized structure within the nucleus involved in ribosomal RNA
synthesis and ribosome assembly.

Occludin  An integral membrane protein associated with tight junctions that helps
form a transcellular barrier between cells.

Occluding Junction  Another term for tight junction (see Tight Junction).

Organelle  Readily identifiable cellular inclusions that possess a characteristic mor-
phology and function. The term is usually used to refer to the major membrane-bound
structures within cells, including the nucleus, endoplasmic reticulum, Golgi appara-
tus, lysosomes, peroxisomes,  and mitochondria.

Pericentriolar Material  The amorphous material surrounding centrioles in a cen-
trosome. Microtubules associated with centrosomes and spindle poles arise from the
pericentriolar material.

Peripheral Membrane Protein  A membrane-associated protein that is not
embedded in the lipid bilayer. Peripheral proteins can be associated with the phospho-
lipid heads of the bilayer, or with the portions of integral membrane proteins that
extend beyond the bilayer.

Peroxisome  Organelle involved in oxidation reactions, including the generation
and destruction of H2O2.

Phagocytosis  A type of endocytosis where very large particulate matter is taken up
by a cell (e.g., the engulfment of bacteria by macrophages).

Pinocytosis  A type of endocytosis where small vesicles internalize extracellular
fluid for uptake by a cell.

Plasma Membrane  The membrane surrounding a cell. The plasma membrane,
sometimes called the plasmalemma, encloses the cytoplasm and protects the cell con-
tents from the environment. It carries out vital functions in protection, transport of
material into and out of the cell, sensing and responding to the environment, and in
cell identification.

RER  Rough endoplasmic reticulum.

Rough Endoplasmic Reticulum  Endoplasmic reticulum that possesses ribosomes
(thus presenting a “rough” surface). RER is primarily involved in protein synthesis.

Ribosome  A multimeric array of protein and ribonucleic acid that is involved in
protein synthesis. Ribosomes assemble individual amino acids into a polymer, or
polypeptide, in a specific sequence determined by an associated messenger RNA mol-
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ecule. Ribosomes can exist either “free” in the cytoplasm, or attached to the ER. In the
former case, the proteins they produce are released into the cytoplasm; in the latter
case, the proteins are either inserted into the membrane of the ER, or released into the
lumen of the ER.

RNA  Ribonucleic acid. Includes a number of subtypes, including messenger RNA
(mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).

SER  Smooth endoplasmic reticulum.
Signal Recognition Particle  An assembly of proteins that help dock ribosomes to

ER (forming RER).
Smooth Endoplasmic Reticulum  Endoplasmic reticulum that lacks ribosomes

(thus presenting a “smooth” surface). SER is involved in lipid synthesis, calcium trans-
port, and detoxification reactions.

SNAREs  Proteins that help regulate the trafficking of membrane bound vesicles
between different organelles.

S-Phase  The stage of the cell cycle where DNA synthesis occurs.
Spindle Pole  A microtubule organizing center that assembles the microtubule

spindle during cell division. When cells divide, their centrosome duplicates and moves
apart to form a bipolar spindle.

Spliceosome  An assembly of protein and RNA molecules that processes newly-
made mRNA into mature mRNA.

SRP  Signal recognition particle.
Start-Transfer Sequence  A specific sequence of amino acids that initiates the

penetration of a growing polypeptide chain into the lipid bilayer of RER.
Stop-Transfer Sequence  A specific sequence of amino acids that stops the inser-

tion of a polypeptide chain into the lipid bilayer of RER.
Synapse  A type of communicating cell-cell junction found between neurons in

nervous tissue.
Tight Junction  A type of cell-cell junction that establishes a transcellular barrier.

Also referred to as an occluding junction. The barrier is established by the integral
membrane proteins occludin and claudin, which are arranged in strands that adhere to
each other, and form an apical network around epithelial cells.

trans-Golgi  The portion of the Golgi apparatus that releases membrane-bound
vesicles after their contents have been processed by the Golgi.

Tubulin  The protein used to form microtubules. Most microtubules continually
oscillate between growth and disassembly by the addition or removal of soluble tubu-
lin dimers at the tubule termini.

WASp  The protein mutated in Wiscott-Aldrich syndrome patients. This protein
plays important roles in regulating actin polymerization.

Zonula Adherens  A large, belt-like adherens junction usually found encircling
the apical regions of epithelial cells.
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Cell Signaling

Daniel A. Rappolee

Introduction

Intercellular communication is essential for development and homeostatic function
in multicellular organisms. The language of intercellular communication takes many
different forms. These include protein growth factors e.g., local paracrine, like Fibro-
blast growth factor (FGF), blood-borne endocrine growth hormone; hydrophobic ste-
roids, e.g., estrogen; lipid mediators, prostaglandins, leukotrienes; modified amino
acids, e.g., neurotransmitters such as adrenaline and other metabolites, e.g., nitric
oxide. This chapter will focus largely on small protein growth factors that modulate
growth, differentiation, apoptosis and steady state function during development and in
the adult.

An essential role of signal-transduction is to coordinate functions of diverse cell
types and sets of identical cells within an organ that require close and synchronous
activity in the multicellular organism. The speed of intercellular communication is
dependent on distance and the mode of delivery of the intercellular signal. Local or
paracrine intercellular communication acts within milliseconds over distances less than
10–20 cell diameters (approx 200 microns), but endocrine or blood-borne signaling
that occurs over a distance of meters requires minutes. Specialized short distance sig-
naling, like that mediated by gap junctions, allows linked cells to share small intracel-
lular signal-transduction intermediates downstream of receiving cell-surface receptors.
Specialized long distance signaling, over a distance of meters, can be expedited to the
millisecond range, by increasing the conductance speed. This is accomplished by sal-
tatory movement of signals in neurons coupled with the fast action of neurotransmit-
ters at post-synaptic membranes.

Once the interactor, i.e., the ligand, has bound to its receptor, intracellular signal-
transduction is initiated. After the receptor is activated by phosphorylation, receptor
binding of nonenzymatic docking molecules like IRS-1 (insulin-receptor substrate)
peaks within 1 min. At the end of this signal transcription pathway, phosphorylation of
transcription AP-1 factor initiates transcription of c-fos within 1 min which peaks
within 15 min. Other hormones, such as estrogen activate transcription over slower
time periods, approaching 1 h. In some signal-transduction processes, such as vision,
the complete process of photons activating rhodopsin is computed in one second.
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The Receptor

If the ligands are the words of intercellular language, the receptors are the ears.
Trans-membrane plasmalemma receptors are of several types:

1. Receptor tyrosine kinases such as the FGF receptor;
2. Serine-threonine kinase receptors such as the TGF-β receptor;
3. Nonenzymatic transmembrane receptors (e.g., integrins) that are linked to intracel-

lular tyrosine kinases (e.g., focal adhesion kinase [FAK] and proline rich tyrosine
kinase tyrosine kinases [PYK2]);

4. Seven transmembrane spanners receptors linked to G-proteins (e.g., Wnt ligand-
wingless and int oncogene- and its receptor; frizzled);

5. Non-enzymatic receptors that are linked to signaling pathways which are dere-
pressed by allosteric-conformational changes (e.g., smoothened receptor for
hedgehog ligand);

6. Receptors which are proteolytically converted to ligand (e.g., the Notch intracel-
lular C terminal domain).

Another class of signaling receptors is located in the cytoplasm. They bind
hydrophobic hormones such as steroids (e.g., estrogen), thyroid hormones, and retinoic
acid ligands. They are then translocated to the nucleus; where they act as tran-
scription factors.

The Signal Cascade

Signaling cascades within the cell start as allosteric changes in the receptor or non-
enzymatic docking proteins (e.g., the IRS-1 family and FRS2). These convey the sig-
nal by conformational change and by becoming targets for phosphorylation by receptor
kinases. In either case, the function of the signal-transduction pathway is to quickly
amplify, and directionally conduct information reaching the cell by transmitting it
through a series of tyrosine and serine-threonine kinases.

The majority of the transmembrane receptors are in the off state until induced by an
extracellular ligand. At this point receptors act like allosteric enzymes with the
enzyme in the cytoplasmic domain. Many of the tyrosine kinases require multimer
formation as there is not sufficient flexibility in the transmembrane alpha-helix to
mechanically transduce the ligand-induced conformational change. Multimerization
brings together cytoplasmic enzyme domains that cross-activate and then signal down-
stream docking and enzymatic signal-transduction proteins.

The receptor is activated for a period of time before it is destroyed (internalized
and degraded), desensitized (by phosphorylation by a receptor induced kinase such as
β-adrenergic receptor kinase), or dephosphorylated. During the activation period, a
single activation event can lead to a highly amplified signal-transduction event. For
example, a single quantum of light activating the photoreceptor rhodopsin leads to the
hydrolysis of one hundred thousand cGMP signaling molecules for the duration of 1 s.
The activated receptor has multiple possible phosphorylation sites on the cytoplasmic
domains. These are capable of interacting with large numbers of signaling intermedi-
ates that see the activated receptor through the src homology domain-2 (SH2) that
bind phosphorylated tyrosines (see Fig. 1).

This branching of pathway choices immediately downstream of the FGF receptor
is summarized in Figs. 1 and 2. The array of these docking proteins distinguishes
different cell types that may each express the same receptor and facilitates different
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signal types in cells with the same receptor. If the activated receptor is the hub of
activity, the docking proteins provide the spokes that radiate out to multiple down-
stream targets. Docking proteins such as IRS-1 and FRS-2 (insulin and FGF receptor
substrate) are receptor-binding proteins that can initiate many branches of the signal-
transduction pathway. The importance of the additive effect of branched pathways is
indicated by recent studies analyzing the effects of mutating the phosphorylation/dock-
ing sites of the PDGF receptor on the activation of sets of newly transcribed genes
(Hill and Treisman, 1999). Sets of newly transcribed genes have been analyzed for
quality and magnitude of the induction using cDNA-based microarrays. The results
suggest that more than one phosphorylation/docking site on the PDGF receptor is
needed for the full and proper magnitude and breadth of the transcriptional response.

There are three MAPK families (see Figs. 2 and 3, Table 1), each having its own
nonenzymatic signal-transduction intermediate before the G protein/ras signal-trans-
duction intermediate that is itself a GTPase. Thus, ras is a key component in mitoge-
nic signal-transduction. There are 4 sequential vertical tiers of serine-threonine kinases
(see Table 1); each can have different horizontal interacting components. In the three
MAPK signal-transduction pathways, the first two serine-threonine kinases have only
cytoplasmic targets, whereas the last two tiers have both cytoplasmic targets and
nuclear targets. Therefore, the activation of these last two tiers of serine-threonine
kinases (MAPKs and MAPKAPS) can lead to nuclear localization, transcription fac-
tor phosphorylation (e.g., Elk1 and ATF2 for ERK1,2) and gene transcription. Other
nontyrosine kinase initiated pathways also have homologous cytoplasmic signal trans-
ducers. For example, although it is thought that Raf-1 mediates the effects of the FGF
receptor (see Fig. 2, Table 1), Raf-1 homologs in the TGF-β pathway (TAK-1; Fig. 3,
Table 1), and seven-spanner G-protein pathway (RafB; Fig. 3, Table 1) also act as
cytoplasmic signal transducers. Branching of the pathway can occur at any tier of the
vertical cascade (see Table 1). Regulation of branching also distinguishes cell types
and experience of the cell.

Fig. 1. The FGF receptor. The FGF receptor is an allosteric enzyme with the allosteric sites in the
ectodomain and the enzymatic tyrosine kinase in the cytoplasm. Many mapped potentially func-
tional and functionally active tyrosine activation sites are known.
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Fig. 2. Mitogenic and transcription activating signal-transduction pathways downstream of FGFR.
A preponderance of evidence in cell lines suggests that the ras-MAP kinase pathway mediates the
mitogenic signal of FGFR. Note that the src, crk are only indirectly implicated in FGFR signal-trans-
duction due to sequence homology with other receptors and possible binding sites in the cytosolic
domain. Jun kinase and P1,3 kinase can be mitogenic in certain circumstances, but mutation of the
P1,3 kinase activating site in an FGFR in vitro did not prevent a mitogenic response to FGF. The
STAT1 pathway has recently been shown to be anti-mitogenic in FGFR-3 mediated chondrocyte cell
division cessation. The + indicate the most likely pathways for FGFR cell-division control.
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Turning Off the Response

Signaling requires expeditious and tight control to maintain homeostasis and to
ensure proper development. Control is exerted at all tiers of the pathway and at various
levels of production and activation of the signal-transduction proteins. The
receptor is activated for a period of time before it is destroyed, desensitized, or
dephosphorylated. Other tiers of the pathway are regulated in similar ways. Ras is
inactivated by GTPase activating proteins (GAPs), MEK family members are
dephosphorylated and inactivated by protein phosphatase (PP)-1 and PP2A, ERK fam-
ily members are dephosphorylated and inactivated by MAP kinase phosphatases MKP-
3 and MKP6, and JNK is inactivated by M3/6. The mRNA transcripts for many of the
signal-transduction genes have a consensus destruction sequence in the 3'- untranslated
region that confers a short half-life. Rapid regulation is achieved at the levels of pro-
tein and mRNA stability, protein activation, and signal-transduction.

Signal Transduction Pathways

A list of signal-transduction pathway websites is presented in Table 2. Information
can be obtained on the activation of PKA and PKC, the mechanism of Calcium-
calmodulin signaling, prostaglandins and leukotrienes, and nitric oxide. Other cyto-
static pathways mediated by JAK-STAT receptors for the interferon-γ (IFN-γ) receptor,
and apoptosis pathways through tumor necrosis factor-α (TNF-α) are also included.
Noncanonical pathways mediated by serine-threonine receptor kinases (TGF-β recep-
tor), and novel pathways for signaling by derepressing seven spanner receptors
(Hedgehog-ligand derepression of patched receptor by smoothened) are also included.
A novel signaling mechanism important in development, signaling by proteolytically
cleaved ligand-activated receptor (Delta ligand activation of the Notch protein that
cleaves and translocates the protein to the nucleus), is at the Science website for Sig-
nal Transduction Knowledge environment (see Website: http://www.stke.sciencemag.
org). The Wnt-frizzled-GSK3-β-catenin pathways interaction with E-Cadherin-β-
catenin are not discussed in this chapter. FGF receptor, integrin, and G protein- acti-
vating receptors and their activation of the three MAPK families (see Figs. 2 and 3)
can be used to illustrate the basic principles of signal-transduction pathways.

Fig. 3. (opposite page) The MAPK family. Each member is embedded in enzymatic cascades of
intracellular serine-threonine kinases regulated by tyrosine kinases and allosteric docking proteins.
The pathways initiate at the plasmalemma by receptor tyrosine kinases, ECM-binding integrins, and
G-protein binding receptors. ATF-2- Activating transcription factor 2, CRE-BP1, CREB2; Cas Crk-
associated substrate, p130CAS (**C in integrin signaling complex); c-Raf Raf proto-oncogene S/T
protein kinase; DPC-4- Deleted in pancreatic cancer locus 4, SMAD4; ELK1-Ets domain transcription
factor, ERK-Extracellular signal-regulated kinase, MAPK; FAK- Focal adhesion kinase (**FK in integrin
signaling complex); FGF-fibroblast growth factor; FGFR-fibroblast growth factor receptor; FRS2- FGF
receptor stimulated, lipid-anchored Grb2 binding protein; Fyn- src family tyrosine kinase (**Fn in
integrin signaling complex); GEF Guanine nucleotide exchange factor (example is SOS son-of-
sevenless); GRB2-Growth factor receptor-bound protein 2; JNK-Jun N-terminal kinase; Jun-transcrip-
tion factor; MAPK-Mitogen-activated protein kinase; MAPKAP- MAP kinase-activated protein kinase
2; MEK-MAPK/ERK kinase, MAPKK; MKK MEK kinase; MLK-Mixed lineage kinase; MSK-1- Mitogen
and stress-activated kinase 1; p53 Tumour suppressor protein that protects from DNA damage; Paxilin
(P in integrin signaling complex); PYK2-Proline-rich tyrosine kinase-2 (**P in integrin signaling com-
plex); rac-G-protein; ras-G-protein; RSK- Ribosomal S6 kinase; SAPK- Stress-activated protein kinase;
STAT- Signal transducer and activator of transcription; Talin (**T in integrin signaling complex).

WWW
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Table 1
Extracellular to Intracellular Signal-Transduction for Three MAPK Families: Levels

of Signal-Transduction in the Cascades of the Three MAPK Familiesa

Ligand FGF1-23 Other ligands

   ↓

Receptor FGFR1-4 Other receptors

   ↓

Nonenzymatic
Docking molecule 1 FRS2 GAB1,2 IRS1-4
RTK binding

   ↓

Nonenzymatic
Docking molecule 2 Grb2 shc shb
RTK binding
Docking molecule
1 binding

   ↓

Ras superfamily
Regulatory molecules SOS (GEF family) GRF family GAP family vav

Rate limiting

   ↓

Ras superfamily ras Rac     Rho dc42    Rap1
G protein family
Enzyme

   ↓

Kinase 1 (MEKK) Raf-1 RafB   KSR Tak1
Enzyme

   ↓

Kinase 2 MEK1, 2, 5 MEK3,6 MEK4,7

   ↓

Enzyme MAPK family MAPK family MAPK family
One Two Three

   ↓

Kinase 3 p42, 44 ERK1,2 p38MAPK SAPK/JUNK enzyme
MAPK1,2, MAPK5

   ↓

Kinase 4 p90RSK MAPKAP MNK1,2 MSK1
Enzyme

   ↓

Resident or
Translocated nuclear
Factors Elk1  myc/max  pRSK90  MAPK family  ATF-2  STAT1  Jun

a FGF signaling is used as an example. See Fig. 3 caption for abbreviations.
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Receptor Tyrosine Kinases (FGF Receptor) and Mitogenesis

Ligand-dependent autophosphorylation and activation of the FGFRs signals into
four pathways leading to new transcription in cell lines (see Figs. 1 and 2). Two of
these, p38MAPK and Jun kinase, are generally not mitogenic in cell lines. The major
FGFR mitogenic signaling pathway is the ras-Raf-1-MAPK pathway, also known
as the universal cassette because of the weight of evidence for its mitogenic role in
diverse cell lines. FGF activation of MAPK (ERK-1, ERK-2) is necessary and suffi-
cient to activate transcription factors elk and SRF, leading to new transcription and a
strong mitogenic response in cell lines.

A second pathway that mediates mitogenesis through the FGFRs leads to bind-
ing of phospholipase C (PLC)-γ and Ca2+-dependent PI-3-kinase through phos-
phorylation of other unique tyrosine residues and the subsequent activation of
phosphoinositol turnover, generation of diacylglycerol and the activation of PKC.
There are three groups of PKC; conventional (α,β,γ), novel (η, ν, θ), and ξ) atypical
(λ). The ξ and atypical families are not mitogenic and are brain-specific. Activation

Table 2
Signal Transduction Websites:

Electronic Resources for Signal-Transduction Reagents and Information

Website: http://stke.sciencemag.org/
Signal-transduction knowledge environment (STKE). Excellent resource for broad and
focused signal-transduction electronic and archival published literature. PDFs and full
text articles with JPG figures are available. Requires AAAS membership and an STKE
users fee.

Website: http://kinase.oci.utoronto.ca/signallingmap.html
Very good focus with map of the 3 MAPK families and clickable short to long descrip-
tions of molecules on the map.

Website: http://www-personal.umich.edu/%7Eino/List/
Good outline of signal-transduction pathways with links to PubMed discovery articles.

Website: http://www.grt.kyushu-u.ac.jp/spad/index.html
Good, clickable diagrams, but not recently updated.

Website: http://vlib.org/Science/Cell_Biology/signal_transduction.shtml
Good cross-referenced site for information about function and sequence references for
signal-transduction genes.

Website: http://www.cellsignal.com/
Company site. Short description of signaling intermediates in the literature and available
antibodies. Also, check sections under pathway diagrams for other web resources .

Website: http://www.clontech.com/gfp/
Company site for signal-transduction expression transgenes.

Website: http://www.scbt.com/
Company site. Short description of signaling intermediates in the literature and available
antibodies. Also, check sections under pathway diagrams for other web resources.
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of PKC-α,β, and γ leads to an increased mitogenic response, primarily through Raf-
1 and MAPK, although this appears to be less important than the ras-dependent
MAPK pathway. Substitution of the tyrosine on FGFR-1 responsible for PLC-γ bind-
ing and activation of PKC does not diminish FGF-dependent mitogenesis, suggest-
ing that PKC is not necessary for mitogenesis. However, in studies with a related
PDGF receptor, mutations causing inactivity in all tyrosine sites for mitogenic
effects were rescued by the inclusion of the the tyrosine that activates the PLC-PKC
pathway. This suggested that the PKC pathway can be sufficient for mitogenesis. It
is important to note that PKC and ras activate Raf-1 by a separate mechanism and
that Raf-1 activates mitogenesis via MAPK activity. Therefore, the FGF receptor
can activate Raf-1 through either pathway, although ras is most powerful. Recent
analysis of the raf-1 null mutant has suggested that ras is the most important, but
that the Raf-B, not Raf-1 is necessary for growth factor mediated mitogenesis.

As observed in cell lines, activation of src is a third possible pathway of FGFR cell
cycle activation. The FGFR activation of src (see Fig. 1) has not been found to be
mitogenic for FGF, but is mitogenic in other cell lines and mediates functions like cell
scattering and activation of nuclear transcription during PC-12 differentiation.

A fourth pathway where FGF activity suppresses cell division through STAT1 has
been identified. In the gain-of-function mutation leading to sporadic nonfamilial
dwarfism, a single change in a transmembrane amino acid in FGFR-3 results in a gain-
of-function enzymatic activity that leads to cessation of the cell cycle in chon-drocytes.
Recently, suppression of chondrocyte division was shown to require STAT1 activity,
but the mode of activation of STAT1 is not understood. The expression of the STAT1
pathway has not been tested in preimplantation embryos. However, STAT1 should be
considered when interpreting results after perturbing FGF receptors.

 MAPK Families

The structure of the cascading biochemical pathway of the three MAPK family
pathways docking proteins and kinases, are very similar (see Table 1, Fig. 3). How-
ever, functionally, the MAPK/ERK pathways are more mitogenic and the p38MAPK
and SAPK/JNK pathways are cytostatic. The mechanistic basis of the separation of
function is not clear, but is based more on the quantity of each type of transcription
factor activated than the quality. Each MAPK family activates a large overlapping
group of transcription factors (see Fig. 3), but overexpression of receptors (increasing
pathway strength), can change the outcome of mitogenesis to one of differentiation
within a single cell type. Early studies examined functionally similar receptors (mito-
genic FGF and PDGF) and did not compare receptors that mediate more diverse bio-
logical outcomes. In comparison, recent studies using cDNA microarrays have
suggested that different factors result in transcriptional activation of similar sets of
genes. Differences in strength of transcription is an important difference. The use of
cDNA microarrays to analyze intermediate transcriptional outcomes (primary and sec-
ondary waves of induced transcription) with respect to upstream receptor signaling
capacity and downstream biological outcome, will yield significant insights into the
function of signaling pathways.

As described in the section “The Signal Cascade”, the three MAPK family path-
ways go through similar tiers of nonenzymatic docking proteins and serine threonine
kinases. Each of these tiers branch to affect cytoplasmic targets, but only the last two
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tiers of proteins migrate to the nucleus and directly affect transcription factors (see
Table 1; Fig. 3).

A long initial phase of research in signal-transduction has focused upon identify-
ing novel signaling intermediates and their roles in the various pathways. The three
MAPK families illustrate common features of related and interacting signal-trans-
duction pathways: speed of transduction, amplification via cascading enzymatic
activity, branching and interaction with other pathways, and distinct and shared bio-
logic function mediated through shared and distinct and shared transcription factors.
The next phases of research will focus on the function of all members within a fam-
ily of signal-transduction genes as the human and mouse genome projects provide
complete sets of family members. Large-scale approaches paint a broader picture of
the responses of cells to ligands that induce distinct biological outcomes, such as
cell death, mitosis, or motility. In this case, microarrays will be utilized to detect
broad changes in signaling quantity and quality of the sets of transcription factors
between normal cells and null mutants or cells with receptor mutants with differen-
tial signal-transduction capacities. For example, differences in transcriptional quan-
tity and quality of functionally different receptors that activate mitogenesis through
FGF receptor-ERK signaling, that block mitogenesis through TGF-β receptor-
SMAD (contraction of Sma and Mad [Mothers against decapentaplegic] genes) sig-
naling or induce apoptosis through TNF-α receptor- Fas-associated protein with
death domain (FADD) signaling, are sure to be studied.

Glossary and Abbreviations
ATF  A family of activating transcription factors (ATF) binding both AP-1 and

CRE response elements in promoters and using leucine zipper protein interaction
domains. These transcription factors are targets of stress, UV, and viral infection (see
Fig. 2 and Suggested Reading).

ERK (MAPK family)   One of three families of serine threonine kinases desig-
nated extracellular-signal regulated kinases (ERK) that mediate the largely mitogenic
signals of extracellular growth factors/hormones and neurotransmitters. There are cur-
rently five members of the family; ERK1, ERK2 (aka MAPK1 or p42, and MAPK2 or
p44), ERK3, ERK5, and ERK 6. Phosphorylation of threonine and tyrosine residues
by upstream MEK1, 2, and 5 is required for activation. Activation by phosphorylation
is followed by nuclear translocation and phosphorylation of transcription factors such
as Elk-1 (see Fig. 2 and Suggested Reading).

Grbs SHc SHb  Docking proteins with SH2-phospho-tyrosine binding domains
that directly bind activated receptors or receptor activated docking proteins like IRS
and FRS family docking intermediates. These proteins then interact with GRFs, GEFs,
and GAPs to modulate downstream ras family activity. Grb2 is essential for survival
of very early mammalian development.

GTPase releasing factors (GRF), SOS enhancing factors (GEF), and activat-
ing factors (GAP)  A large family of molecules that enhance the activity of ras by
facilitating its existence in the GTP bound state. These activating factors act by rid-
ding inactive ras of bound GDP (GDP-release factors or GRFs), and by promoting
binding of GTP to ras to activate it (GTP exchange factors or GEFs). The inactivating
factors activate ras inherent GTPase activity, converting ras-GTP into inactive ras-
GDP (GTPase activating protein- GAPs).
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IRS1-4, FRS-2  Nonenzymatic, docking molecule families that directly bind the
phosphorylated and activated insulin receptor and FGF receptors. Upon binding of
tyrosine phosphorylated receptors through SH2 or PBZ domains, each receptor sub-
strate has multiple tyrosines that can be phosphorlated and provide docking sites for
downstream SH2 or PBZ domain expressing signal-transduction proteins.

MAPKAP  MAPK Activated Protein Kinases that are activated by the three
MAPKs subsequently have cytoplasmic targets or migrate to the nucleus. The family
includes MSK-1, Mnk, and RSK family members.

MEK  A family of homologous mixed-function kinases downstream of the Raf1
family of serine threonine kinases and upstream of the three MAP-ERK kinase fami-
lies. There are currently seven members of the family. The prototype, MEK1, specifi-
cally phosphorylates MAPK/ERK1,2 on both regulatory threonine and tyrosine
residues. MEK 2-7 phosphorylate and activate all three MAPK family serine threo-
nine kinases in the following interactions; MEK2:ERK1,2, MEK3:p38MAPK
(aka MKK3), MEK4:p38MAP or MEK:JNKMAPK (aka MKK-4), MEK5:ERK5,
MEK6:p38MAPK, and MEK7:JNKMAPK (see Fig. 2 and Suggested Reading).

MSK-1  Mitogen activated S6 kinases (MSK) are MAPKAPs (MAPK-activated
protein kinase) that is activated by ERK as well as p38 MAPK in response to growth
factors and cellular stress. There are currently three members of the family. MSK
protein is similar to MAPKAP RSK in having two kinase domains on either side of a
regulatory domain (see Figs. 2 and 3 and Suggested Reading).

p38 (MAPK family)  One of three families of related MAPKs designated p38
MAPK. p38 is more similar to SAPK/JNK in its activation by stress, UV, and
cytokines/inflammation more than growth factors. Related proteins include SAPK4
and yeast HOG1. Targets include max transcription factor, ATF-2 and MAPKAP-2.

Raf family (aka MAPKKK)  A family of serine threonine kinases that are acti-
vated on separate domains downstream to ras and PKC (protein kinase C). There are
three family members Raf-1, RafA, and RafB and two related proteins (below). Raf-1
is stimulated downstream to receptor tyrosine kinases and src. Raf activates MEKs
and is required for activation of the ERK/MAPK pathway. TAK-1 (TGF-β activated
kinase) and KSR (kinase suppressor of ras) are related serine threonine kinases.

Ras-G proteins (ras-Rac-Rho-Rap1,2-Ral)  GTPase enzymes that activate Raf
and other downstream cytoplasmic signaling kinases while in their GTP bound state.
Cellular localization is essential to function and ras family proteins are localized to
plasmalemma, cytoskeleton, and vesicular membranes. Currently includes three ras
family members, three Rap1 and Rap2 family members, two Ral family members; six
Rac, Rho, and cdc42 family members, and three Rho family members.

RSK  Ribosomal S6 kinase (RSK) are MAPKAPs (MAPK activated protein
kinase) that are activated by mitogens and stress. There are currently three family
members Rsk-1 (aka p90RSK), Rsk-2, and Rsk-3. RSKs were initially thought to have
ribosomal S6 protein as a target, but now nuclear transcription factors and proteins
such as histone H3 are thought to be the physiologic targets (see Figs. 2 and 3, Sug-
gested Reading).

SAPK/JNK (MAPK family)  One of three families of related MAPKs designated
stress activated protein kinase (SAPK)/cJun kinase (JNK). They are related to ERK/
MAPK in requiring activation by phosphorylation of nearby tyrosine and threonine
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residues by upstream MEKs. They are activated by stresses such as UV and viral in-
fection, not mitogens. There are currently three family members; JNK-1-3. (see Fig. 2
and Suggested Reading).

STAT  STATs are a family of 6 currently known transcription factors that bind
growth factor receptor tyrosine kinases (e.g., STAT1 binds directly FGF receptor) and
cytokine activated IFN-γ receptors that activate STATs through the JAK intracellular
non-receptor tyrosine kinases.
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DNA Replication,
Repair, and Recombination

Linda B. Bloom

Introduction

DNA contains the instructions needed to produce and regulate the components of a
cell. This information is encoded in the order, or sequence, of the four possible nucle-
otide bases contained in the DNA polymer. Hydrogen bonding interactions between
complementary base pairs bring two linear DNA polymers together to form a double
helix. James Watson and Francis Crick not only deduced the double helical structure
of DNA but also recognized that hydrogen bonding between complementary DNA
bases would provide a mechanism for DNA duplication. Watson-Crick base pairing
allows one strand of DNA to serve as a template for synthesis of a new strand by
directing the incorporation of adenine opposite thymine and guanine opposite cytosine
(see Fig. 1). This complementary base pairing also provides a mechanism for preserv-
ing the code. If one strand of DNA is damaged, the other can be used as a template to
regenerate the damaged strand and recover information encoded in its sequence.

DNA Replication

Overview of DNA Replication
Every time a cell divides, its DNA must be duplicated so that each daughter cell

receives an identical copy of instructions. The size of a DNA molecule alone makes
replication an amazing undertaking. For example, human cells contain 3 billion base
pairs of DNA divided into chromosomes ranging in size from about 50–250 million
base pairs. If they were completely stretched out, these DNA molecules would range
in length from about 1.7–8.5 cm. Many enzymes and proteins are required to physi-
cally manipulate these large polymers and to catalyze the synthesis of new DNA. These
enzymes and the process of DNA replication are regulated by the cell so that replica-
tion is complete and genomes are duplicated only once every cell division.

DNA replication begins at a specific time in the cell cycle and at specific sites,
origins of replication, in the genome. The DNA duplex is unwound at these replica-
tion origins to allow the enzymes that synthesize DNA access to the individual DNA
strands (see Fig. 2). Each strand of parental DNA serves as a template for a DNA
polymerase to make a new strand of DNA. Single nucleotide monomers that form
Watson-Crick pairs with template bases are incorporated into a new DNA polymer by

See
companion CD
for color Fig. 2
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Fig. 1. Watson-Crick A•T and G•C base pairs.

Fig. 2. Unwinding DNA at the origin of replication and the formation of replication forks. DNA
replication begins at specific sites known as origins of replication. Origin binding proteins recognize
these sites and initiate unwinding of the DNA duplex so that replication proteins can access the
individual strands of DNA. Initially a small bubble is formed that is opened further by the activity of
a DNA helicase. Replication complexes assemble on both sides of the bubble and these replication
forks (circled) move away from the origin in both directions so that replication is bidirectional. At
each fork, two new copies of DNA are synthesized using the parental strands as a templates.

DNA polymerases. As the new DNA grows, the parental duplex is progressively
unwound forming replication forks that move away from the origin. DNA replication
is semi-conservative, ultimately forming two DNA double helices that contain one
strand of parental DNA and one strand of new DNA. In bacteria, replication forks
move at a rate of about 500 nucleotides per second while in eukaryotes they move
somewhat slower. Because genomes of eukaryotes are in general larger than bacteria
and replication fork movement is slower, replication in eukaryotes is initiated at sev-
eral origins instead of a single origin so that DNA duplication can be accomplished in
a reasonable amount of time.
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Much of what we know about DNA replication is based on studies in bacteria and
viruses. However, more recent investigations of eukaryotic systems are revealing
that many of the features of the bacterial replication machinery are also common to
eukaryotes. Because replication in bacteria has been studied in greater detail to date,
the Escherichia coli replication machinery will be presented for illustrative pur-
poses and compared to eukaryotic systems.

Initiation of DNA Replication
Origins of DNA replication contain two general DNA sequence elements, an ele-

ment that is relatively easy to unwind, and an element that is recognized by initiation
proteins. The genome of E. coli exists as a single circular DNA molecule of about
4.5 million base pairs and contains a single 245 base pair (bp) origin of replication,
oriC. Within oriC are three 13-bp AT-rich regions of DNA that are relatively easy to
unwind and four 9-bp regions that are recognized by the E. coli initiator protein, DnaA.
A complex containing several DnaA molecules binds to oriC in the region containing
the 9-bp repeats and bends the DNA. This bending helps to unwind the DNA helix at
the 13-bp AT-rich sequences (see Fig. 3). Many of the steps in DNA replication and
repair, such as the unwinding of the origin, require energy to manipulate the structures
of macromolecules and disrupt noncovalent interactions such as hydrogen bonding.
The enzymes catalyzing these changes utilize the chemical energy stored in the phos-
phate bonds of adenosine-5'-triphosphate (ATP) to do the mechanical work. The DnaA
protein utilizes the energy gained from ATP hydrolysis to power the unwinding of
DNA at the origin. An origin recognition complex also exists in eukaryotes but its
mechanism of action has not yet been completely defined.

Once the DNA duplex is opened, a DNA helicase can be loaded onto the single-
stranded DNA to continue the unwinding process. DNA helicases are enzymes that
utilize the energy from hydrolysis of ribonucleoside 5-triphosphates, most commonly
ATP, to break hydrogen bonding interactions between complementary DNA strands

Fig. 3. Initiation of DNA replication at oriC in E. coli. DnaA protein binds to oriC to form a
protein-DNA complex where the DNA is wrapped around several molecules of DnaA protein.
DnaA binding induces unwinding of the DNA duplex at the A•T rich segments. DnaC protein binds
the ring-shaped hexameric DnaB helicase and assembles the helicase onto the origin. One helicase
complex is assembled at each fork of the replication bubble. After assembling the helicase, DnaC
is released.

See
companion CD
for color Fig. 3
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and unwind nucleic acid duplexes. In E. coli, six molecules of the DnaB protein form
a ring-shaped hexamer that encircles single-stranded DNA and functions as a helicase.
This hexameric helicase structure is common to other organisms including eukaryotes
where the MCM (Mini-Chromosome Maintenance) proteins are believed to perform
the function of replicative DNA helicase. In E. coli, the DnaB hexamer is assembled
around DNA by the ATP-dependent activity of DnaC (see Fig. 3).

Before DNA synthesis can begin, RNA primers must be made. DNA polymerases
are unable to synthesize DNA de novo and can only extend RNA (or DNA) primers
that are already paired with the template to be copied. Primases synthesize these prim-
ers using ribonucleoside 5'-triphosphates as building blocks to form a short strand of
RNA complementary to the DNA template. The E. coli primase interacts with the
DnaB helicase and begins synthesis of RNA primers shortly after DnaB has begun to
unwind DNA. In eukaryotes, a hybrid RNA-DNA primer is synthesized by an enzyme
complex containing both primase and DNA polymerase α. Once primers are formed,
they can be extended by a DNA polymerase.

Enzymes at the Replication Fork

Assembly of a replisome is complete when the replicative DNA polymerase and its
accessory proteins join the helicase and primase at the replication fork (see Fig. 4).
The replisome will then continue to synthesize new DNA, unwinding the parental
duplex as it goes. The actual synthesis of new DNA is catalyzed by a DNA poly-
merase contained within the replisome. Cells contain many different DNA poly-
merases that have different functions in DNA replication and repair. There are
5 known DNA polymerases in E. coli and at least a dozen in humans. In E. coli,
DNA polymerase III catalyzes the bulk of DNA synthesis during replication and DNA
polymerase δ does so in eukaryotes.

All DNA polymerases use 2'-deoxyribonucleoside–5'-triphosphates (dNTPs) as
monomeric building blocks for making DNA. They catalyze the attack of the
3' hydroxyl group of the nucleotide at the primer end on the α-phosphoryl group of
an incoming dNTP displacing pyrophosphate (see Fig. 5, upper panel). Thus, DNA
polymerases extend DNA polymers in the 5' to 3' direction by incorporation of
2'-deoxyribonucleoside monophosphates. Watson-Crick base pairing interactions
between the incoming dNTP and the next unpaired template base direct incorpora-
tion of correct nucleotides. Frequencies of adding incorrect nucleotides can be as
low as one in a million, but even with this low error frequency mistakes will be
made. To further reduce error frequencies, the DNA polymerases that function in
replication contain a 3' to 5' exonuclease activity that allows them to proofread
nucleotides that have been incorporated. This exonuclease activity catalyzes the
hydrolysis of phosphodiester bonds to remove the last nucleotide added to the
3' primer end (see Fig. 5, lower panel). Thus, a nucleotide that has been added incor-
rectly can be removed.

The overall efficiency of synthesis by DNA polymerases is enhanced by acces-
sory proteins which increase DNA polymerase processivity, or the number of nucle-
otides incorporated per DNA binding event. These accessory proteins consist of a
ring-shaped sliding clamp that binds both DNA and the DNA polymerase and a clamp
loader that assembles the clamp on DNA. Sliding clamps, made of identical protein
subunits, encircle DNA and are capable of sliding along a DNA duplex (see Fig. 6).

See
companion CD
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Fig. 4. Proteins at the E. coli replication fork.The dimeric polymerase complex is capable coordi-
nated DNA synthesis on the leading and lagging strands. The leading strand polymerase synthesizes
new DNA in the direction of fork movement and the lagging strand polymerase synthesizes DNA in
the opposite direction. The hexameric helicase (light blue) unwinds DNA ahead of the polymerase
and primase (red) makes RNA primers (red lines) on the lagging strand. Single-stranded DNA that
forms as the helix unwinds is coated with single-stranded binding protein to prevent reannealing of
strands and to remove secondary structure that may form within a single-strand. Sliding clamps (green)
are assembled on each primer on the lagging strand by the clamp loading complex (yellow and dark
blue). See companion CD for color.

Fig. 5. Reactions catalyzed by DNA polymerases. (A) 2'-Deoxyribonucleoside 5'-triphosphates
are used as substrates by DNA polymerases to extend a primer in template-directed reactions. The
net reaction is incorporation of 2'-deoxyribonucleoside monophosphates onto the 3' hydroxyl of a
primer with loss of pyrophosphate. (B) DNA polymerases can proofread newly incorporated nucle-
otides and excise incorrect nucleotides. The excision reaction removes the last nucleoside mono-
phosphate that was incorporated.
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By binding a sliding clamp, a DNA polymerase is effectively tethered to a DNA
template so that it is capable of incorporating thousands of nucleotides without disso-
ciating. In the absence of a sliding clamp, DNA synthesis is less efficient because
DNA polymerases frequently dissociate from the template and must rebind to con-
tinue. Sliding clamps are assembled around DNA by the ATP-dependent activity of
clamp loaders.

Leading and Lagging Strand Synthesis
In E. coli, a complex containing a dimeric DNA polymerase and accessory proteins

interacts with the helicase and primase to form a replisome. This interaction stimu-
lates the activity of the helicase and increases the rate of fork movement. The
replisome, which contains two copies of DNA polymerase III, is capable of simulta-
neously copying both strands of parental DNA at the replication fork. But the two
DNA polymerases must work in opposite directions to do this because DNA strands in
a duplex are antiparallel and DNA polymerases can only synthesize DNA in the 5' to
3' direction. To accomplish this, one DNA polymerase working on the leading strand,
synthesizes DNA in a single continuous piece moving in the direction of the replica-
tion fork. The other DNA polymerase working on the opposite or lagging strand,
synthesizes DNA in shorter fragments named Okazaki fragments after Reiji Okazaki
whose work led to their discovery (see Fig. 4). In E. coli, Okazaki fragments are 1000–
2000 nt in length and in eukaryotes they are 100–200 nt. As the fork progresses, a
loop of single-stranded DNA is created on the lagging strand and an RNA primer is
synthesized by an enzyme called primase to begin each Okazaki fragment. The lag-
ging strand polymerase extends these primers in the direction opposite to fork move-
ment until it encounters a completed Okazaki fragment. Then, the polymerase
dissociates and rebinds a new primer closer to the fork and extends it. Thus, the lag-
ging strand polymerase must repeatedly dissociate from completed Okazaki fragments
and rebind to new primers to continue DNA synthesis in a discontinuous manner.
Overall, DNA synthesis is semi-discontinuous because it is made in one continuous
strand on the leading strand and in discontinous fragments on the lagging strand.

Fig. 6. Structures of sliding clamps from E. coli and humans. (A) The E. coli β sliding clamp is a
head-to-tail dimer of identical monomer subunits. (B) The human PCNA sliding clamp is similar in
overall structure to the β clamp but is composed of identical trimers. Each ring has a central hole that
is large enough to encircle B-DNA.
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To complete DNA replication, RNA primers must be replaced by DNA and
Okazaki fragments must be joined together to form a continuous strand. In E. coli,
removal of RNA primers and synthesis of DNA can be accomplished by a single
enzyme, DNA polymerase I. The 5' to 3' exonuclease activity of DNA polymerase I
degrades RNA primers while the 5' to 3' polymerase activity simultaneously synthe-
sizes DNA to replace the RNA. In eukaryotes, separate enzymes are responsible for
degrading the RNA and replacing it with DNA. Finally, DNA fragments on the lag-
ging strand are joined by a DNA ligase to form one continuous polymer. DNA ligase
catalyzes the formation of a phosphodiester bond between the 3' hydroxyl group at
the end of one Okazaki fragment and the 5' phosphate at the beginning of the next.
Any nick in one strand of a DNA duplex that has a 3' hydroxyl on one side and 5'
phosphate on the other can be sealed by the activity of a DNA ligase.

Fidelity of DNA Replication and Mismatch Repair
DNA replication can be accomplished with as few as one mistake in a billion nucle-

otides incorporated. This amazing accuracy or fidelity of synthesis is achieved for the
most part by the DNA polymerase but is enhanced by a group of mismatch repair
enzymes that function to detect and correct replication errors. One main feature of a
DNA polymerase that contributes to its fidelity is the geometry of the active site,
which is optimized for binding Watson-Crick base pairs where the overall shape of
both A•T and G•C pairs are the same (see Fig. 1). Mismatches such as G•T deviate
from this ideal geometry so that incorrect nucleotides are incorporated much less
efficiently. Frequencies of adding an incorrect nucleotide range from 1 in 1000 to 1
in 1,000,000 nucleotides depending on the nucleotide added. In the rare instant when
a mistake is made, DNA polymerases have the ability to remove the incorrect nucle-
otide using the 3' to 5' exonuclease activity contained in the enzymes. This proofread-
ing capability is further enhanced by a reduced efficiency of adding the next correct
nucleotide onto a primer that ends with an incorrect nucleotide. Thus, when a mistake
is made, the rate of adding more nucleotides is greatly reduced which allows the
exonuclease time to remove the incorrect nucleotide. Once an incorrect nucleotide is
removed, rapid incorporation of correct nucleotides by the DNA polymerase activity
resumes. This proofreading activity increases the accuracy of DNA synthesis by a
factor of about 10–100.

Mismatches that escape proofreading by the DNA polymerase can be corrected by
the postreplicative mismatch repair process (see Fig. 7). The net result is the removal
of a segment of DNA containing the incorrect nucleotide and resynthesis of DNA to
replace the segment that was excised. The key enzymes responsible for mismatch
repair in E. coli are MutS, MutL, MutH, and MutU. Mismatches are detected in
double-stranded DNA by MutS which then interacts with the MutL protein. Together
MutS and MutL signal where the mismatch is located to MutH and MutU. MutH is an
endonuclease that is stimulated by MutL to cut the DNA strand containing the incor-
rect nucleotide. MutU is a DNA helicase that unwinds the duplex displacing the strand
containing the incorrect nucleotide which is then degraded by an exonuclease. New
DNA is synthesized to replace the segment that was removed. Homologs to MutS and
MutL exist in eukaryotic cells and the overall repair process is similar.

How do the mismatch repair enzymes recognize which nucleotide of the mismatch is
incorrect? In E. coli, the methylation status of the DNA allows the mismatch repair
enzymes to distinguish between the newly synthesized DNA strand and the parental

See
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strand. Adenine is methylated in the E. coli genome when it appears in the sequence
5'GATC. This methylation of the genome occurs shortly after replication, so for a short
time, the daughter strand is unmethylated while the parent strand is methylated. These
5'GATC sequences are also recognized by MutH which cuts the unmethylated daughter
strand. These cut sites can be up to 1000–2000 nt away from the mismatch so a fairly
large segment of DNA may be removed and replaced. While the overall process of
mismatched repair is similar in eukaryotes, it is not yet clear how the eukaryotic
enzymes distinguish between the newly synthesized strand and the parental strand.

DNA Recombination

Through the process of recombination, two DNA duplexes can exchange informa-
tion to create hybrid molecules containing sequences from each of the original mol-
ecules. Recombination provides mechanisms for generating genetic diversity and for
repairing DNA strand breaks. Recombination pathways can be grouped into two
major classes, homologous and site-specific. Homologous recombination is the most
general mechanism for recombination and plays a central role in both the generation
of genetic diversity and repairing DNA. Homologous recombination occurs between
two regions of DNA with similar or homologous sequences. Crosses between these
two regions produce two new molecules that are hybrids of the original sequences.

Fig. 7. Methyl-directed mismatch repair in E. coli. MutS protein recognizes and binds mismatches
such as G•T in DNA and is joined by the MutL protein. MutL within the MutS-MutL-mismatched
DNA complex stimulates the endonuclease activity of MutH to cleave the unmethylated DNA strand
at the GATC sequence closest to the protein-mismatched DNA complex. The cut DNA strand is
unwound by the activity of MutU helicase and then degraded by an exonuclease until the mismatch
is removed. The missing segment of DNA is replaced by a DNA polymerase and the DNA strands are
joined together by the activity of a DNA ligase. The letter P indicates a 5' phosphate group.
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During meiosis (process of cell division that ultimately produces germ cells contain-
ing a single copy of each chromosome), these crosses allow alleles (alternate forms
of the same gene) to be exchanged between homologous chromosomes so that chro-
mosomes passed onto haploid daughter cells are a hybrid of their progenitors (see
Fig. 8A). This process allows a child to inherit traits from each of its grandparents
even though the child only receives a single chromosome from each of its parents.
Recombination between homologous duplexes also provides a mechanism for repair-
ing a double-stranded break in one duplex or a damaged segment of DNA.

Site-specific recombination does not require homologous sequences between two
DNA duplexes. As its name implies, site-specific recombination occurs when one
DNA sequence is inserted into a specific site in another DNA duplex. This type of
recombination produces a new DNA duplex where information from one is spliced
into the other duplex. Some viruses use site-specific recombination to integrate their
genomes into the genome of a host. Bacteriophage λ integrates its viral genome into
the genome of its E. coli host and retroviruses such as HIV integrate a double-stranded
DNA copy of their viral RNA genome into the host genome. Transposition is an
example of site-specific recombination where a genetic element, transposon, moves
from one location in a genome to another. This repositioning requires a specific nucle-
ase, a transposase, encoded within the transposon. Site-specific recombination also
provides a mechanism for immune cells to rearrange genetic elements to generate the
diversity necessary to produce many different antibodies. By assembling different
combinations of genetic elements through the process of V(D)J recombination
immune cells are capable of producing genes encoding a multitude of different immu-
noglobulins that recognize different antigens.

Homologous Recombination
Homologous recombination is the most general pathway of recombination and is

fairly well-defined. Homology or significant complementarity in DNA sequences is
a prerequisite for homologous recombination between two duplexes. In addition, the
physical exchange of information requires breaking and rejoining of the DNA mol-
ecules. Modern models of homologous recombination propose that recombination is
initiated by the formation of a double-stranded break in one of the two duplexes.
These breaks can be created by specific enzymes or can result from DNA damage.
The broken duplex will serve as a substrate to initiate recombination after it is par-
tially degraded by an exonuclease to generate free single-stranded ends. One of the
single-stranded ends will invade the intact duplex and pair with the homologous
region to produce a heteroduplex containing strands from two separate DNA
duplexes (see Fig. 8B). The strand invasion and homologous pairing reactions are
not spontaneous but require the activity of an enzyme, RecA protein in E. coli and
its homolog, Rad51, in eukaryotes, to catalyze the reactions.

The strand invasion reaction generates a D-loop structure formed by the comple-
mentary strand from the intact duplex that was displaced. The invading strand can be
extended by a DNA polymerase, which increases the size of the single-stranded region
in the D-loop. This opens up a region of DNA homologous to the other single-stranded
end of the broken DNA which then pairs with the D-loop. This end can also be
extended by a DNA polymerase. Extension of both ends effectively replaces the seg-
ments that were removed by the exonuclease to generate single-stranded ends that
initiate recombination.

See
companion CD
for color Fig. 8

See
companion CD
for color Fig. 8
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Two crossover points between the two homologous duplexes are created follow-
ing strand invasion by one half of the broken duplex and pairing between the dis-
placed D-loop and the other half of the broken duplex. These crossed strands are
named Holliday junctions after Robyn Holliday, who first proposed their occurrence
in homologous recombination. Holliday junctions can migrate down the DNA
duplexes unzipping the original duplexes while simultaneously zipping these strands
together with new partners to extend heteroduplex regions of DNA. This process
of branch migration can continue as long as homology between the regions of DNA
is high.

Following branch migration, the two DNA duplexes are separated by cleaving the
DNA strands at the Holliday junctions. This cleavage is catalyzed by a nuclease or
resolvase that is specific for DNA in Holliday structures. Depending on which strands
of the junctions are cleaved, two distinct products can be formed that contain different
segments of DNA from the original duplex (see Fig. 8B). A spliced product can be
formed where each end of the hybrid duplex is derived from one of the original
duplexes. Alternatively, a patched product can be formed where the hybrid duplex
contains a single-stranded segment from one duplex within a duplex derived from the
other original duplex.

DNA Repair

DNA, like any other molecule, can spontaneously decompose with time, react with
other chemicals (naturally present in a cell), or be damaged by UV or ionizing radia-
tion. Damage to DNA can have many deleterious effects on the cell. Some types of
damage alter DNA structure so that the sequence is misread by DNA polymerases
causing it to incorporate erroneous bases and generate mutations. Others are so severe
that DNA synthesis is blocked at the site of damage. DNA damage occurs with a
frequency high enough that it would be lethal to a cell if it were not repaired. Recom-
bination, as discussed earlier, provides a mechanism for repairing DNA strand breaks.

There are two general strategies that can be taken by a cell to fix DNA damage,
direct reversal of the damage, and removal of a segment of DNA containing damage.
Direct reversal of DNA damage relies on different enzymes capable of catalyzing dif-
ferent chemical reactions to undo the damage. There are two known examples of
enzymes that repair DNA by direct reversal of damage. The majority of DNA damage
is repaired using an excision/resynthesis strategy where a group of enzymes removes a

Fig. 8. (opposite page) Homologous recombination. (A) Recombination between sister chromatids
during meosis results in exchange of information to generate two new chromatids that are hybrids of the
originals. (B) Double-strand break model for homologous recombination. In this model, recombination
is initiated by forming a double-stranded break (step 1) in one of the homologous duplexes. The broken
DNA is then processed by partial degradation by an exonuclease to generate single-stranded DNA on
the 3' ends (step 2). One 3' single-stranded end invades the homologous duplex forming a
D-loop in the intact duplex (step 3). The invading 3' end is extended by a DNA polymerase enlarging
the D-loop which can then pair with the remaining 3' single-stranded end (step 4). As the D-loop
expands, it can displace the 5' end of the broken duplex which is then free to pair with the intact duplex
(step 5). Branch migration enlarges the regions of heteroduplex DNA by unzipping the regions that
were originally paired and zipping them onto the homologous duplex (step 6). Finally, the cross-over
points or Holliday junctions are resolved by cleavage of the crossing strands (step 7). Two different
products, patched and spliced, are formed depending on which of the crossed strands are cleaved.
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segment of DNA containing damage and replaces it with new DNA. For this type of
process, the same basic set of enzymes can remove many types of DNA damage.

Direct Reversal of DNA Damage
DNA Photolyase Catalyzed Splitting of Thymine Cyclobutane Dimers

When exposed to UV light, two neighboring pyrimidine bases, C or T, in DNA can
react with each other to become covalently joined. One reaction that occurs is the
formation of thymine cyclobutane dimers (see Fig. 9). When these thymine dimers are
formed, they distort the local structure of DNA and are no longer recognized as a pair
of T’s by DNA polymerases. In bacteria, the enzyme, DNA photolyase, reverses the
formation of thymine dimers. Enzyme-bound cofactors absorb light and initiate an
electron transfer reaction that catalyzes the splitting of the thymine dimer to regener-
ate two intact thymine bases.

Removal of Methyl Groups by O6-Methylguanine Methyltransferase
Chemicals that are naturally present in the cell, as well as chemicals in the envi-

ronment, can react with DNA to methylate bases. One product of this reaction,
O6-methylguanine (O6-MeG), induces the incorporation of an incorrect base by a
DNA polymerase (see Fig. 9). O6-MeG is repaired by O6-methylguanine methyl-
transferase (MGMT) by directly removing the methyl group to regenerate a normal
guanine residue. MGMT is not an enzyme in the true sense of the word because it
does not act catalytically; instead it is a suicide enzyme. The methyl group is trans-
ferred from guanine to a cysteine residue on the protein where a covalent bond is
formed. Because MGMT cannot be demethylated, it is incapable of catalyzing the
removal of other methyl groups and becomes inactive. MGMT is found in both bac-
teria and eukaryotes.

Repair by Excision/Resynthesis
The process of excision of a section of damaged DNA followed by resynthesis

allows cells to use the same basic chemical reaction and a common set of enzymes to
repair many different types of DNA damage. The two main pathways responsible for
excision repair are base excision repair that usually replaces a single damaged base
and nucleotide excision repair that replaces a short segment of DNA containing the
damaged nucleotide.

Fig. 9. Structures of a thymine cyclobutane dimer and 06-methylguanine.
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Base Excision Repair

The base excision repair pathway primarily repairs damage to DNA bases much of
which occurs spontaneously in the cell without the influence of environmental haz-
ards. Examples include oxidation, deamination, and alkylation of DNA bases. These
damaged bases are recognized by damage-specific DNA glycosylases that initiate the
base excision repair pathway. DNA glycosylases bind to damaged bases and cleave
the C1'-N glycosylic bond between the base and sugar. This leaves a baseless sugar, or
AP site (for apurinic or apyrimidinic), in DNA that is removed by other enzymes in the
pathway (see Fig. 10A). Several different DNA glycosylases are present in cells and
each recognizes a specific damaged base or a class of damaged bases. For example,
uracil DNA glycosylase recognizes and excises only uracil which can be formed in
DNA by deamination of cytosine. Formamidopyrimidine (FaPy) DNA glycosylase
recognizes several different bases damaged by oxidation.

Once a DNA glycosylase has removed a damaged base, the AP site that it leaves
must be repaired. An AP endonuclease starts this process by cleaving the phospho-
diester bond on the 5' side of the AP site to generate a 3'hydroxyl and a deoxyribose
phosphate. A deoxyribophosphodiesterase then cleaves the 3' phosphate of the base-
less sugar to remove it and leave a one nucleotide gap in the DNA. A polymerase
subsequently adds the missing nucleotide and the nick is sealed by the activity of a
DNA ligase. In E. coli, separate enzymes catalyze the removal of the baseless sugar
and the incorporation of the missing nucleotide. In humans, DNA polymerase β con-
tains contains two enzymatic activities and is capable of both incorporating the miss-
ing nucleotide and removing the baseless sugar.

Nucleotide Excision Repair
The nucleotide excision repair pathway recognizes and repairs damage that gener-

ates larger more bulky lesions and local distortions in the DNA structure. In the nucle-
otide excision repair pathway, damage is recognized by a protein complex capable of
identifying many different types of damage. It is believed that this complex recognizes
distortions in the overall DNA structure at sites of damage or an increase in the ease of
unwinding the duplex in the region of the damage. Regardless of the mechanism, this
complex identifies sites of damage and helps recruit the rest of the repair machinery
(see Fig. 10B). This repair complex unwinds the DNA duplex at the damaged site.
Endonuclease activities within the complex cleave the DNA backbone both 5' and 3' to
the site of damage. This creates a short oligonucleotide segment, 12–13 nt long in
bacteria and 24–32 nt long in eukaryotes, that is displaced by a DNA helicase. The
resulting gap in DNA can be filled in by a DNA polymerase to leave a nick that is
sealed by DNA ligase.

Conclusion

The instructions needed for producing all the components of a cell and for regulat-
ing their functions are encoded in the sequence of DNA. Accurate transmission of this
information to progeny and protecting of the genome from chemical degradation are
essential to life. Complementary base pairing in duplex DNA provides an elegant
means for accurate replication of DNA and repair of DNA damage. Each strand of
the duplex provides a template for generating the other strand and in essence acts as
a “back-up copy” of the information. The many different proteins and enzymes

See
companion CD

for color
Fig. 10



8 8 — Bloom



DNA Replication —89

required to physically manipulate large DNA polymers in replication, recombina-
tion, and repair, all take advantage of the complementary base pairing between
strands to accomplish their tasks. These enzymes are capable of a sufficient level of
accuracy to maintain genetic integrity, yet also allow a low level of mutations to
generate genetic diversity ultimately allowing a population to adapt to changing con-
ditions. Understanding how the cellular machinery functions to replicate, recom-
bine, and repair the genome is central to understanding evolution of species and the
origin of genetic diseases.

Glossary and Abbreviations

AP Endonuclease  An enzyme that cleaves the DNA backbone on the 5' side of an
AP site to create a 3' hydroxyl and 5' phosphate.

AP Site  A baseless sugar in DNA. AP is an abbreviation for apurinic or
apyrimidinic.

Base Excision Repair  A pathway that repairs damage to DNA bases by excising
the damaged base and replacing it with an undamaged nucleotide.

Branch Migration  Movement of a Holliday junction that unwinds DNA strands
ahead of the junction and pairs them with homologous strands behind the junction.

DNA Glycosylase  An enzyme that catalyzes the excision of damaged bases by
cleaving the C1'-N glycosylic bond between the damaged base and the sugar.

DNA Helicase  An enzyme that catalyzes the unwinding of duplex DNA.

DNA Ligase  An enzyme that joins two strands of DNA at a nick by ligating a
3' hydroxyl end to a 5' phosphate end.

DNA Polymerase  An enzyme that catalyzes the extension of a DNA polymer by
incorporating 2'-deoxynucleoside monophosphates in a template directed reaction.

Exonuclease  An enzyme that catalyzes the excision or removal of nucleotides
from a DNA strand.

Fidelity  Refers to the accuracy of synthesis by DNA polymerases.

Holliday Junction  A four-way DNA junction formed when strands from homolo-
gous duplexes crossover during recombination.

Fig. 10. (opposite page) Repair of DNA by excision of the damage and resynthesis of DNA. (A)
The base excision repair pathway begins with the removal of a damaged base by a DNA glycosylase.
In this scheme undamaged DNA bases are indicated by black squares and the damaged base is
indicated by a light square. The C1'-N glycosylic bond between the base and the sugar is cleaved
leaving a baseless sugar residue (AP site) in DNA. The DNA strand is cut 5' to the AP site creating a
3' hydroxyl on one side of the cut and a 5’phosphate (“P”) on the other. Deoxyribophos-
phodiesterase activity is required to excise the sugar-phosphate residue to create a one
nucleotide gap that can be filled in by a DNA polymerase. Repair is complete when the strands are
ligated by a DNA ligase. (B) The nucleotide excision repair pathway removes a short segment of
DNA containing a damaged base (red starburst). The damaged base is recognized and bound by a
protein complex. This protein complex serves to direct the other proteins to the site of damage so
that it can be repaired. A DNA helicase separates the DNA strands on either side of the damaged
nucleotide. Specific endonucleases recognize the forked single-stranded/double-stranded DNA junc-
tions at these sites and cleave the DNA at the junctions. The DNA strand is cleaved 3' to the dam-
aged nucleotide followed by cleavage on the 5' side. The gap created by excision of the damaged
DNA segment is filled in by a DNA polymerase and the two strands are joined by a DNA ligase.
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Lagging Strand  The strand synthesized in discontinuous segments called Okazaki
fragments.

Leading Strand  The strand of DNA synthesized in one continuous piece in the
direction of replication fork progression.

Nick  A single-stranded break in a DNA duplex.

Nucleotide Excision Repair  A pathway that repairs DNA damage by removing a
short segment of DNA containing the damage and resynthesizing that segment.

Okazaki fragments  Discontinuous segments of DNA that are synthesized on the
lagging strand.

Origin of replication  A site in the genome where DNA synthesis is initiated dur-
ing replication.

Primase  An enzyme that synthesizes short segments of RNA to prime synthesis
by DNA polymerases.

Processivity  Refers to the number of nucleotides that a DNA polymerase can
incorporate in a single DNA binding event.

Proofreading  The process of removing incorrectly paired nucleotides catalyzed
by the 3' to 5' exonuclease activity of DNA polymerases.

Replication fork  The branched DNA structure formed when a DNA helicase sepa-
rates the two complementary strands of DNA during replication.

Replisome  The ensemble of enzymes that function at the replication fork to dupli-
cate DNA.

Semi-Conservative  Refers to replication of DNA that produces duplexes com-
posed of one newly synthesized and one original strand.

Semi-discontinuous  Refers to DNA synthesis that produces one continuous strand
on the leading strand and Okazaki fragments or discontinuous strands on the lagging
strand.

Strand invasion  Pairing of a single-stranded DNA with a homologous region of
duplex DNA to form a D-loop.
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Transcription, RNA Processing,
and Translation

Thomas P. Yang and Thomas W. O’Brien

Introduction

The processes of transcription, RNA processing (in eukaryotes), and translation
constitute the pathway that leads to the conversion of genetic information in the linear
sequence of bases in genomic DNA into the linear amino acid sequences of functional
proteins. Thus, DNA undergoes transcription to synthesize a primary RNA transcript,
which in eukaryotes undergoes RNA processing to produce a mature messenger RNA
(mRNA), then mRNAs are translated into functional polypeptides. Each of these cel-
lular processes will be described below.

Transcription

The process of transcription involves the sequential and enzyme-catalyzed poly-
merization of ribonucleotide triphosphates into a single-stranded linear RNA molecule
that is complementary to, and encoded by, one strand of a DNA template. This process
in eukaryotes occurs in the nucleus. The growth of the nascent RNA chain proceeds
from the 5' end to the 3' end of the chain, elongating by adding nucleotides to the –OH
group at the 3' end of the RNA. As depicted in Fig. 1, polymerization occurs by forma-
tion of a phosphodiester bond between the –OH group of the ribose moiety at the
3' end of the elongating RNA and the 5' phosphate of the ribonucleotide triphosphate
(rNTP) precursor to be added to the growing RNA chain. Thus, unidirectional growth
of the RNA chain occurs in the 5' to 3' direction. The phosphodiester bond is synthe-
sized by a condensation reaction involving the 3' –OH group of the sugar and the α
phosphate group of the rNTP, with release of pyrophosphate (PPi). As shown in Fig. 1,
the nucleotide sequence of the elongating RNA chain is specified by the nucleotide
sequence of one strand of the duplex DNA template. Following the rules of Watson-
Crick base pairing, adenine, cytosine, guanine, and thymine in the template DNA
sequence direct the addition of uracil, guanine, cytosine, and adenine, respectively, to
the RNA sequence. In most cases, only one strand of a given region of double-stranded
DNA is transcribed into RNA, though a small but increasing number of eukaryotic
genes show transcription from both strands over all or a portion of the gene. In several
cases, a gene encodes a functional sense transcript as well as a so-called anti-sense
transcript (often of unknown function) that extends over the entire region encoding the
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sense transcript. Some of these anti-sense transcripts have been postulated to regulate
the expression of the sense transcript.

The synthesis of RNA from a DNA template is catalyzed by the enzyme RNA
polymerase. Most, if not all, RNA synthesis in prokaryotes is directed by a single
RNA polymerase, while RNA synthesis in eukaryotes is catalyzed by three different
RNA polymerases, pol I, pol II, and pol III, each of which transcribes a different class
of genes. The high-resolution structure of both bacterial RNA polymerase and eukary-
otic RNA polymerase II has recently been determined by X-ray crystallography. The
amino acid homology of certain subunits in the prokaryotic and eukaryotic poly-
merases and their many shared structural features are notable though not unexpected
due to their similar functions.

The macromolecular complex formed during the process of transcription consists
of RNA polymerase, the DNA template, and the nascent RNA (see Fig. 2). The double-
stranded DNA template is melted to form a transcription bubble (of approx 12 base
pairs) within the bubble the elongating nascent RNA forms an approx 9 bp RNA:DNA
duplex with the template strand of the DNA at its 3' end. As the polymerase moves
downstream along the DNA template, the double-stranded DNA helix is unwound at
the front of the bubble and rewound behind the bubble. Growth of the nascent RNA
occurs by the addition of nucleotides at the 3' end of the nascent RNA within the
bubble, with nucleotide triphosphate precursors presumably translocated to the active
site of the enzyme via a pore and channel within the structure of the polymerase.

Fig. 1. DNA-dependent synthesis of RNA. In this example, a cytidine triphosphate (rCTP) pre-
cursor is added to the 3' end of an elongating RNA chain by forming a phosphodiester bond
between the 5' phosphate of the rCTP precursor and the 3' OH of the previously added nucleotide.
The nucleotide sequence of the nascent RNA is specified by the complementary nucleotide
sequence of the DNA template strand according to Watson-Crick base pairing. The circled C resi-
due indicates the position of the newly added nucleotide.
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Regulation of transcription, particularly regulation of transcription initiation, is a
major mechanism that regulates macromolecular biosynthesis in the cell. However,
the processes by which transcription is initiated and regulated in prokaryotes and
eukaryotes are notably different. Therefore, a description of each of these processes in
prokaryotes and eukaryotes is presented.

Transcription in Prokaryotes
Transcription of prokaryotic genes is accomplished by a single RNA polymerase.

The prototype of the prokaryotic RNA polymerase is the polymerase of Escherichia
coli. It is composed of four different polypeptide subunits, α, β, β', and σ. The RNA
polymerase core enzyme, which functions in transcription elongation, is composed
of two α subunits, and one each of the β and β' subunits. The RNA polymerase
holoenzyme, which initiates transcription, is organized as the core enzyme plus one
copy of the σ subunit.

To initiate transcription, RNA polymerase holoenzyme first binds to DNA
sequences immediately upstream of a gene. This region upstream of the gene, termed
the promoter, contains DNA sequences specifically recognized and bound by the RNA
polymerase holoenzyme. The σ subunit confers upon the holoenzyme the ability to
recognize and bind to the promoter in a DNA sequence-specific manner, and to initiate
transcription at a site specifically from the template strand of the DNA. Different σ
subunits, such as σ54 and σ70, recognize and bind different subsets of prokaryotic pro-
moter sequences. For example, σ70-containing holoenzyme recognizes and contacts
(via the σ subunit) specific promoter sequences surrounding positions –10 and –35
(upstream of the transcription initiation site).

Initial binding of the polymerase to the promoter leads to formation of a closed
binary complex where the polymerase-bound DNA duplex remains double-stranded.
This closed complex is then converted to a more stable open complex where melting
of the DNA duplex occurs and the two strands of the promoter DNA undergo separa-
tion. The DNA duplex is melted over ~12 bp, from the –10 region to just downstream
of the transcription initiation site (i.e., the deoxynucleotide in the DNA, encoding
the first ribonucleotide in the RNA transcript). Both the closed and open promoter

Fig. 2. Schematic of the transcription elongation complex.
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complexes are composed of multiple intermediate forms, with formation of an open
complex accompanied by a major conformation change in the RNA polymerase.
Conversion to an open promoter complex is followed by entry of ribonucleotide triph-
osphates (rNTPs) and binding of the initial (rNTP) to form a ternary complex. For σ70

promoters, conversion and stability of the open promoter complex does not require
rNTP hydrolysis, though for some promoters (e.g., certain σ54 promoters) this conver-
sion from a closed to open complex requires interaction with activator proteins bound
to the DNA upstream of the promoter as well as hydrolysis of ATP. After forming the
open ternary complex, active transcription begins with the synthesis of a series of
abortive transcripts. These are short transcripts <10 nucleotides in length that are
repetitively synthesized and released without release of the polymerase from the pro-
moter. Once a nascent transcript reaches a length of 8–10 nucleotides, σ factor is
released from the holoenzyme and RNA polymerase escapes and clears the promoter
to begin committed elongation of the transcript. The transcription elongation complex
(TEC) is a stable association of the core polymerase with the DNA template and
nascent RNA. Elongation proceeds by movement of the TEC down the linear DNA
template, with sequential and continuous addition of nucleotides to the 3' end of the
nascent transcript. The exact ribonucleotide added to the elongating RNA chain is
specified by the next base in the DNA template sequence according to Watson-Crick
base pairing (i.e., A:U, C:G, G:C, T:A for DNA:RNA base pairs). Misincorporation
of a nucleotide in the nascent RNA, or pausing of the polymerase along the DNA
template during elongation, leads the polymerase to backtrack along a short stretch of
the DNA, cleavage of the newly synthesized portion of the nascent RNA at the 3' end,
and continuation of elongation from the newly truncated nascent RNA (including
resynthesis of the cleaved portion of the RNA).

Termination of transcription in prokaryotes occurs at specific sites downstream of
the coding region of genes and is accomplished by either of two possible mechanisms.
One, termed rho-dependent termination, is mediated by the action of the rho termina-
tion protein and requires the hydrolysis of ATP. The second mechanism is rho-inde-
pendent termination and occurs via formation of specific hairpin structures in the
nascent RNA that destabilizes the ternary complex immediately downstream of the
hairpin and leads to dissociation of the ternary complex and transcription termination.
Rho-independent termination can also occur via terminators formed by an RNA:DNA
hybrid between the nascent RNA and the DNA template just upstream of the elonga-
tion complex.

Following termination of transcription and release of the RNA polymerase from
the DNA template and the RNA transcript, the free core polymerase is able to rebind
another σ factor and re-initiate another round of transcription.

Regulation of transcription in prokaryotes occurs by a wealth of different mecha-
nisms that often involve activator and repressor proteins. Descriptions of the
diverse mechanisms of prokaryotic transcriptional regulation are beyond the scope
of this chapter.

Initiation and Regulation of Transcription in Eukaryotes
The three eukaryotic RNA polymerases all synthesize RNA transcripts encoded

by a DNA template, but transcribe different subsets of genes. RNA pol I synthesizes
the precursor of ribosomal RNAs (rRNAs) which is eventually processed into the
mature 5.8S, 18S, and 28S rRNAs. The bulk of RNA synthesis in a cell is carried out
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by pol I. RNA pol II primarily transcribes the mRNA encoding genes, and therefore
is responsible for transcription of the largest and most diverse subset of genes in the
cell. RNA pol III catalyzes synthesis of an assortment of small RNAs including
tRNAs and 5S rRNA. Unlike the prokaryotic RNA polymerase, highly purified
eukaryotic RNA polymerases do not recognize promoter sequences by themselves or
initiate transcription by binding directly to specific DNA sequences in eukaryotic
promoters. Rather eukaryotic polymerases are recruited to promoter regions via pro-
tein-protein interactions by both proteins that bind to specific DNA sequences in
promoter and other regulatory regions as well as additional proteins that interact with
these DNA-binding proteins.

The following description of eukaryotic transcription and regulation will focus on
mechanisms of pol II transcription because of the diversity of genes it transcribes and the
current intensive efforts to elucidate mechanisms of pol II transcription and regulation.

RNA Polymerase II and Pol II Core Promoters
Eukaryotic RNA polymerase II (pol II) consists of 12 subunits totaling greater

than 500 kD in size, with all subunits very similar between yeast and humans. Most
human subunits can function in place of their yeast homolgues, and 9 pol II subunits
are highly conserved among the three different eukaryotic RNA polymerases. Fur-
thermore, the two largest pol II subunits, Rpb1 and Rpb2, show significant similar-
ity to the β' and β subunits of bacterial RNA polymerase, respectively, while two
other pol II subunits show lesser similarity to the α subunit of the bacterial enzyme.
The structure of yeast pol II has recently been determined by X-ray crystallography
at 2.8 angstrom resolution. The largest pol II subunit, Rpb1, contains a conserved
tandem repeat heptapeptide sequence at the C-terminus termed the C-terminal
domain (CTD). The CTD and its phosphorylation state play a critical role in both
transcription and RNA processing. An unphosphorylated CTD is associated with the
pol II initiation complex, whereas a phosphorylated CTD is correlated with the elon-
gation phase of transcription and association of the pol II complex with RNA pro-
cessing factors.

Promoters transcribed by pol II exhibit a diverse structure. Most consist of a core
promoter (sometimes referred to as the basal promoter) located in the immediate
vicinity of the transcription initiation site, as well as nearby regulatory sequences
that activate or repress activity of the core promoter, usually in response to e.g.,
cellular conditions, extracellular signals and environment, cell type, and stage of
development. In addition, the function of many eukaryotic promoters, particularly
in higher eukaryotes, is positively and/or negatively modulated by regulatory DNA
sequences that can be located within the gene, upstream of the gene and/or down-
stream of the gene at distances exceeding 50 kb of DNA.

The core promoter contains cis-acting elements (i.e., DNA sequences) that can act
as a nucleation site for the formation of the pre-initiation complex (PIC) and recruit-
ment of pol II. Core promoter elements in association with the PIC also determine the
site(s) where transcription of each gene is initiated. These core elements frequently
include the so-called TATA box; however, other core DNA elements can either
replace the function of the TATA box in TATA-less promoters, or can act in conjunc-
tion with the TATA box to facilitate transcription initiation. These other cis-acting
elements in the basal promoter include initiator (Inr) elements, a downstream pro-
moter element (DPE), and a TFIIB recognition element (BRE). These cis-acting ele-
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ments function by interacting with sequence-specific DNA-binding proteins that ini-
tiate and/or mediate PIC assembly.

Formation of the Pre-Initiation Complex
A multi-protein complex, termed the pre-initiation complex (PIC) and consisting

of a series of general transcription factors (GTFs) as well as pol II, is assembled at
the core promoter as the first step of transcription initiation. These GTFs include the
transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, though not
all promoters require all of these factors. In vitro studies suggest that the PIC is
assembled at core promoters in a sequential fashion (see Fig. 3). For genes with a
canonical TATA box in the core promoter, this sequential assembly is initiated by
the sequence recognition and binding of the multi-subunit GTF TFIID to the TATA
box; TFIID consists of a DNA-binding subunit termed the TATA box-binding pro-
tein (TBP) that recognizes and binds the TATA sequence, plus a variety of TBP-
associated factors (TAFs). TBP appears to be a common component of the PIC
formed at pol I, pol II, and pol III promoters. Binding of TFIID to the core promoter
DNA of pol II genes is followed by binding of TFIIA and TFIIB to the TFIID-
TATA box complex, then recruitment of a pre-formed complex of pol II, TFIIF and
TFIIE, and finally binding of TFIIH. TFIIA appears to stabilize the binding of TBP
to DNA, and TFIIB may function in selecting the position of the transcription initia-
tion site. TFIIF bound to pol II suppresses non-specific binding of the polymerase to
DNA and stabilizes the PIC. TFIIE may be involved in recruiting TFIIH and melt-
ing the DNA duplex when forming the open promoter complex. The multi-subunit
complex that comprises TFIIH contains an ATP-dependent helicase activity, a
DNA-dependent ATPase, and CTD kinase activity. Thus, TFIIH appears to be
involved in forming the open promoter complex via its helicase activity, and also
may be required for the conversion of abortive transcription to committed elonga-
tion. The kinase activity of TFIIH phosphorylates the CTD of pol II and, therefore,
may be involved in triggering the functions associated with a phosphorylated CTD.
In addition, the observed coupling of transcription and DNA repair appears to be
due to the common subunits shared by TFIIH in the transcription complex and the
nucleotide excision repair complex.

However, a significant percentage of eukaryotic promoters lack a canonical TATA
box and/or contain other core promoter elements such as an Inr (initiator element),
DPE (downstream promoter element), and BRE (TFIIB recognition element). This
leads to a diversity of mechanisms for forming the PIC at different promoters and for
the activation of basal transcription from the core promoter. TATA-less promoters
often contain an Inr element that serves as the nucleation site for assembly of PIC.
The Inr is a short conserved DNA sequence spanning the transcription initiation site
that acts as the binding site for several different DNA-binding initiator proteins such
as YY1, TFIII, USF, TAFII250, and TAFII150. The Inr (bound by its transcription
factors) can function alone in TATA-less promoters, or in combination with a TATA
box or DPE (if these elements are present) to nucleate assembly of the PIC at core
promoters. If present in a core promoter, the DPE is typically located approx 30 bp
downstream of the transcription initiation site and is recognized and bound by sub-
units of the general transcription factor TFIID. The BRE element is located immedi-
ately upstream of the TATA box in certain core promoters with TATA boxes and
facilitates the interaction and binding of TFIIB to the core promoter. In addition, a
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subset of promoters, commonly those that lack TATA boxes, do not initiate tran-
scription at a discrete nucleotide, but initiate transcription at multiple sites within the
core promoter.

Overall, assembly of the PIC on the various forms of the core promoter serves to
recruit and stabilize binding of pol II to the promoter, positioning pol II at the correct site
on the gene for initiating transcription. It helps form an open transcription initiation
complex by melting of the DNA duplex, and in the conversion of the PIC from transcrip-
tion initiation to the transcription elongation complex. The open transcription initiation
complex formed at the core promoter is associated with a melted DNA duplex of 12–15
bp that extends halfway from the transcription initiation site to the TATA box.

Fig. 3. Model for sequential assembly of the general transcription factors (GTFs) and pol II into
the pre-initiation complex (PIC). The right angled arrow indicates the position and direction of
transcription initiation.
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Activators, Co-Activators, Enhancers

Transcription from the core promoter is usually augmented by the action of addi-
tional transcriptional activator proteins that bind regulatory DNA sequences outside
(upstream and/or downstream) of the core promoter. These activator (or repressor)
elements serve to increase (or decrease) levels of transcription above the basal activity
of the core promoter. They often act in the context of cell type, e.g., cellular condi-
tions, stage of development, and response to stimuli such as hormones and growth
factors. The combinatorial action of multiple activators and repressors on a given gene
under a given set of cellular conditions determines the transcriptional status of the
gene and governs its level of expression.

Activator proteins bound to their cis-acting regulatory sites appear to function by at
least two mechanisms. Some activators bind their cognate site in the vicinity of the
core promoter and appear to facilitate recruitment of certain GTFs to the core pro-
moter and assist in formation of the PIC. These activators are presumed to assist PIC
formation via protein-protein interactions between the activator and its target
component(s) of the PIC. Alternatively, some activators may function by stimulating
activity of the PIC and facilitating release of the PIC from the core promoter and/or
facilitating transcription elongation. Some activators also appear to act by participat-
ing in the recruitment of chromatin modifying and remodeling complexes. In many
cases of activator function, contact between the DNA-bound activator protein and the
PIC requires bending or looping of the intervening DNA. Thus, some classes of acti-
vator proteins function by facilitating the bending of the DNA between the bound
activator and the core promoter.

However, not all DNA-binding activator proteins that act on assembly or functions
of the PIC can operate by direct contact with components of the PIC. Some activators
require the action of an intermediary protein or protein complex between the activator
and the PIC. These co-called co-activators act through protein-protein interactions as
a bridge between the DNA-bound activator protein and the PIC at the basal promoter.
Thus, the function of many activator proteins are carried out via association with
co-activator proteins or protein complexes. A protein complex (of ~20 subunits in
yeast) that appears to play an important role in activated transcription is the mediator
complex. It functions as a general co-activator of transcription and appears to mediate
the action of a variety of activator proteins. The mediator complex is bound to the
unphosphorylated form of the CTD of pol II and has been found to be a component of
the pol II holoenzyme complex.

In addition to cis-acting activator sequences that bind activator proteins in the
vicinity of the core promoter, other cis-acting activator sequences are found at larger
distances from the core promoter (up to tens of thousands of kb) both upstream, down-
stream and within genes. Some of these distal activator sequences are thought to func-
tion by looping the intervening DNA to contact the transcriptional machinery in the
vicinity of the core promoter. A subset of these long-range activators, termed enhanc-
ers, have been found to act regardless of their distance from the promoter, location
relative to the promoter (i.e., upstream and downstream) and either in the forward or
reverse orientation of the cis-acting activator element. These enhancer sequences have
been shown to contain a variety of binding sites for a constellation of DNA-binding
transcription factors that are presumed to form large DNA-protein complexes that
activate transcription.
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A large enhancer-like region spanning several thousand bps in mammals, termed a
locus control region (LCR), also activates transcription at a distance, and can regulate
activation of multiple co-regulated genes within a gene cluster such as the β-globin
gene family. The characteristic feature of LCRs is their ability to allow ectopically
integrated transgenes to be regulated independent of the effects from the flanking DNA
and chromatin at their new integration sites. LCRs also have been postulated to be
involved in opening of chromatin structure across entire loci or domains; however,
this role for LCRs is currently unclear.

Pol II Holoenzyme
Recently, holoenzyme complexes containing pol II have been purified intact from

eukaryotic cells. These heterogeneous pol II holoenzyme complexes include pol II,
a subset of the GTFs and the mediator complex which is believed to be bound to the
CTD of pol II. This finding of a pol II holoenzyme complex suggests that formation
of the PIC in vivo may not always involve step-wise and sequential assembly of the
GTFs and pol II and that much of the PIC, as well as co-activators required for
activation of the basal promoter, may be preassembled in vivo and brought to the
core promoter intact. Nonetheless, the lack of TBP in these pol II holoenzyme com-
plexes suggest that, in part, formation of the PIC with these holoenzyme complexes
may still be initiated by TBP binding to the TATA box followed by recruitment of
the holoenzyme.

The Role of Chromatin Structure
A major mode of transcriptional regulation in eukaryotes involves altering the chro-

matin structure of genes and regulatory regions to repress and/or activate transcrip-
tion. DNA is packaged with basic histone proteins within the eukaryotic nucleus to
form chromatin. The basic unit of packaging genomic DNA into chromatin is the
nucleosome, a discrete nucleoprotein complex composed of ~200 bp DNA wrapped
around a highly structured core of the histone proteins H2A, H2B, H3, and H4. Linear
arrays of nucleosomes resembling “beads on a string” form the first level of packaging
DNA in the nucleus; organization of the linear nucleosomal array into higher-order
configurations continue the packaging of genomic DNA into the chromatin found in
eukarotic nuclei. The structures of these higher-order organizations of nucleosomal
arrays are still not well-defined.

The formation of nucleosomes over promoters and other regulatory regions gener-
ally has a repressive effect on the transcription of genes by blocking or otherwise
inhibiting the binding of specific transcription factors to their cognate regulatory DNA
sequences. Furthermore, in higher eukaryotes, the higher-order packing of nucleoso-
mal arrays also appears to regulate transcription by governing the general access of an
entire locus (with its regulatory regions) to components of the transcriptional machin-
ery. Thus, modulating the higher-order chromatin structure of an entire gene or
domain, as well as altering the position and structure of individual nucleosomes over
regulatory DNA sequences, constitute critical mechanisms regulating transcription of
eukaryotic genes. A number of transcriptional activators (and repressors) appear to act
by recruiting and regulating the function of chromatin modifying and remodeling com-
plexes within specific genes.

The position and structure of individual nucleosomes associated with critical regu-
latory regions of genes has recently been shown to be regulated by ATP-dependent,
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multi-subunit complexes that remodel or modify nucleosomes or localized nucleoso-
mal arrays (e.g., Swi/Snf, NURD, CHRAC, RSC). Some of these nucleosome
remodeling complexes appear to act by repositioning (e.g., sliding, and/or transfer-
ring) intact nucleosomes from regulatory regions or sites, and presumably uncover
previously obstructed binding sites in DNA for sequence-specific DNA-binding tran-
scription factors. Furthermore, a number of remodeling complexes also appear
capable of subtly altering the structure of individual intact nucleosomes by changing
the interactions of the DNA with the histone core. This allows transcription factors
access to their otherwise obstructed DNA binding sites within native nucleosomes.

Nucleosome structure is also altered by the activity of various nucleosome modi-
fying complexes. These complexes covalently modify the side chains of amino acids
(particularly lysines) in the N-terminal region of histones, thereby altering the struc-
ture of the associated nucleosomes and/or nucleosomal arrays. Examples of these
nucleosome modifying complexes include histone acetylation and deacetylation com-
plexes, as well as histone methylases. Acetylation of histone H4 has been associated
with actively transcribed chromatin, while underacetylation of histone H4 has been
associated with transcriptionally repressed chromatin. Presumably, these histone
modifiying activities alter chromatin structure and either facilitate or preclude the
access of transcription factors to their sites of action. Regulation of higher chromatin
structure (i.e., the organization of nucleosomal arrays into higher-order structure)
across entire genes or domains is not well-understood, and mechanisms and regula-
tory elements that carry out these structural alterations of chromatin have not been
definitively identified. This is further discussed in Chapter 6.

In summary, the opening of higher-order chromatin structure, the modification and/
or positioning of nucleosomes to allow transcription factors to bind their cognate DNA
binding sites, and the action of activators, enhancers, etc. all facilitate formation of a
stable and functional PIC. Assembly of the transcriptional machinery at the promoter
is associated with formation of a stable open promoter complex, leading to clearance
of the pol II complex from the promoter and elongation of the nascent RNA.

ELONGATION

As with prokaryotic transcription elongation, the initial phase of RNA chain elon-
gation is associated with abortive transcription, the repetitive synthesis of very short
RNA molecules that are synthesized, released, and re-initiated. After the polymeriza-
tion of four or more nucleotides into a nascent RNA, the transcript becomes stabilized
in the complex. In part, this permits a transition from transcription initiation to pro-
moter release (or clearance) and productive elongation. Conversion of the pol II com-
plex from transcription initiation to elongation is accompanied by phosphorylation of
the CTD of pol II, release of certain general transcription factors GTFs and the media-
tor complex, and association of TFIIS and other elongation factors as well as certain
RNA processing factors. However, details of the process that converts the initation
complex to transcription elongation are not well-understood.

Specific factors have been identified that facilitate promoter clearance (e.g., P-TEFb)
while other factors act negatively to repress promoter clearance (e.g., NELF, DSIF).
Positive elongation factors that facilitate promoter clearance also include the GTFs
TFIIF and TFIIH. Other factors facilitate the processivity of elongation by the pol II
complex such as TFIIS, elongin, and CSB. The elongation complex appears to contain
9 bp of RNA:DNA hybrid within the transcription bubble, with the front of the bubble
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positioned 3 nucleotides before the beginning of the RNA:DNA hybrid. As with
prokaryotic transcription, the pol II elongation complex catalyzes the sequential addi-
tion of ribonucleotides to the 3' end of the elongating mRNA. The exact linear sequence
of ribonucleotides in the mRNA is dictated by the nucleotide sequence of the template
DNA strand based upon Watson-Crick base pairing.

TERMINATION

Termination of eukaryotic gene transcription differs significantly from termination
in prokaryotes. Rather than terminating transcription at discrete sites as seen in
prokaryotes, termination in eukaryotes does not appear to occur at specific sites, but
appears to occur by loss of processivity or stability of the elongation complex down-
stream of the gene. Thus, 3' end formation of eukaryotic mRNAs does not occur as a
direct result of transcription termination at a specific site, but occurs by post-transcrip-
tional processing of the RNA transcript where sequence-specific cleavage of the tran-
script at a specific site in the RNA is followed by post-transcriptional polyadenylation
of the 3' end of the cleaved transcript. Evidence suggests that the polyadenylation
signal and/or the site-specific cleavage of the nascent RNA may be involved in signal-
ing or facilitating transcription termination downstream.

RNA Processing
Generating a mature eukaryotic mRNA molecule from the primary transcript pro-

duced by transcription requires a series of post-transcriptional RNA processing steps
that include 5' mRNA capping, 3' polyadenylation, RNA splicing, and RNA editing.
Alternative sites for polyadenylation and RNA splicing within the same gene also play
a significant role in post-transcriptional regulation of gene expression. As discussed in
the following, several of these processes appear to be directly coupled to transcription
via association with the elongating pol II complex.

5' Capping
After the nascent RNA transcript has reached the ~25–30 nucleotides, the 5' end

of the transcript is covalently modified by enzymatic addition of a guanine triphos-
phate moiety via an unusual 5'–5' covalent linkage (see Fig. 4A). This novel bond
structure between the first and second nucleotides at the 5' end of the mature mRNA
protects the mRNA from degradation by a 5'→ 3' exonuclease activity in the cell.
Formation of this 5' cap structure is catalyzed, in part, by guanylyltransferase, an
enzyme that is bound to the phosphorylated form of the CTD of pol II. Subsequent
to the capping reaction, methytransferases add methyl groups to the N7 position of
the newly added guanine to generate the 7-methylguanosine cap, and a methyl group
to the 2' hydroxl group of the first and second (in vertebrates) ribose moieties of the
nascent transcript.

Polyadenylation
Formation of the 3' end of eukaryotic mRNAs is accomplished by enzymatic cleav-

age of the nascent RNA transcript followed by the post-transcriptional enzymatic
addition of 100–250 adenosine residues to the 3' end of the mRNA (see Fig. 4B).
Cleavage and polyadenylation is initiated by recognition of the polyadenylation signal
sequence AAUAAA in the RNA transcript, followed by cleavage of the transcript at a
discrete site 10–25 nucleotides downstream of the sequence, and polyadenylation of
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the 3' end of the upstream fragment generated by the cleavage reaction. The down-
stream RNA fragment generated by transcript cleavage is rapidly degraded. Tran-
script cleavage and polyadenylation is accomplished by a well-characterized,
multi-subunit complex that assembles over the polyadenylation signal sequence of the
RNA transcript. Addition of A residues to the 3' end of the cleaved transcript is per-
formed by poly(A) polymerase, a component of the complex. In addition to the appar-
ent coupling of transcription termination with polyadenylation, polyadenylation is also
coupled to transcription elongation by binding of polyadenylation factors (e.g., the
cleavage stimulatory factor CStF) to the CTD of pol II. In fact, some factors involved
in polyadenylation appear to associate with the CTD at the time of transcription initia-
tion at the promoter. As a mechanism of post-transcriptional gene regulation, alterna-
tive sites of polyadenylation within the same gene can generate different protein
products, e.g., in different cell types, different stages of development, or in response
to extracellular signals.

RNA Splicing
Many eukaryotic genes, particularly in higher eukaryotes, contain DNA sequences

that interrupt the nucleotide sequence that encodes the mRNA produced from the
gene. These intervening sequences, termed introns, are transcribed and included in
the primary RNA transcript generated by the process of transcription. These introns
are then precisely removed post-transcriptionally and the coding portions of the
mRNA, termed exons, are rejoined by the process of RNA splicing. A single gene
can contain multiple introns, some extending for tens of thousands of bases between

Fig. 4. Capping and polyadenylation. (A) The 5' mRNA cap structure. (B) 3' polyadenylation of mRNA.
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exons. RNA splicing is carried out in the nucleus on the nascent RNA by a large
ribonucleoprotein complex termed the spliceosome. The spliceosome, in turn, is com-
posed of proteins and a variety of small nuclear ribonucleoprotein particles
(snRNP’s), each containing a small nuclear RNA (and associated proteins) that par-
ticipate in the splicing reaction. The sequence of reactions leading to the removal of
an intron and covalent joining of two exons is carried out during the sequential
assembly and disassembly of the spliceosome.

Nucleotide sequences in the nascent primary RNA transcript are recognized by
components of the spliceosome and mediate the splicing reaction. As shown in
Fig. 5A, these sites in the nascent RNA include: 1) the GU and AG sequences found
at the 5' and 3' ends, respectively, of most introns; 2) the A residue located in the
intron (20–50 nucleotides upstream of the 3' end of the intron) that will participate
in formation of the lariat intermediate; 3) a pyrimidine-rich region just upstream of
the 3' splice site; and 4) the splicing enhancer sequences in the RNA transcript that
facilitate the splicing reaction.

As depicted in Fig. 5B, the removal of an intron between two coding region exons
is initiated by a transesterification reaction that breaks the ester bond between the last
nucleotide of exon 1 (i.e., the upstream exon) and the first nucleotide at the 5' end of
the intron, and forms a new ester bond between the 2' oxygen of the branchpoint A
residue and the 5' end of the intron. This reaction forms the lariat structure character-
istic of the splicing reaction. Then a second transesterification reaction breaks the
phosphodiester bond between the last nucleotide of the intron and the first nucleotide
of exon 2 (the downstream exon) and forms a new phosphodiester linkage between
the 3' end of exon 1 and the 5' end of exon 2. This results in covalent joining of the
two exons into a contiguous uninterrupted sequence in the mature mRNA and release
of the intron-containing lariat structure which is then degraded.

The process of RNA splicing is highly precise; any deviation from single-nucle-
otide accuracy would introduce mutations into the final mRNA leading to the synthe-
sis of defective proteins. The accuracy of the splicing reactions is mediated in part by
the SR proteins, a family of structurally related serine- and arginine-rich RNA-bind-
ing proteins. The SR proteins are required for accurate recognition of exons and splice
sites during assembly of the spliceosome and during the splicing reactions. Specific
sequences in the nascent RNA, termed splicing enhancers, also are involved in exon
definition (i.e., recognition of exons by the spliceosome) and recognition of splice
sites, as well as facilitating the splicing reactions. These splicing enhancers do not
appear to share an identifiable consensus nucleotide sequence, but are recognized and
bound by SR proteins.

Like capping and polyadenylation, several lines of evidence indicate that RNA
splicing also appears to be coupled to transcription. This evidence includes the
co-localization of splicing factors in the nucleus to discrete sites of active transcrip-
tion and the association of SR-like proteins to the CTD of pol II.

Alternative pathways of splicing exons within the same gene can lead to the for-
mation of different mature mRNAs from the same gene, each of which carries a
different subset of exons from the same primary transcript (see Fig. 5C) Thus, from
the same nascent transcript, some spliced mRNAs can skip specific exons that are
present in other mRNAs from the same primary transcript, or have additional exons
that are absent in other mRNAs. This alternative splicing of exons from a single
primary RNA transcript is highly regulated (mediated by SR proteins) and often
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leads to synthesis of different proteins with different functions from the same gene.
This process constitutes a major mechanism of post-transcriptional regulation of
gene expression in mammals.

RNA Editing
The final post-transcriptional processing of the RNA transcript in eukaryotes is the

alteration of the transcribed nucleotide sequence in the RNA molecule to a different
nucleotide sequence independent of the DNA template and transcription, thus poten-
tially changing the amino acid coding of the mature mRNA. This RNA editing pro-
cess involves changing the sequence of nucleotides in the newly synthesized RNA to
a new nucleotide sequence that is not encoded in the DNA template from which the
RNA was originally transcribed. This post-transcriptional modification has been iden-
tified for a relatively small number of genes in species as diverse as trypanosomes and
humans. These changes in the RNA sequence can occur by inserting or deleting spe-

Fig. 5. Schematic of RNA splicing. (A) Location of conserved elements involved in RNA splicing.
(B) Sequence of reactions in RNA splicing. (C) Alternative RNA splicing; a gene with three tran-
scribed exons produces two different mRNAs via alternative splicing pathways.
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cific nucleotides at specific positions in the RNA transcript, or by modification of
specific bases at specific sites in the RNA nucleotide sequence, thereby converting
one base to another (e.g., C → U via deamination of C). RNA editing is carried out by
macromolecular complexes termed the editosome.

Transcription of genomic DNA and the subsequent post-transcriptional processing
of the primary RNA transcript generate a mature mRNA whose linear sequence of
nucleotides encodes a linear sequence of amino acids. The synthesis of a functional
polypeptide from a mRNA template is accomplished by the process of translation.

Translation
 Overview of Protein Synthesis

The ordered interaction of well over 100 different macromolecules is required to
make a single protein. The entire process takes place in a huge enzymatic machine,
the ribosome, which in all life forms consists of two ribonucleoprotein subunits
(subribosomal particles). The ribosome provides a large, dynamic platform for the
sequential polymerization of amino acids according to the sequence of triplet codons
in a bound messenger RNA (mRNA) molecule. Ribosomes are necessarily large, in
excess of 2.5 MDa, because their substrates are large. The enzymatic substrates for
protein synthesis are amino acyl-tRNAs, activated forms of the amino acids carried
in ester linkage on the 3' terminal nucleotide of the various tRNAs (transfer RNAs).
Each amino acyl-tRNA synthetase enzyme is specific for one of the 20 different
amino acids and for all of the tRNAs having anticodons corresponding to the par-
ticular amino acid. The amino acyl-tRNAs are escorted to the ribosome as ternary
complexes with initiation (IF-2) or elongation factors (EF-Tu) and GTP. The selec-
tion of particular amino acyl-tRNAs on the ribosome is made on the basis of tRNA
anticodon base-pairing interactions with triplet codons that are exposed in a limited
region of mRNA within the decoding center on the small ribosomal subunit. The
peptidyl transferase activity of the large subunit catalyzes peptide bond formation
between amino acids carried by amino acyl-tRNAs (or peptidyl-tRNAs) that are jux-
taposed at specific sites (A, amino acyl; and P, peptidyl) in the intersubunit space.
After each peptidyl transferase reaction, the peptidyl-tRNA and the uncharged tRNA
which has donated an amino acid to the growing peptide chain are moved (translo-
cated) with the aid of elongation factor EF-G, along with the mRNA, to maintain the
reading frame and present the next codon in the A site of the decoding center. Next
an amino acyl-tRNA having an anticodon complementary to the A site codon enters
the A site and this process is repeated until a termination codon is encountered in the
decoding center. Then, with the aid of protein termination factors, the protein is
released from peptidyl tRNA, and another protein, RRF, ribosome-recycling factor,
promotes disassembly of the translation complex.

Given the wealth of information about protein synthesis in bacterial systems and
the recent advances in bacterial ribosome structure, it is appropriate to review protein
synthesis in prokaryotes.

Elements of Translation in Prokaryotes
The Genetic Code

The 20 natural amino acids are each specified by one or more triplet codons in the
mRNA. Four bases in mRNA, taken three at a time, results in 64 different triplet com-
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binations (see Fig. 6). Some of the amino acids (identified here by their three letter
abbreviations) are specified by single codons (AUG, for Methionine), while others are
specified by as many as six different codons (Leucine, for example).

The mRNA
Messenger RNAs may contain one open reading frame (monoscistronic), bounded

by initiation and termination codons, or several (polycistronic). The mRNAs often
have a nontranslated leader sequence at their 5' end preceding the initiation codon.
Some mRNAs have short regions of four to six bases, which are complementary to
sequences in the 3' end of 16S RNA exposed on the platform of the small ribosomal
subunit. These sequences, called Shine-Dalgarno sequences, lie 10 or so bases
upstream of the initiation codon, serving to bind and orient the mRNA, placing the
initiation codon within the decoding center on the small subunit. The greater the
region of complementarity, the stronger the binding and consequently the particular
mRNA will be translated more frequently, relative to those with weaker Shine-
Dalgarno interactions.

The Transfer RNAs (tRNAs)
All organisms use tRNAs as so called adaptor molecules to convert the sequence

of nucleic acid codons into a sequence of amino acids. These are a family of small
RNA molecules, 70–80 nucleotides long, which fold into a series of stem-loop struc-
tures, usually depicted as a characteristic cloverleaf structure (see Fig. 7). They typi-
cally contain unusual or modified bases, such as dihydrouracil (prominent in the
D loop, so named because of the dihydrouracil content), pseudo uracil, and ribothy-
midine. The sequences of the various tRNAs are different, but they contain an invari-

Fig. 6. The genetic code, as used by most organisms. The first base of the codon (5' end) is shown
in the first column, and the second base is shown in the top row. AUG (and sometimes GUG and
UUG) usually serves as the initiation codon, when it occurs at the beginning of the open reading
frame. The three termination codons (end) are recognized by termination factors.
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ant CCA, added postranscriptionaly at the 3' end of the amino acid acceptor stem, as
well as a sequence, TΨCG, in the TΨC loop. As its name suggests, the variable loop is
highly variable, both in sequence, as well as size. The anticodon and the amino acid
that it specifies are separated by about 70 Angstroms, at opposite ends of the L-shaped
molecule (see Fig. 8A) which forms when the D loop and TΨC loop fold further,
stabilized by additional, tertiary base pair interactions.

The Aminoacyl-tRNA Synthetases
Amino acids are activated through coupling in ATP-dependent reactions to the

appropriate tRNAs by amino acyl-tRNA synthetases specific for each amino acid and
for the corresponding tRNAs. There are two general classes of synthetase enzymes, I
and II, which tend to function as monomers or dimers, respectively. The enzymes
recognize key identity elements at various locations in the cognate tRNAs.

The Ribosome
The small subunit (30S) of prokaryotic ribosomes contains one 16S RNA molecule

and about 21 proteins. The RNA molecules are generally characterized by their sedi-
mentation coefficient (S) as an indication of their size or mass. The larger and more
compact the RNA molecule is, the higher the sedimentation coefficient. The 16S rRNA
(ribosomal RNA) of E. coli is1542 nucleotides long (see Fig. 9), and the molecule
is folded into a rather compact shape (see Fig. 10A). Adjacent complementary regions
along the molecule result in the formation of a series of stem-loop structures. This has
the effect of bringing together distant complementary regions to form additional stems,

Fig. 7. Transfer RNA structure. Shown here is the secondary structure of phenylalanyl-tRNA (Phe-
tRNA), in the familiar cloverleaf diagram characteristic of most tRNAs. The anticodon, 5'GAA, is
complementary to one of the two codons for Phe (5'UUC) in Fig. 6. D, dihydrouridine; Ψ,
pseudouridine; T, ribothymidine.
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Fig. 8. Elongation factors EF-Tu and EF-G. (A) EF-Tu (lighter gray) is shown as a ternary complex
with bound amino acyl-tRNA and GTP. (B) EF-G resembles the complex of the protein EF-Tu and
amino acyl-tRNA. This is an example of macromolecular mimicry where similar binding sites accom-
modate the different species.

resulting in the formation of distinct domains through these long distance interactions
(see Fig. 9). The 5' domain, extending from nucleotides 1 through 556 and
the penultimate stem (positions 1400–1500) comprise the RNA structure of the body
(see Fig. 10A). The 5' central domain (positions 567 to 883) forms the platform, and
the head contains nucleotides 920–1372. The 21 proteins are distributed around the
periphery, mainly on the back or solvent side. Only one protein, S12, is located on the
interfacial side, near the decoding center.

The large subunit (50) contains two rRNA molecules, a 5S RNA, forming the cen-
tral crown structure (see Fig. 10F), and a larger 23S RNA, forming the body of the
subunit. The 33 proteins of the large subunit are located mainly on the periphery and
the backside of the subunit. One of the ribosomal proteins, L12, is present in four
copies. These proteins form two L12-dimer structures (see Fig. 10F). The L12 dimer
stalk is the site where the elongation factors (EF-Tu and EF-G) first engage the ribo-
some. The 30S and 50S subunits associate during the initiation phase of protein syn-
thesis to form a roughly spherical 70S ribosome.
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Fig. 9. Secondary structure of E. coli 16S rRNA. Several non-canonical base pairs are evident in
the molecule, including A-G, G-G, U-G and U-U base pairs. The 16S RNA folds into a compact
structure which defines the overall shape of the 30S subunit (see Fig. 10).
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Fig. 10. Structure of the small and large subunits of the bacterial ribosome. (A) Interfacial aspect of
the 30S subunit, showing the 16S RNA backbone (thin dark tracing) and associated proteins (alterna-
tively shaded). A section of bound mRNA (thick bright backbone) includes the Shine-Dalgarno region
(5' helical structure on the right), the initiation codon and an adjacent Phe codon. The anticodon of
the initiator tRNA, fMet-tRNA (thick dark backbone) is base paired with the initiation codon in the P
site. (B) Same as (A) with the addition of Phe-tRNA at the adjacent codon in the A site. (C) Peptidyl
transferase catalyzed transfer of the fMet to the Phe-tRNA, resulting in a dipeptidyl-tRNA in the A site.
(D) Post translocation state of the ribosomal small subunit. Through the action of EF-G with bound
GTP, the uncharged initiator tRNA, fMet-Phe-tRNA and the mRNA are moved, in register, into the E
and P sites. (E) Entry of the third amino acyl-tRNA into the A site, in advance of the ejection of the E
site tRNA and peptide transfer (peptidyl transferase reaction). (F) Interfacial aspect of the 50S subunit,
showing the 5S and 23S RNA (thick backbone) and associated proteins (variously shaded). The peptidyl
transferase activity lies deep within a cleft in the 23S RNA, an area entirely devoid of protein. The
coordinates for the 30S subunit, mRNA fragment, A, P, and E site tRNAs are available at the RCSB data
base with PDB accession numbers 1GIX and 1JGO.
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Initiation of Protein Synthesis
Initiation of protein synthesis takes place on the small subunit. The mRNA binds in

the region between the head and the body, tracking from the platform through a down-
stream entrance channel formed between the head and the shoulder of the subunit (see
Fig. 10A). If the mRNA has a Shine-Dalgarno sequence, it binds more efficiently,
stabilized by base pairing with the complementary region of 16S rRNA exposed on
the platform. This interaction places the initiation codon in the vicinity of the decod-
ing center, where it can base pair with the anticodon of the initiator tRNA. The initia-
tor tRNA in prokaryotic systems is fMet-tRNA, a special tRNA that carries a
methionine modified by formylation on its amino group. This fMet-tRNA is escorted
to the small subunit in a ternary complex with initation factor 2 (IF-2) and GTP. The
fMet-tRNA is the only amino acyl-tRNA to bind directly and initially to the P site,
where the initation codon will be able to form base pairs with the anticodon (see
Fig. 10A). This interaction is facilitated by two other initiation factors, IF-1 and IF-3.
IF-1 is a protein mimic of tRNA and it binds to the A site on the small subunit, forcing
the IF-2 ternary complex to enter at the adjacent P site. IF-3 binds between the head
and the platform, where it serves a dual role. It acts as an anti-association factor,
ensuring a supply of free 30S subunits for initiation complex formation and it pro-
motes the fidelity of initiation complex formation by favoring the dissociation of
noncanonical complexes, such as base pair interactions between elongator tRNAs and
the initiation codon. Upon proper recognition of fMet-tRNA by the initiation codon in
the P site, the IF-2-bound GTP is hydrolyzed to GDP, causing a conformational change
allowing IF-2-GDP to leave after depositing the initiator tRNA in the P site. The 50S
subunit then joins the 30S initiation complex to form the 70S initiation complex, set-
ting the stage for the elongation phase.

Elongation Phase of Protein Synthesis
The elongation factor EF-Tu (see Fig. 8A) escorts the various amino acyl-tRNAs to

the ribosomal A site as ternary complexes with GTP. They engage the ribosome first
at the L12 stalk and if the codon exposed in the A site (UUC, in Fig. 10B, for example)
is complementary to their anticodon, the amino acyl-tRNA is deposited and the
EF-Tu-bound GTP is hydrolyzed, favoring the exit of EF-Tu-GDP. Note that the
mRNA is kinked between the adjacent codons in the decoding center. This kinking
allows the A and P site tRNAs to read adjacent codons. In this manner the amino acyl
ends of the A and P site tRNAs are placed within 5 Angstroms of each other (see Fig.
10B), in the peptidyl transferase center of the 50S subunit (see Fig. 10F) where they
await peptide bond formation. Peptidyl transferase activity of the 50S RNA catalyzes
the transfer of the fMet to the Phe-tRNA in the A site (see Fig. 10C). At this point in
the elongation cycle the peptidyl-tRNA (fMet-Phe-tRNA, in the example of Fig. 10C)
and the P site tRNA must be moved to open the A site for entry of the next amino acyl-
tRNA able to base pair with the third codon brought into the A site. Elongation factor
G, EF-G with bound GTP (see Fig. 8B) engages the L12 stalk on the large subunit and
proceeds to carry out this translocation event, while maintaining the mRNA reading
frame fixed by the A and P (E) site tRNAs. During translocation, the uncharged tRNA
is moved into the E site while the A site peptidyl-tRNA moves into the P site (see Fig.
10D). EF-G is a striking example of tRNA mimicry by protein. Note the structural
resemblance of EF-G (see Fig. 8B) and EF-Tu-amino acyl-tRNA (see Fig. 8A) which
bind to similar sites on the ribosome. After hydrolysis of the bound GTP, EF-G leaves
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to make the A site available for entry of the next amino acyl-tRNA (see Fig. 10E). The
growing peptide chain will emerge through a tunnel traversing the body of the 50S
subunit. Upon entry of the next cognate amino acyl-tRNA the affinity of the E site for
the uncharged tRNA is lowered, allowing for release of the E site tRNA. This cycle is
repeated until a termination codon appears in the A site, setting the stage for the termi-
nation of protein synthesis.

Termination of Protein Synthesis
Termination codons exposed in the A site are recognized by protein release factors.

RF1 recognizes UAA and UAG, and RF2 recognizes UAA and UGA. After binding of
either release factor in the A site, peptidyl transferase activity transfers the C-terminal
residue of the polypeptide to a water molecule, resulting in release of the protein. The
departure of RF1 and RF2 is facilitated by a third release factor, RF3, which is another
example of mimicry in translation systems. RF3 is a GTP binding protein that
resembles EF-G.

Translation in Eukaryotes
The fundamental process of protein synthesis in eukaryotes resembles that of

prokaryotes, with the introduction of additional complexity and regulatory features.
The ribosomes are larger and the initiation factors are more numerous. Eukaryotes do
not employ a Shine-Dalgarno-like mechanism to promote mRNA binding, but rather
use a collection of initiation factors that recognize a uniquely eukaryotic decoration of
the 5' end of mRNAs, the 5'-methyl-G cap structures. In addition, most of the mRNAs
are further decorated by a poly(A) tail at their 3' end, which recruits poly(A)-binding
proteins (PABPs). The 40S ribosome small subunit contains 18S RNA. The large sub-
unit contains three molecules of RNA, a large, 28S RNA, 5S RNA and a species unique
to eukaryotes, a 5.8S RNA. The 80S ribosome contains about 80 different proteins,
some of which are homologues of bacterial ribosomal proteins, but many of them
unique to eukaryotes.

The initiation phase of protein synthesis employs at least 12 initiation factors,
containing as many as 28 protein subunits. These protein factors interact with the
initiator Met-tRNAi, the mRNA, the 40S and 60S subunits to promote formation of
the 80S initiation complex. The factor names are preceded by “e” to denote their
eukaryotic nature. The factor eIF1A is homlogous to the bacterial IF1 and it aids in
positioning the initiation codon in the decoding center. The homolog of IF2, eIF2
escorts Met-tRNAi to the P site of the ribosomal 40S subunit. The large factor eIF3,
which contains 11 protein subunits, binds to the platform region of the 40S subunit.
The eIF4F factor is a heterotrimeric factor; in addition to its central component,
eIF4G, its eIF4A component is an ATP-dependent RNA helicase, and its eIF4E sub-
unit binds to the 5'cap structure on the mRNA. The versatile factor eIF4G serves as
a bridging factor that binds to eIF4E, as well as the PABPs (on the poly(A) tail),
which has the effect of bringing the 5' and 3' ends of the message together. The
message is then brought to the 40S subunit when the loaded eIF4G binds to eIF3
already on the subunit. The initiation AUG codon is as many as 100 or more nucle-
otides downstream of the 5'cap structure. This necessitates an ATP-dependent scan-
ning search for the downstream initiation codon, recognizable by its ability to base
pair with the waiting anticodon of Met-tRNAi. After selection of the initiation
codon, eIF5 is recruited to aid in the dissociation of eIF2-GDP, eIF3, and eIF4 fac-
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tors in preparation for the joining of the 60S subunit to form the 80S initiation com-
plex. Some mRNAs, such as the polycistronic genomic RNA of the poliovirus, have
no 5'-methyl-G cap structures, but contain internal ribosome entry sites (IRES) where
initiation of protein synthesis can take place without the need for the initiation fac-
tors required for most cellular mRNAs.
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Glossary and Abbreviations

Transcription
Activator  Proteins that augment and/or stabilize formation of the PIC, often by

binding to activator DNA sequences.

Anti-sense RNA  RNA transcript that is complementary to a known coding RNA;
transcribed from the non-template strand of DNA.

BRE  TFIIB recognition element.

Closed binary complex  The DNA-protein complex consisting of RNA polymerase
(or the PIC in eukaryotes) and double-stranded DNA of the promoter where the double
helix of DNA is not melted.

Coactivator  A protein or protein complex that act as an intermediate or bridge for
interactions between activators and the PIC.

Core enzyme  Form of prokaryotic RNA polymerase that functions during tran-
scription elongation; consists of two α subunits, one β subunit, and one β' subunit.

Core promoter  (also referred to as the basal promoter) In eukaryotes, the mini-
mal promoter region that is required to form the PIC and initiate transcription.

CTD  C-terminal domain of the largest subunit of RNA polymerase II.

DNA template strand Strand of the DNA double helix that encodes an RNA.

DPE  Downstream promoter element.

GTFs  General transcription factors.

Hairpin  A region of an RNA or single-stranded DNA, that folds back upon itself
and forms intramolecular Watson-Crick base pairing.

Holoenzyme  In prokaryotes, the core RNA polymerase enzyme plus sigma factor;
in eukaryotes, a complex of RNA polymerase II, several general transcription factors
(usually not including TBP), and the mediator co-activator complex.

Inr  Initiator element; the DNA sequence spanning the transcription initiation site
that is bound by initiator proteins that mediate formation of the PIC in TATA-contain-
ing or TATA-less promoters.

Mediator complex  Co-activator complex that is bound to the CTD of RNA poly-
merase II.

Nucleosomal array  A stretch of DNA organized into a series of nucleosomes
forming a beads-on-a-string structure.

Nucleosome  Basic unit of DNA compaction in eukaryotic nuclei; consists of ~200
bp of DNA wrapped around an octamer core of histone proteins.
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Open binary complex  The DNA protein complex of double-stranded DNA and
RNA polymerase (or the PIC in eukaryotes) where the DNA duplex bound by the
polymerase is melted into single-stranded regions.

PIC  Pre-initiation complex.
Pol I, pol II, pol III  RNA polymerase I, II, and III, respectively.
Promoter clearance  (also referred to as promoter release) Release of the

PIC from the promoter and conversion of the PIC to the transcription elongation
complex.

Rho protein  Protein that mediates rho-dependent transcription termination in
prokaryotes.

RNA:DNA duplex  A region in which one strand of DNA is base paired with its
complementary sequence of RNA.

rNTP  Ribonucleotide triphosphate.
rRNAs  Ribosomal RNAs.
TAFs  TBP-associated factors; subunits of TFIID.
TATA box  A short region ~30 bp upstream of the transcription initiation site that

contains the DNA sequence TATA and is bound by TBP.
TBP  TATA-binding protein; the subunit of transcription factor TFIID that binds

to the TATA box.
TFIIA, B, D, E, F, H  General transcription factors that are components of the pre-

initiation complex of genes transcribed by RNA polymerase II.
Transcription elongation complex  RNA polymerase and its associated compo-

nents and factors that forms after promoter clearance and elongates a nascent RNA.
Watson-Crick base pairing  Pairing of complementary bases; A:T, A:U, G:C.

RNA Processing
Capping  Addition of a 7-methyl G residue to the 5'end of mRNAs via a 5'→5'

linkage.
Deamination  Removal of an amine group from a base; deamination of cytosine

yields uracil.
Editosome  Macromolecular complex that carries out RNA editing.
Exon  Portion of a gene (and RNA) that is included in the final fully-processed

mature mRNA molecule.
Exon definition  The process in RNA splicing that allows the spliceosome to

accurately recognize and splice exons within an unspliced primary RNA transcript.
Intron  DNA (and RNA) sequences located between exons that interrupt the

mRNA-coding portion of a gene (and RNA transcript).
Polyadenylation  Addition of a string of A residues to the 3' end of mRNAs in

eukaryotes.
Polyadenylation signal sequence  The AAUAA sequence that dictates down-

stream cleavage of the primary RNA transcript, thereby forming the 3' end of the
mRNA and the site for polyadenylation.

Post-transcriptional  Molecular processes (such as RNA processing) that occur
after an RNA has been transcribed.

RNA editing  The non-templated addition, deletion, or modification of nucleotides
within a mature mRNA that occurs after transcription.
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RNA splicing  Removal of introns from the primary RNA transcript to form the
mature mRNA.

Spliceosome  Large RNA-protein complex that carries out RNA splicing reactions.
SR proteins  Family of serine- and arginine-rich proteins that play central roles in

RNA splicing.
Transesterification reaction  Chemical reaction occurring during splicing that

involves breakage or exchange of one ester bond for the formation of a new ester bond.

Translation
 A site  Ribosomal site where aminoacyl-tRNAs enter and bind during the elonga-

tion phase of protein synthesis.
Anticodon  A series of three nucleotides in the base loop of tRNA that are

complementary to a codon specifying the amino acid attached to a particular amino
acyl-tRNA.

Codon  A series of three bases (A, G, C or T) in the mRNA open reading frame that
specify a particular amino acid.

E site  Exit site, where uncharged tRNAs are bound after translocation, from which
they exit the ribosome.

EF-G  Prokaryotic Elongation factor G, the translocation factor for prokaryotic
ribosomes.

EF-Tu  Prokaryotic Elongation Factor T, forms ternary (three component) com-
plex with amino acyl-tRNA and GTP; carries aminoacyl-tRNA to ribosomal A site.

IF2  Prokaryotic Initiation factor 2, the factor that binds, along with GTP, to initia-
tor tRNA, and carries the initiator tRNA to the ribosomal P site.

IRES  Internal Ribosome Entry Site; eukaryotic ribosomes can initiate protein syn-
thesis at these sites in mRNAs that lack the 5' cap decoration.

P site  Ribosomal site where initiator tRNA enters and binds.
Peptidyl-tRNA  tRNA with the growing peptide attached at its 3' end.
Shine-Dalgarno sequence  A short  four-to-seven base sequence in the 3' end of

bacterial small ribosomal subunit RNA (16S RNA) that is complementary to a short
sequence of bases upstream of the initiation codon in some mRNAs.

Translocation  EF-G catalyzed movement of tRNAs and mRNA in the ribosome
following peptidyl transfer to the aminoacyl-tRNA in the A site. During translocation
the uncharged tRNA in the P site and the peptidyl-tRNA in the A site, are moved,
along with the mRNA, into the E and P sites, respectively.
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Epigenetic Mechanisms
Regulating Gene Expression

John R. McCarrey

Epigenetics:
“ The study of mitotically and/or meiotically heritable changes in gene
   function that cannot be explained by changes in primary DNA sequence.”

A. D. Riggs, 1996

Introduction

Epigenetic mechanisms regulate gene function in a heritable manner, but do so
without modulating the DNA sequence of the affected gene. Many different genetic
functions are influenced by epigenetic mechanisms in various species. These include
regulation of gene expression, DNA modification and restriction, genomic imprinting,
X-chromosome inactivation, paramutation, position effect variegation, mating type,
cell determination, transposable elements, and mutator and suppressor genes. This
chapter will focus on epigenetic mechanisms that regulate gene expression and the
manner in which they accomplish this in mammalian species.

Nuclear DNA acts as the repository of genetic information in eukaryotic cells. In
mammals, and many other animal species, a complete representation of the genome
is maintained in essentially every nucleated cell. However, only a subset of this
collection of genes is expressed in any particular cell type. Thus, it is not the pres-
ence of specific genes, but rather the expression of specific genes, that leads to the
unique identity and function of any particular cell.

For over 25 years, the mechanisms that regulate gene expression have been the
focus of extensive investigation. For protein-encoding genes, two primary steps are
involved in gene expression: transcription of DNA into RNA, and translation of that
RNA into a polypeptide. This affords two levels of regulation of gene expression:
transcriptional regulation and translational (or post-transcriptional) regulation. For
tissue-specific genes (those expressed in only a subset of tissues or in a single tissue
or cell type), regulation is primarily manifest at the transcriptional level. Extensive
studies of this process have revealed a consensus mechanism whereby the promoter
region, typically located at the 5'-end of the gene, acts to bind specific proteins called
transcription factors which, in turn, attract (or prevent) binding of the RNA poly-
merase that is required to initiate transcription.
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Binding of transcription factors to specific gene promoters and to specific sites
within those promoters is regulated by the ability of a DNA binding domain within
each protein factor to recognize a unique three-dimensional structure of double-
stranded DNA. This unique structure is imparted by a specific nucleotide sequence,
typically 5–15 base pairs (bp) in length. Thus, this mechanism does rely on the DNA
sequence and is therefore not a truly epigenetic mechanism. However, because these
transcription factors can be either ubiquitous or tissue-specific, and can either pro-
mote or inhibit transcription, this mechanism can modulate tissue-, cell-type, or
developmental-stage specificity of transcription, as well as controlling the relative
level (or frequency) of transcription. Nevertheless, protein-DNA interactions between
transcription factors and promoter sequences, respectively, are not the only mecha-
nism by which gene expression is regulated in eukaryotic cells.

In mammals there are several examples in which genes are regulated by mecha-
nisms other than transcription factors. For example, in female somatic cells, genes on
the active X chromosome are transcribed, whereas homologous genes on the inactive
X chromosome remain transcriptionally silenced. This is despite the fact that both the
active and inactive copies of these genes share identical nucleotide sequences and
reside within the same nucleus. Thus the presence of identical promoter sequences
and cognate transcription factors alone does not ensure identical regulation of genes.
Similarly, in mammals, the phenomenon of genomic imprinting results in the expres-
sion of only one of the two copies of a particular gene within a single diploid cell. In
this case the choice of which allele is expressed is dictated by the parental origin of
that allele. However, the mechanism that regulates such monoallelic expression can-
not be based solely on transcription factors and promoter sequences, because the
former are present throughout the nucleus in which both alleles reside, and the latter
are often identical on both alleles.

The unavoidable conclusion from these observations is that there must be addi-
tional mechanisms by which gene expression is regulated in eukaryotic cells, and these
mechanisms must function in a manner that does not depend on differences in nucle-
otide sequence or the cell-type specific presence or absence of transcription factors.
Yet, as exemplified by the examples noted earlier for X-chromosome inactivation and
genomic imprinting, these mechanisms must function in a heritable manner, such that
the same alleles remain expressed or silenced, even after replication of the DNA and
division of one cell to produce two daughter cells.

We now know that there are multiple mechanisms that meet the criteria of epige-
netic mechanisms in that they regulate gene expression in a heritable manner that
does not rely on differences in DNA sequence. Examples of mechanisms that either
have been shown to operate in this manner or have the potential to operate in this
manner include: DNA methylation, chromatin structure and/or composition, DNA
loop domains and association with the nuclear matrix, and DNA replication timing.

DNA Methylation
In mammals, methylation of DNA is found only on cytosines present in a 5'-CpG-

3' dinucleotide sequence. Because cytosine and guanine are complementary bases,
wherever there is a CpG dinucleotide in one DNA strand, there will be a complemen-
tary CpG on the opposite strand. This double-stranded structure can exist in three
different states with respect to methylation (see Fig. 1). It can be fully methylated,

See
companion CD
for color Fig. 1
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meaning that both cytosines are methylated (see Fig. 1B), or it can be completely
unmethylated if neither cytosine is methylated (see Fig. 1A). When a fully methylated
site is replicated by semi-conservative replication, the resulting structure is hemime-
thylated (see Fig. 1C). This is typically a transient state because it forms a template for
a ubiquitously functioning DNA maintenance methyl transferase that recognizes the
hemimethylated structure and returns it to a fully methylated state. Thus, fully methy-
lated and unmethylated sites are maintained (and/or re-established) throughout repli-
cation of DNA and cellular division. In this way methylated and unmethylated states
of DNA are heritable.

It is possible for an unmethylated site to be directly converted to a fully methylated
site, and vice versa. Methylation of an unmethylated site is achieved by a de novo
methylase, whereas a direct transition from a fully methylated to an unmethylated
structure in the absence of DNA replication is accomplished by a demethylase activ-
ity. The function of these enzymatic activities and the manner in which they are regu-
lated are not as well-characterized as that of the maintenance methylase activity.

Fig. 1. Alternate states of DNA methylation in mammalian DNA. Methylation occurs only on
cytosines present in CpG dinucleotides in mammalian DNA. A CpG dinucleotide sequence in one
DNA strand mandates the presence of a complementary CpG dinucleotide in the other strand of
double-stranded DNA. (A) If both cytosines in such a site are unmethylated, the site is said to be
completely unmethylated. This structure is often found in actively expressed or potentiated genes,
especially in the 5' regulatory region. (B) An unmethylated site can undergo de novo methylation to
form a fully methylated site in which both cytosines are methylated. This structure is often found
associated with repressed genes. Conversely a demethylase activity can convert a fully methylated
site to a fully unmethylated site in the absence of DNA replication. (C) Upon semi-conservative
replication of a fully methylated site, a hemimethylated site is formed. This structure is typically
transient as a maintenance DNA methyl transferase rapidly recognizes a hemimethylated site and
returns it to a fully methylated state. The function of the maintenance methylase provides a mecha-
nism to heritably maintain DNA methylation patterns. C, cytosine; G, guanine; N, any base; p, phos-
phate bond; CH3, methyl group.
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However, there is ample evidence that such activities do indeed exist. Shortly after
fertilization in the mouse, nearly all of the methylation that is brought into the zygote
by the gametic genomes is lost, such that the blastocyst genome is nearly devoid of
DNA methylation except for that at a few imprinted sites. This may occur either by
dilution of methylated strands as replication proceeds in the absence of maintenance
methylase activity or by direct demethylation, or by some combination of these two
mechanisms. Subsequently, at about the time of gastrulation, there is a de novo methy-
lation event at numerous different sites throughout the genome. This must be accom-
plished by a de novo methylase because completely unmethylated sites become fully
methylated. Following gastrulation, many different cell lineages become allocated and
begin to develop and differentiate. Coincident with this, selective demethylation of
many tissue-specific genes is often observed within the cell lineage in which these
genes will ultimately be expressed. In most cases this appears to occur via a
demethylase activity, because in at least some cases demethylation occurs in the com-
plete absence of DNA replication or cellular division.

In addition to tissue-specific genes that are expressed in a limited tissue-, cell-
type, or developmental-stage specific pattern, another set of housekeeping genes is
widely expressed in a ubiquitous and constitutive manner. These genes, which do not
require as complicated transcriptional regulation as that needed for tissue-specific
genes, often bear a CpG island, most commonly in the 5'-portion of the gene. A CpG
island has been defined as a region in the mammalian genome of >100 bp with a GC
content of >50% that lacks the typical underrepresentation of CpG dinucleotides seen
in other regions of the genome. Generally, CpG islands remain constitutively
unmethylated throughout development and differentiation of cells. Exceptions to this
rule include CpG islands associated with genes on the inactive X chromosome or
with nonexpressed, inactive alleles of imprinted genes, as well as those associated
with certain genes in cancerous tumors (e.g., tumor-suppressor genes). In these cases,
the island associated with the nonexpressed allele or gene is typically methylated.

For both individual CpG dinucleotides located in non-CpG island regions, and CpG
dinucleotides within CpG islands, a general correlation has been observed between
the presence of DNA methylation and inhibition of expression, and between the
absence of DNA methylation and active transcription. This is especially true for sites
in the 5'-flanking region or in the 5'-half of transcribed portions of genes. At least two
types of mechanisms have been proposed by which DNA methylation, or the lack
thereof, might contribute to regulation of transcription. In one case, the presence or
absence of methylation on key cytosines within a particular transcription factor bind-
ing site may modulate the ability of the factor to bind to that site. In a second scenario,
the presence or absence of methylation at sites either within factor binding sites or in
regions adjacent to factor binding sites may inhibit factor binding indirectly by affect-
ing chromatin structure.

A direct mechanistic connection has now been established between DNA methyla-
tion and chromatin structure (see “Interactions Among Epigenetic Mechanisms”). In
this case, it is suggested that the presence of methylation stabilizes a condensed
(closed) chromatin structure that is, in turn, refractory to binding by transcription fac-
tors and/or RNA polymerase. Conversely, an absence of methylation leads to a less
condensed (open) chromatin structure that is accessible to transcription factors and
RNA polymerase. Effects of DNA methylation on chromatin structure appear to be
mediated by methylated DNA-binding proteins that bind to methylated DNA on the
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basis of the presence or absence of methylation, rather than on the basis of a particular
binding sequence as is the case for transcription factors.

Two methylated-DNA binding proteins were originally identified, MeCP1 and
MeCP2. MeCP1 is a large protein complex that binds best to regions of DNA contain-
ing >10 methyl-CpGs, and has been shown to be involved in repression of transcrip-
tion from densely methylated promoters. It also binds to, and represses transcription
from, more sparsely methylated promoters, although this is a much weaker interac-
tion. MeCP2 is a single polypeptide that can bind to as few as a single fully methylated
CpG site. In vivo it appears to bind predominantly to highly methylated satellite DNAs
adjacent to centromeres in the mouse genome, but shows a more dispersed binding
pattern in the genomes of humans and rats, which do not contain highly methylated
satellite DNA.

Recently, screens for cDNAs encoding methyl-CpG binding domains (MBDs) have
revealed at least four such genes, MBD1-4. The MBD1 protein is a component of
the MeCP1 protein complex. MBD2-4 encode methylated DNA binding proteins that
are distinct from those associated with either MeCP1 or MeCP2, but bear a striking
similarity to the MBD of MeCP2. The products of MBD2 and MBD4 bind to methy-
lated CpGs both in vitro and in vivo, and are thus considered to be additional candi-
dates for mediators of mechanisms associated with methylated DNA.

The manner in which tissue-, cell-type and/or gene-specific patterns of DNA
methylation are established or modulated remains to be fully elucidated. However
there appears to be a combination of general and specific mechanisms that contrib-
ute to this process. The general mechanisms include those that result in genome-
wide loss or gain of methylation, especially during early embryogenesis, along with
the maintenance methylase activity that re-establishes full methylation at hemime-
thylated sites following replication of DNA. Cell-type, developmental-stage, and
gene-specific demethylation have been shown to be regulated by signal sequences
within the promoter region of at least one tissue-specific gene. Regulation of CpG
island methylation has also been shown to be dependent on signal sequences within
certain imprinted genes. However, it appears that different methylases and demethy-
lases may be responsible for de novo methylation/demethylation of CpG dinucle-
otides within or exclusive of CpG islands, respectively.

Chromatin Structure and Composition

Although DNA exists in a double helix structure within eukaryotic cells, this struc-
ture alone, otherwise known as naked DNA, is rarely found in cells in vivo. Rather the
nuclear DNA is typically complexed with proteins to form chromatin. At a primary
level, chromatin structure commonly involves double-stranded DNA wrapped peri-
odically around protein structures called nucleosomes (see Fig. 2A). Approximately
150 bp of double-stranded DNA are wrapped in two superhelical turns around each
nucleosome, and nucleosomes are typically separated by approx 10 bp of double-
stranded DNA. This forms what has been termed a beads on a string structure that is
approx 10 nm in diameter. This is also known as an open or potentiated chromatin
structure, and is the structure most commonly found in genes that are undergoing
active transcription. In this structure the nucleosomes are typically evenly spaced at
regular intervals of approx 10 bp, however, as necessary, nucleosomes can be dis-
placed, eliminated, or newly formed to facilitate initiation of transcription from a
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promoter region. Such modifications may be required to permit or even promote
access to specific factor binding sites in the double-stranded DNA.

Changes in chromatin structure at the level of nucleosome positioning can be
modulated by ATP-dependent chromatin remodeling complexes. The SWI2/SNF2
complex originally discovered in Drosophila, is the best characterized of these. It is
also conserved in mammals where it functions in a similar manner. The primary
function of chromatin remodeling machinery is to remodel nucleosomal arrays to
enhance accessibility to transcription factors. Once the necessary transcription fac-
tors and then the RNA polymerase complex have become bound to the gene pro-
moter, transcription can proceed through the entire gene as it exists in the 10 nm
diameter chromatin structure.

An alternate chromatin structure is achieved when the 10 nm chromatin fiber
becomes supercoiled to form a 30 nm structure sometimes referred to as a solenoid
(see Fig. 2B). This structure is typically found in transcriptionally repressed genes.
This highly condensed structure is refractory to nucleosome displacement and/or
factor binding. Thus, if transcription factors cannot gain direct access to their cog-
nate binding sites in the double-stranded DNA, they will not bind and hence will not
promote initiation of transcription. The option to exist in this repressive chromatin
structure reconciles how a gene that contains all necessary factor-binding sites can
reside in a nucleus in which all the necessary transcription factors are present, and
still not be transcribed.

Fig. 2. Alternate states of chromatin structure. (A) In eukaryotic cells double-stranded DNA is
typically complexed with clusters of histones called nucleosomes to form a beads on a string struc-
ture. This structure, which forms a fiber of approx 10 nm in diameter, is typically found in genes that
are undergoing active transcription as shown in the Expressed State in this figure. The RNA poly-
merase II complex is able to traverse and transcribe portion of this structure to produce mRNA tran-
scripts. (B) Long-term repression of gene transcription is accomplished by condensation of chromatin
to form a 30 nm fiber as shown in the Repressed State in this figure. This condensed structure is
refractory to binding by transcription factors and/or RNA polymerase II inhibiting initiation of tran-
scription. Open circles, nucleosomes within the transcribed portion of the gene; filled circles,
nucleosomes between genes; hatched oval, the RNA II polymerase complex.
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The composition of chromatin has been shown to vary in a manner that correlates
with the different structures described earlier. A primary component of nucleosomes
are histones. Each nucleosome consists of an octamer of two molecules each of his-
tones H2A, H2B, H3 and H4, plus one linker histone H1 or H5. When chromatin is
present in the 10-nm open or potentiated configuration most often associated with
active transcription, the histone H4 in that region is often hyperacetylated. Conversely,
when chromatin is present in the 30 nm repressed structure, histone H4 is typically
hypoacetylated. Acetylation of histone H4 is believed to inhibit condensation of the
10 nm chromatin fiber and thus contribute to the maintenance of an open or potenti-
ated chromatin structure, whereas the absence of acetylation on histone H4 contrib-
utes to chromatin condensation to form the repressive 30 nm structure. The acetylation
of histones is regulated by a dynamic balance of histone acetyl transferases (HATs)
and deacetylases (HDACs). The recruitment of these enzymes to specific loci can be
regulated by transcription factors located by specific protein-DNA interactions, or by
the methylated DNA-binding proteins. The latter are particularly associated with his-
tone deacetylases. This provides a mechanistic basis for the frequently observed cor-
relation between hypermethylation of DNA and a condensed, repressed chromatin
structure (see “Interactions Among Epigenetic Mechanisms”).

DNA Loop Domains and Association with the Nuclear Matrix
Regulation of chromatin structure and transcriptional activity can occur over rela-

tively large distances within the mammalian genome. While this affords significant
advantages for coordinate regulation of gene expression, it also poses potential dis-
advantages in that it raises the possibility that controlling influences targeted to one
locus could inadvertently affect other loci, resulting in ectopic and/or inappropriate
gene expression or suppression. This potential problem is mitigated in mammals
by an additional level of regulation that results in segregation of chromatin into
essentially independent loop domains (see Fig. 3). Delineation of these domains is
believed to be achieved by the presence of boundary elements and/or by anchorage
of the boundaries of each loop to a three-dimensional proteinaceous structure in the
nucleus called the nuclear matrix. This arrangement affords multiple additional
opportunities for control of gene expression. First, each loop is essentially insulated
from adjacent loops and can thus be regulated independently. Second, it has been
proposed that many factors and enzymes that regulate DNA replication, transcrip-
tion, and post-transcriptional processes may be embedded in the nuclear matrix, so
that proximity of individual genes to the matrix may influence the rate at which
these processes occur in a gene-specific manner.

Specific sequences in chromosomal DNA have been shown to have nuclear
matrix-binding capacity. These regions are known as matrix attachment regions or
MARs (the nuclear matrix is also known as the nuclear scaffold and so these attach-
ment regions are also known as scaffold attachment regions or SARs). MARs/SARs
can be A/T-rich sequences that are often found at the boundaries of transcription
units or in the vicinity of transcriptional enhancers. There appear to be at least two
classes of MARs, constitutive and facultative. Constitutive MARs are believed to
remain bound to the matrix in all cell types at all developmental stages. Thus, consti-
tutive MARs would define a primary loop domain structure. Facultative MARs are
believed to be differentially associated with, or disassociated with the matrix in a
gene-, cell-type, and developmental-stage specific manner. Thus, facultative MARs

See
companion CD
for color Fig. 3



1 3 0 — McCarrey

would have the potential to form a secondary loop structure, and/or to regulate tis-
sue- or stage-specific associations between individual genes and the nuclear matrix.
The extent to which boundary elements and MARs represent identical or distinct
structures remains to be clearly elucidated.

Chromosome loop domains show both developmental-stage and tissue-specific-
ity. These loops are generally small in nuclei of sperm and early embryonic cells,
but become larger in differentiating somatic cells. Although the germ cells also
undergo significant differentiation during gametogenesis, the loop sizes appear to
remain generally smaller than in somatic cells. This difference in loop size could
be produced by differential activity of facultative MARs, such that more of these are
functional in germ cells and early embryonic cells leading to an increased incidence
of DNA-matrix interactions in these cells and hence, delineated loops of smaller
average size. It is tempting to suggest that small loop size is characteristic of a state
of genetic/developmental pluripotency. This is consistent with the observation that
genes that are actively transcribed, or in a state of readiness or potentiated for tran-
scriptional activation and are typically found more closely associated with the
nuclear matrix than are transcriptionally repressed genes. Thus, in the gametes and
early embryonic cells, maximum use of facultative MARs could maintain a maxi-
mum number of genes in a potentially expressible state. However, as specific cell
lineages become committed to a particular differentiated phenotype, many unneeded
genes could become terminally repressed by selective disassociation of facultative
MARs from the matrix to sequester the repressed genes away from transcription
factors and RNA polymerase complexes associated with the matrix.

Fig. 3. Organization of DNA loop domains. Adjacent chromatin loop domains can exist in alter-
nate states of condensed (closed) or decondensed (open) structure. Genes within closed domains are
typically repressed. Genes within open domains are potentiated for transcriptional activation. Activa-
tion of transcription requires transcription factor binding and initiation of RNA synthesis by RNA
polymerase II. (Modified with permission from Krawetz, et al. [1999]).
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Replication Timing

The entire genome is duplicated during S phase of the cell cycle. However, the
order in which gene loci are replicated varies among cell types and at different devel-
opmental stages. Typically, genes that are actively expressed in a particular cell type
are replicated relatively early during S phase, whereas repressed genes are replicated
later. For example, the same tissue-specific gene that is replicated early in the express-
ing cell type may be replicated later in nonexpressing cell types.

For most genes, both alleles are replicated simultaneously during S phase. How-
ever, in cases of monoallelic expression as seen for imprinted genes or genes on
the active and inactive X chromosomes, the two alleles replicate asynchronously. In
the case of X-linked genes, expressed alleles on the active X chromosome tend to be
replicated earlier than their nonexpressed homologues on the inactive X. Interest-
ingly, while imprinted genes also show asynchronous replication, the paternal allele
is always replicated earlier than the maternal allele, regardless of which allele is
expressed and which is repressed.

Differential replication timing has been demonstrated by direct fluorescence in situ
hybridization (FISH) and by DNA hybridization using cells separated according to
DNA content by fluorescence-activated cell sorting (FACS). It is not clear whether
this is a cause or effect of related epigenetic mechanisms. It has been suggested that
key chromatin remodeling and/or transcription factors may be limiting within indi-
vidual nuclei and that following disassociation of these factors from the DNA during
replication, early replicating genes or alleles might be afforded a preferential opportu-
nity to reassociate with these factors immediately following replication (see Fig. 4). If
so, this could then contribute to subsequent differential transcriptional activity of these
genes or alleles. However, this theory is not supported by the observation that for
certain imprinted genes, the maternal allele is preferentially expressed even though
the paternal allele is replicated early. An alternative hypothesis is that early replication
might simply be a reflection of the presence of DNA replication enzymes associated
with, and/or embedded in the matrix, since actively expressed or potentiated genes
tend to be more closely associated with the nuclear matrix. In either case, replication
timing is indicative of epigenetic differences among gene loci and/or between alleles
of the same gene.

Interactions Among Epigenetic Mechanisms

The epigenetic mechanisms discussed earlier represent additional levels of gene
regulation that are available to mammalian cells beyond that afforded by direct pro-
tein-DNA interactions between transcription factors, the RNA polymerase complex,
and gene promoters. An important question is how these multiple levels of gene regu-
lation are orchestrated by the cell to achieve proper patterns of expression of batteries
of housekeeping and tissue-specific genes. Clearly a variety of strategies are employed
depending on the particular regulated gene and/or the particular cell type in which the
regulation takes place. An example cascade of epigenetic and genetic mechanisms is
presented below to demonstrate how these different mechanisms could interact to
facilitate transcriptional activation of a tissue-specific gene.

Activation of transcription of a tissue-specific gene requires a derepression process
that takes the gene from a transcriptionally repressed state first to a potentiated state,
and subsequently to a transcriptionally active state (see Fig. 5). The transcriptionally
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repressed state of a gene is typically characterized by a condensed chromatin structure
in which histones are deacetylated, DNA is hypermethylated and complexed with
methylated DNA-binding proteins, and the gene is disassociated from the nuclear
matrix and replicates relatively late during S phase. In the scheme depicted in Fig. 5,
an initial tissue- and gene-specific demethylation event leads to a loss of binding of
methylated DNA-binding proteins and their associated histone deacyetylase activity
(see Fig. 5A,B). The histones then become acetylated and this facilitates a transition
from the condensed, 30-nm chromatin structure to the decondensed, 10 nm structure,
a process that has been termed gene potentiation (see Fig. 5B,C). Once the gene is in
this open configuration, chromatin remodeling complexes can rearrange or displace
nucleosomes to provide direct access for interaction between transcription factors and
their cognate binding sites in the promoter region (see Fig. 5C–E). The bound tran-
scription factors then attract the RNA polymerase complex to the proper transcrip-
tional start site to initiate synthesis of RNA (see Fig. 5E–G).

It is possible that the initial demethylation event also facilitates, and/or is coinci-
dent with, enhanced association of the gene with the nuclear matrix. This could, in
turn, provide enhanced proximity to replication machinery so that the gene would be
subsequently replicated earlier during S phase. This could also provide more direct
access to histone acetylases, chromatin remodeling complexes, transcription factors
and RNA polymerase that may be embedded in, or associated with the matrix.

Fig. 4. Distinction of genes or alleles based on differential replication timing. The potential for
differential timing of replication during S phase to maintain an epigenetic distinction between differ-
ent genes or between different alleles of the same gene is depicted in this figure. The model is based
on the concept that protein-DNA interactions become disrupted during DNA replication. These
interactions must be re-established following replication. If certain proteins are present in limiting
quantities, those genes or alleles that replicate earliest during S phase will gain preferential access to
bind these proteins. In this way one gene or allele will bind a disproportionate quantity of a specific
protein(s) and become distinguished from another gene or allele, even if both genes or alleles share
similar protein-binding sequences. (Reproduced with permission from Simon, et al. [1999]).
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Fig. 5. Interactions among epigenetic mechanisms to regulate gene expression. Multiple epige-
netic mechanisms contribute to regulation of transcriptional activity in mammals. An example
of how this may occur is presented in this figure. (A) A fully repressed gene is often found to be
hypermethylated, complexed with methylated-DNA binding proteins, comprised of deacetylated
histones, and in a condensed chromatin structure characterized by a 30-nm structure that inhibits
binding of transcription factors or RNA polymerase. (B) Derepression leading to transcriptional
activation begins with demethylation of the gene, which in turn leads to dissociation of methy-
lated-DNA binding proteins and acetylation of histones. (C) Potentiation of chromatin structure is
marked by decondensation of the chromatin fiber from the 30 nm structure to the 10 nm beads on
a string structure. (D) Displacement of nucleosomes creates an assayable DNase I hypersensitive
site which marks the presence of naked DNA that is available for binding by transcription factors.
(E) Binding of ubiquitous transcription factors to the core promoter region and tissue-specific tran-
scription factors to enhancer regions attract the RNA polymerase II complex to the gene promoter.
(F) Binding of the RNA polymerase II complex initiates transcription. (G) Ongoing transcription is
characterized by sequential binding of multiple RNA polymerase II complexes to facilitate synthe-
sis of multiple RNA transcripts. Open circles, nucleosomes within the transcribed portion of the
gene; filled circles, nucleosomes between genes; squares containing Ms, DNA methylation; hexa-
gons, methylated-DNA binding proteins; small filled hexagons, circles and rectangles, bound tran-
scription factors; large, hatched oval, RNA polymerase II complex.
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Epigenetics and Cloning

The critical role of epigenetic mechanisms governing gene regulation for normal
mammalian development has recently come under particular scrutiny with the appli-
cation of cloning of individuals by nuclear transplantation. In species that reproduce
sexually, the union of male and female gametes at fertilization is the initial step in
the development of a new offspring. Fusion of the haploid gametic genomes forms
the diploid zygotic nucleus from which the genetic information required to direct the
development of all subsequent cells of the embryo and fetus is derived. In both male
and female mammals, gametogenesis is a complex process that includes epigenetic
reprogramming processes that are unique to germ cells, and appear to contribute to
preparing the gametic genomes to direct development of the ensuing embryo. When
cloned mice are produced by transplantation of a somatic cell nucleus into an enucle-
ated egg, the resulting zygotic nucleus is diploid, but it consists of two haploid
genomes that have not undergone the reprogramming processes unique to gametoge-
nesis. Presumably, reprogramming queues emanating from the ooplasm of the
enulceated oocyte into which the somatic donor nucleus is transplanted are able to
signal sufficient, rapid epigenetic reprogramming in the newly formed zygote.

Only a small proportion of embryos produced by nuclear transplantation (NT)
develop to birth, and only a subset of these grow into fertile adults. Recent evidence
has indicated that certain processes including X-chromosome inactivation and adjust-
ment of telomere length appear to become properly reset in cloned mice. However,
other epigenetic programs such as those affecting methylation patterns and expression
of imprinted genes are often not properly reset and result in aberrant gene expression.
Thus, proper epigenetic programming, which is typically manifest during gametogen-
esis, is indispensably required for normal mammalian development.

Interestingly, epigenetic reprogramming appears incomplete and/or unstable in
cloned mice. If these mice are able to subsequently participate in natural breeding
they produce offspring that appear relatively normal. Thus it appears that genetic
and epigenetic programming is largely restored in the gametes of cloned mice by
mechanisms that function uniquely in the germline. Inasmuch as the oocyte is a
product of gametogenesis in the female, it is not surprising that it contains signaling
factors that can potentially contribute to reprogramming of a transplanted somatic
cell nucleus. However, those epigenetic mechanisms that normally function uniquely
during spermatogenesis are not represented in a zygote produced by NT, and this
deficiency may contribute to the very low success rate of full-term development of
clones produced by NT.

Conclusions

As the human genome project nears its completion, the estimated number of genes
in the mammalian genome has been reduced from an original concept of approx
100,000 genes to a revised estimate of approx 35,000 genes. However, even with this
reduction, the challenge to each mammalian cell of correctly orchestrating the expres-
sion of these genes to facilitate the proper development and function of numerous
different cell types remains a daunting task. It is therefore not surprising that mam-
mals and other eukaryotes have evolved multiple mechanisms of gene regulation and
that these mechanisms afford the cell multiple levels of control over gene expression.
When considering the process of differential gene expression and the mechanisms
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which regulate this, it is important to bear in mind that there are various levels of
control and that these are based on a combination of genetic and epigenetic mecha-
nisms. A great deal of emphasis has been placed on the genetic mechanism of protein-
DNA interactions between transcription factors and promoter binding sites for
regulating gene expression. Although this mechanism is indeed critical to transcrip-
tional regulation, it can only function if it is preceded by the proper functioning of the
epigenetic mechanisms described in this chapter.

Glossary and Abbreviations
General

Cloning by Nuclear Transplantation (NT)  The process of producing a genetically
identical individual by transferring a diploid somatic nucleus into an enucleated egg.

Epigenetics  The study of mitotically and/or meiotically heritable changes in gene
function that cannot be explained by changes in primary DNA sequence.

Epigenetic Reprogramming  The process by which epigenetic modifications are
reversed or modified, especially during reproduction.

Gametogenesis  The process by which germ cells differentiate to form the mature
gametes, spermatozoa in males and ova in females.

Gene Expression  Transcription and/or translation of a gene or gene product.

Genome  One haploid complement of chromosomes.

Genomic Imprinting  An epigenetic distinction of alleles in a parent-of-origin
specific manner.

Germ Cells  Those cells that give rise to the gametes and from which the genetic
contribution to the subsequent generation is derived.

Housekeeping Gene  A gene that is expressed in all or a significant majority of
tissues or cell types.

Monoallelic Expression  Expression of only one copy of a gene in a cell carrying
two or more copies of the gene.

Replication Timing  The time during S phase of the cell cycle at which a particular
gene is replicated.

Semi-Conservative Replication of DNA   The mechanism by which double-
stranded DNA is replicated such that each new double helix includes one previously
existing strand and one newly synthesized strand.

Tissue-Specific Gene  A gene that is expressed in only a single tissue or cell type,
or in only a subset of tissues or cell types.

X-Chromosome Inactivation  Transcriptional silencing of an entire X chromo-
some used to compensate for differences in dosage of X-linked genes in XX and XY
individuals.

Gene Expression
Coordinate Regulation  The coordinated regulation of expression of more than

one gene simultaneously.
Ectopic Gene Expression  Expression of a tissue-specific gene in a tissue or cell

type in which it is not normally expressed.

Promoter  The region of a gene that regulates initiation of transcription.
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Protein-DNA Interactions  Binding of specific proteins (e.g. transcription fac-
tors) to specific sites in DNA.

RNA Polymerase  The enzyme complex responsible for transcribing DNA to pro-
duce RNA.

Transcriptional Activation  Initiation of transcription of a regulated gene.

Transcription Factors  Proteins that bind to specific sequences in the gene pro-
moter and regulate initiation of transcription.

DNA Methylation
CpG Island  A region in mammalian DNA in which the representation of CpG

dinucleotides is significantly greater than that found in the genome as a whole. Specifi-
cally, a region of > 100 base pairs in which the GC content is > 50% and the occurrence
of CpG dinucleotides is > 60% of that predicted by random statistical occurrence.

De Novo Methylase  An enzyme capable of adding methyl groups to both cytosines
in a previously unmethylated CpG dinucleotide site in double-stranded DNA.

Demethylase Activity  The active loss of methylation from both cytosines in a
previously fully methylated CpG dinucleotide site in double-stranded DNA.

DNA Methylation  A covalent modification of DNA produced by the addition of a
methyl group to a cytosine base in mammalian DNA.

Fully Methylated DNA  The presence of a methyl group on both cytosines in a
CpG dinucleotide site in double-stranded DNA.

Hemimethylated DNA  The presence of a methyl group on only one cytosines in a
CpG dinucleotide site in double-stranded DNA.

Maintenance Methylase  An enzyme capable of adding a methyl group to a cytosine
in a hemimethylated CpG dinucleotide site in double-stranded DNA.

Methylated-DNA Binding Protein  A protein that binds to DNA on the basis of
the presence of methyl groups rather than on the basis of a specific base sequence.

Unmethylated DNA The absence of a methyl group on either cytosine in a CpG
dinucleotide site in double-stranded DNA.

Chromatin
‘Beads On A String’ Structure  The structure produced by the periodic presence

of nucleosomes separated by a stretch of naked DNA in chromatin.

Boundary Elements  Specific sequences in DNA that function to delimit DNA
loop domains and/or to insulate one domain of DNA from a neighboring domain.

Chromatin  DNA plus associated proteins.

Chromatin Composition  The chemical status of chromatin that can be modified
to include or exclude specific proteins or specific modifications to proteins (e.g. phos-
phorylation, acetylation, methylation).

Chromatin Structure  The configuration of DNA plus associated proteins that can
be relatively condensed to preclude transcription or relatively decondensed to facili-
tate transcription.

DNA or Chromosome Loop Domains  Organization of genomic DNA into domains
anchored at each end to the nuclear matrix.

Hyperacetylated Histones  Histones, especially H4, that are predominantly acetylated.
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Hypoacetylated Histones  Histones that are predominantly unacetylated.

Histone Acetlyl Transferases (HATs)  Enzymes responsible for acetylating histones.

Histone Deacetylases (HDACs)  Enzymes responsible for deacetylating histones.

Matrix Attachment Regions (MARs) or Scaffold Attachment Regions (SARs)
Specific sequences in DNA that bind to the nuclear matrix or scaffold either constitu-
tively or facultatively.

Naked DNA  DNA devoid of any associated proteins.

Nuclear Matrix  A three-dimensional proteinaceous structure within the nucleus
(aka the nuclear scaffold).

Nucleosomes  Histone octamers found in chromatin.

Open or Potentiated Chromatin  Chromatin that is decondensed such that it is
accessible for transcription by RNA polymerase.
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7Gene Families and Evolution

Ben F. Koop

Introduction

Gene families refer to two or more genes that come from a common ancestral gene
in which the individual members of the gene family may or may not have a similar
function. The idea of gene families implicitly invokes a process in which an original
gene exists, is duplicated and the resulting gene products evolve. The most common
result of gene duplication is that mutation renders one of the products nonfunctional
and in the absence of conserving natural selection, one of the members becomes no
longer recognizable. Gene families may be clustered or dispersed and may exchange
with each other through the mechanisms of gene conversion or unequal crossover.
Therefore understanding the processes of molecular evolution are essential to under-
standing what gene families are, where they came from and what their function might
be. In a sense, duplicate genes allow for more evolutionary potential. At first glance
this could be beneficial; if one gene incurred a lethal mutation the other gene simply
takes over, there is some protection from mutation based on redundancy. Having two
identical genes could result in twice as much product; this may or may not be benefi-
cial in a cell where the integration of thousands of gene products must be coordinated
and slight concentration differences can alter biochemical pathways.

Antiquity of Gene Families

Almost all genes belong to gene families. Evidence from sequence or structural
similarity indicates that all or at least large parts of genes came from ancestral genes.
Analysis of the human genome has shown that over half of the human genome is
comprised of clearly identifiable repeated sequences. Although much of this is owing
to self-replicating transposons, i.e., mobile genetic elements, over 5 % of the genome
has been involved in large segmental duplications in the past 30 million years. If
we look further into the past using evidence from protein similarity of three or more
genes that occur in close proximity on two different chromosomes, we find over
10,310 gene pairs in 1,077 duplicated blocks contain 3,522 distinct genes. Because
our observations are based on genes that retain similarity, only a small fraction of the
ancient duplications can be detected by current means. What is clearly evident is that
a very large part of the human genome has come from duplications and that duplica-
tion is a very frequent event.
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With the evidence showing that gene duplication plays a major role in modern
genomes, the question is where did it all begin? How many genes did life start with?
Various estimates of the minimal gene set suggest that as few as 250 genes could
provide the minimal number of components necessary to sustain independent life. The
number of genes in mycoplasms ranges from 500–1500 genes and in bacteria from
1000–4000 genes. Yeast (S. cervisiae) has ~ 6000 genes, worms (C. elegans) have
~ 18,000 genes, the fruit fly (D. melangaster) has ~13,000 genes, a plant, Arabidopsis,
has 26,000 genes, and humans have at least 30,000 genes. The difference between 250
or 1000 genes and 30,000–40,000 genes is only two orders of magnitude yet the dif-
ference in the complexity of life forms seems far greater than could be explained by a
simple gene count. Certainly with the increased number of genes comes the opportu-
nity for more complexity in terms of gene interaction. But can synergy alone explain
the differences in morphological complexity? Partial explanations invoke more com-
plex differential splicing to account for a higher proportional number of protein prod-
ucts stemming from only 30,000 genes, but one wonders if this observation is merely
an artifact of the few numbers of whole genomes available to us.

Origins
Gene duplications can come from a variety of sources including whole or partial

genome duplication. Polyploidy results from a failure of chromosome segregation
during the cell division of gametes. The most distinguishing feature of polyploidy is
that it effects all of the genes simultaneously so that the relative proportion of genes
within cells remains the same. Among plants and invertebrates, polyploidy is quite
common and in many species it has little effect on phenotype. Ohno has argued that
whole genome duplications are the most important events in evolution yet others
have suggested that polyploidy has no effect on phenotype. More recent discussions
acknowledge the potential that polypoidy brings to gene family evolution but also
appreciate the role of complexity of gene interactions in determining the impact of
whole genome duplications.

In vertebrates, polyploidy is quite rare. Most of the 188 examples of genome
duplication have been found in amphibians, reptiles and some fish (salmon). In these
instances, polyploid species have undergone dramatic changes to reestablish dip-
loidy through chromosome loss, mutation, and rearrangement. Tetraploid genomes
have no trouble going through cell division as long as chromosomes remain very
similar. But as mutations arise and duplicated chromosomes begin to differ, cell
division can no longer insure equal division of genetic material to germ cells and
severe imbalances can occur during chromosomal segregation. The initial transition
phase from tetraploid to diploid results in huge losses of gametes and developing
young. In salmon it is estimated that approx 50 million years after a polypoid change,
only 53% of duplicate genes remain. The result of duplication by whole or partial
genomes can result in large changes in gene number but there are major difficulties
in cell replication that must be overcome.

The rapid increase in genome size through polyploid events has been used to
explain the increased size of mammalian genomes. Ohno suggested that two rounds
of genome duplication occurred early in vertebrate history. This may explain the
Cambrian explosion in which vertebrates appeared in paleontological records quite
rapidly. Evidence for two rounds of genome duplication comes from vertebrates
having four times the number of developmental regulator genes (Hox, Cdx, MyoD,
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60A, Notch, elav, btd/SP...) as Drosophila. While this concept has become very popu-
lar in the literature, recent studies examining expected phylogenetic relationships
among genes have called into question whether the number of genes was a result of
two genome-wide duplications or simply a result of ongoing, frequent genome seg-
ment duplications. While the primary support for quadruplicated genomes comes
primarily from chromosomes 2, 7, 12, and 17, which contain the Hox gene clusters,
a more extensive examination of the number of homologous genes within humans as
compared to genes within Drosophila was unable to resolve the question of whether
two whole genome duplications gave rise to modern vertebrate genomes.

Mechanisms
Duplication of large blocks of DNA can not be explained by chromosomal segre-

gation errors. Mechanisms of large segmental duplication are varied and the role of
transposable elements in gene duplication is often cited as a primary cause. Trans-
posable elements and in particular retrotransposable elements are highly repetitive
dispersed sequences that can replicate independent of nuclear division. In humans
they comprise over 45% of the genome. While there are a number of instances where
retroposons have been found at the junctions of duplicated segments, there are also a
number instances where they have not. To understand why gene segment duplica-
tions appear common, it is perhaps important to look at the DNA molecule itself.
DNA is composed of duplex strands held together by hydrogen bonds whose strength
varies. In a fluid environment, various local salt concentrations, temperatures, physi-
cal torsion forces and local nucleotide compositions (e.g., levels of G + C, simple
repeats) can result in temporary separation of strands of duplex DNA. If similar
sequences are found in the same physical location, unstable heterologous duplexes
can form. Heterologous pairing or single-strand conditions are prone to stress and
breakage. These situations are repaired correctly in the vast majority of cases but
occasionally mistakes are made that result in new gene neighbors. The possibility of
error is particularly high during cell division when DNA is being replicated and when
similar sequences are in close proximity. The potential impact of highly repeated
transposable elements as a destabilizing factor and a potential focal point for rear-
rangement becomes clear in our genome. It is therefore somewhat surprising to find
that many of the duplications are not flanked by repeat elements. What is clear is that
duplication involves local chromosome instability that results in breakage and aber-
rant repair of the ends.

Factors that promote segmental duplication include close proximity and high
sequence similarity. It then follows that duplications resulting in adjacent genes would
be more susceptible to further changes than duplications resulting in dispersed genes.
Furthermore, adjacent duplications create far fewer chromosomal segregation prob-
lems during cell division and therefore should be found more often in the genome.
What is observed is that large segmental duplications involving multiple genes are
dispersed throughout the genome whereas duplications involving single gene segments
are both dispersed and in close proximity. There are many instances of clustered gene
families (globins, Hox, Ig, Tcr, Mhc, and rRNA).

Among tandemly duplicated gene segments there is the possibility of extensive
gene conversion and unequal crossing over (see Fig. 1). The later is the predominant
mode of change. Unequal crossing over between dispersed genes results in extreme
difficulties in chromosomal segregation in cell division but gene conversion does not.
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Gene conversion replaces the sequence of one family member with the sequences of
another close (>90% similarity) member but it does not effect the total number of
genes. Gene conversion requires DNA strand breakage followed by strand migration
to a similar gene and the formation of a heteroduplex. DNA repair mechanisms then
repair differences in the heteroduplex often using one strand corresponding to the
unaffected homologous chromosome as a template. The heteroduplex then resolves
and may go back to its original location carrying with it DNA changes. Heteroduplex
formation is often temporary and most often occurs between alleles of the same gene
though occasionally it may affect paralogous genes in which more than 100 bases are
greater than 95% similar. Depending on the resolution of the heteroduplex and biases
in mismatch repair, adjacent base differences may both reflect one or the other paren-
tal strand, or they may reflect a combination of parental strands. The end result is that
the total genetic variation is reduced but a particular gene may increase its number of
alleles. Genetic variation at one gene can increase over a single conversion event, but
over multiple conversion events variation is reduced.

Fig. 1. Gene conversion and unequal crossing over mechanisms of communication among gene
family members. The arrows indicate possible break points that would result in either conversion or
crossover results.
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The resolution of heterduplexes formed from the invasion of a DNA strand from
one gene segment into the duplex of a similar, adjacent duplicate can also result
in unequal crossing over. Unequal crossing over changes the number of genes. For
example, in a tandem arrangement, unequal crossing over results in one chromosome
with one duplicate and the other chromosome with three duplicates where the front
and the back parts of the single duplicate and the middle duplicate of the triplicated
segment reflect different origins. Figure 2, shows three successive unequal crossing-
over events and shows the expected phylogenetic relationships of the front (5') and
back (3') parts of the gene. It is evident from the final trees for the 5' and 3' parts of a
tandemly arrayed gene segment that it is possible to describe some of the major, more
recent evolutionary events that have occurred. Because information is lost due to
the fixation of one of the cross over products in each population, it may never be
possible to obtain a complete historical picture. But we can see in examples from the
literature that unequal crossing over is the major factor in clustered gene families.

Variation

Genetic variation increases when the number of duplicates increases but it is
decreased when the number of duplicates decreases. It is important to remember
several tenets of unequal crossing over. First, the ultimate fate of duplicates under-
going multiple unequal crossing overs is to return to a single copy unless selection
maintains multiple copies. Second, while the overall variation may increase over a
single event, the result over multiple expansions and deletions is homogenization of
duplicates (example rRNA genes). Third, unequal crossing over between dispersed
gene segments often results in fatal problems in cell division. Lastly, unequal cross-
ing over is the predominant mechanism that increases or decreases the number of

Fig. 2. Unequal crossing over between tandemly arrayed gene family members. This model
(A) assumes a break point near the middle of the duplicated segments. The expected phylogeny
(B) represent sequence relationships between the 5' and 3' regions of the duplicated gene segments.



146 — Koop

gene family members in clusters. It appears that the factors that promote duplication
include proximity, high similarity, larger numbers of existing duplicates and inter-
nal sequences that are prone to breakage. Given these factors, it is perhaps surpris-
ing that we do not see more evidence of repetitive elements playing a larger role in
gene duplication. At the same time it becomes easy to see the complex evolution
and interactions among both dispersed and clustered gene families.

Genes and Domains

Duplication can involve very large stretches of DNA, whole genes or even parts
of genes. Of 1077 duplication blocks containing three or more genes in the human
genome, 159 contained 3 genes, 137 contained 4 genes, and 781 contained five or
more genes. At the same time we often see clusters of gene family members. This
indicates that duplications often involve one gene or even parts of genes. Clearly the
mechanisms of duplication outlined earlier play a major role at all levels of gene
family evolution. However, it is important to remember that the events that are most
evident are those that are fairly recent or those that involve conserved genes.
Sequence similarity for older duplications of noncoding DNA rapidly fades. It is our
focus on function that draws us to study genes. As mentioned, several genes within
larger segments can be duplicated but perhaps just as interesting, parts of genes
(introns and groups of introns) can be duplicated. This is particularly interesting
because genes are composed of functional domains. Remarkably, there may be fewer
than 1000 classifications in existence. Domains can be mixed, matched, duplicated
and modified to provide novel functions within genes as well as between genes. Only
94 of the 1278 protein families in our genome appear to be specific to vertebrates.
That may be an overestimate resulting from our inability to recognize similarity. It
appears that the 30,000-plus genes in the human genome are not novel but simply
products of duplications and mixing and matching of existing genes and domains to
create new genes and new functions.

Species Evolution and Gene Evolution

The study of gene evolution is incomplete without the study of species evolution.
Gene evolution and species evolution is not the same but knowledge of one greatly
benefits our knowledge of the other. Modern species are the result of a dense network
of transient species that occasionally give rise to other species. Using paleontological
records as well as morphological, physiological, and developmental studies of extant
and extinct life forms we are able to trace some of the origins of modern species. But
numerous gaps in our understanding remain. Gene evolution can occur within a spe-
cies but when a speciation event occurs, gene evolution within each new lineage is
independent of gene evolution in other lineages. For example, gene evolution within
humans is independent of gene evolution within chimpanzees. To illustrate this point,
Fig. 3A shows a gene duplication in a common ancestor of species A and B followed
by a speciation event and separate A and B lineages. Below Fig. 3A is the correspond-
ing gene phylogenetic tree. Note that the timing of speciation events can be used to
time major events in gene evolution. In Fig. 3A, gene duplication occurred before the
speciation event. In Fig. 3B, a more complex gene evolution is shown. Within each
species one of the genes has been eliminated and the other has been duplicated so that
each species has two genes, which appear to have arisen after the speciation event.
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While many other scenarios can occur, these two illustrations show how even in rela-
tively simple cases, one must be cautious when interpreting gene trees. A number
of studies have used these methods to identify new gene family members (Goodman
et al., 1975). Slightom et al. (1987) was one of the first to use combined gene and
species studies to examine genetic mechanisms of change. What is clear is that the use
of both gene trees and species trees can be a very powerful method of studying species
evolution and gene evolution.

Examples

The globin gene family offers one of the most studied and widely discussed examples
of gene family evolution. Globin proteins function to transport oxygen and are found
in bacterial, plant and animal kingdoms. In vertebrates, a series of gene duplications
(see Fig. 4) correspond to major events in the evolution of man. A monomeric globin
gene duplicated 600–800 million years ago to give rise to myoglobin (functional in
muscle) and hemoglobin (functional in blood). 450–500 million years ago another
duplication gave rise to an α form and a αβ form. About this same time hemoglobin
changed from a monomeric form to a tetrameric form (2α subunits and 2β subunits),

Fig. 3. Species evolution (in bold outline) and gene evolution (light lines). (A) Shows a gene dupli-
cation in a common ancestor of species A and B followed by a speciation event and separate A and
B lineages. (B) A more complex gene evolution is shown. Within each species one of the genes has
been eliminated and the other has been duplicated so that each species has two genes, which appear
to have arisen after the speciation event.

(   ) (   )
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which Permitted oxygen transport in a much broader range of physiological condi-
tions. The time frame for this event is supported by molecular clock estimates and by
the fact that fish, amphibians, birds, and mammals all have a tetrameric hemoglobin
with 2α and 2 β subunits. Over the next several hundred million years homeothermy
evolved. Prior to the separation of mammals and marsupials (~150 million years ago),
the β gene duplicated and gave rise to a form (ε) that is only found expressed in
embryo’s and a form (β) that is expressed in adults. Subsequent to the separation of
marsupials and true mammals (eutherians), the embryonic form again duplicated into
three separate genes. At this same time, major changes in the placenta made it possible
to hatch eggs inside the body and allow for prolonged development prior to birth. In
most eutherians there are also two adult forms (δ and β). In primates as well as cows
(artiodactyls) the γ gene is found expressed in juveniles. In the α lineage, a similar
chain of events occurred giving rise to embryonically expressed genes and genes
expressed in the adult. What is clear from the study of globin gene evolution is that
duplication allowed subsequent specialization, which in turn allowed for greater physi-
ological complexity within species. The study of globin gene evolution within and
between species also provided evidence for mechanisms of change which helps us to
understand several globin-related diseases (thalasemia).

Fig. 4. Vertebrate globin evolution.



Gene Families and Evolution — 149

Over the past three decades, many other gene families have been studied and in
each case these studies have provided important information about the numbers of
gene family members, distribution, and functional specialization as well as informa-
tion about the rates, modes, and mechanisms of change within each family. There is a
tremendously diverse array of gene families with their own story. Some of the gene
families such as the immunoglobulin super gene family incorporate evolutionary
mechanisms of change into their function. In T-cell receptor genes, recombination,
and alternative splicing of up to a hundred different gene family members results in
the production of up to 1015 different receptors. This capability greatly facilitates the
ability of T-cell receptors to recognize foreign proteins in the body and is a critical
component in the overall function of the immune system. The rRNA genes also incor-
porate mechanisms of change into their overall functionality. In humans ~ 300
tandemly arrayed rRNA genes undergo extensive unequal crossing over to maintain
several hundred nearly identical genes. In most cases, duplication of genes results in
new and better control of physiology, growth, and development.

Significance

Evolutionary biologists have suggested that gene duplication followed by modifica-
tion is the most important mechanism for generating new genes and biochemical pro-
cesses. This has made it possible to evolve complex organisms from primitive ones.
Based on traditional models, once duplications occur, one of the two genes is redundant
and thus freed from functional constraints. All mutations, even missense or nonsense
mutations, occurring in a redundant gene will be neutral unless by chance a mutation or
combination of mutations results in a modified gene with some novel function. There
are problems with this model because both gene products may still be subject to selec-
tion. Altered gene duplicates often result in products that can compete with each other
for limited cis-acting promoter/enhancer molecules, or can produce altered products
that can interfer with biochemical processes and molecular interactions. Further-
more there are examples (primates, opsins) where alternative alleles code for different
functions and when gene duplication occurs, both functions are separated and free to be
independently expressed (e.g., primate opsin genes resulting in bicolor versus tricolor
vision). While there are a number of cases where bifunctionality precedes gene dupli-
cation, the duplication process itself is more dependent on factors such as the number
of existing gene family members, proximity, similarity, and internal sequence fragile
sites. Since duplications can involve many different genes or no genes at all, it is
unlikely that bifunctionality precedes most duplications but it certainly affects the rate
at which duplications survive and are fixed in populations. Duplication, rearrangement,
and mutation of genes and domains are the critical forces in the evolution of gene fami-
lies. The diverse affects of gene duplications offers a tremendous opportunity for diver-
sification of gene function and is essential when evolving from a more generalized
function to more specialized functions. Gene families have made it possible to evolve
complex organisms from primitive organisms.
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8Repetitive DNA
Detection, Annotation, and Analysis

Jerzy Jurka

Introduction

Eukaryotic genomes are composed primarily of nonprotein-coding DNA. The most
actively studied portion of this DNA is called repetitive DNA, which is produced in
multiple copies by a variety of mechanisms. Repetitive DNA represents the most
recent addition to nonprotein coding DNA and is expected to hold important clues to
the origin and evolution of genomic DNA. There are good reasons to believe that
contemporary mechanisms underlying the origin and evolution of repetitive DNA are
essentially the same as mechanisms that generated other nonprotein-coding sequences
in the distant past.

Repetitive DNA began surfacing in unprecedented detail as soon as critical mass of
human sequence data permitted comparative analyses. This set the stage for a new era
of repeat studies dominated by computer-assisted sequence comparisons. Currently,
42% of the human genome is recognizable as being derived from repetitive DNA. This
proportion may vary from species to species in a seemingly arbitrary manner and the
exact reasons why some eukaryotic species preserve more DNA than others are not
well understood.

Studies of repetitive DNA are important not only per se, but also in the context of
genome biology, including its structure, stability, and evolution. Repeats often
obscure proteins and other regions of biological significance and for this reason they
need to be identified and filtered out of the sequence data to facilitate such studies.
Identification of repeats is also necessary for probe and primer design in DNA-DNA
hybridization and polymerase chain reaction (PCR) studies, respectively. Inevitably,
they are increasingly being studied in various biological contexts including but not
limited to phylogenetic analysis, population studies, gene polymorphism, and chro-
mosomal organization.

Simple Sequence Repeats (SSRs)
There are two basic classes of repetitive DNA sequences: 1) those expanded spon-

taneously on-site; and 2) those transposed from somewhere else as copies of transpos-
able elements (TEs). These two classes are not totally independent because TEs can
initiate or stimulate on-site expansion of repetitive DNA. The most common repeats
generated on site are tandem repeats, often referred to as simple sequence repeats or
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SSRs. Typically, tandem repeats with a unit size of 10 bp or less are referred to as
microsatellites. Tandem repeats with a unit size over 10 bp are called minisatellites.
There is a significant twilight zone between micro- and minisatellites, usually appli-
cable to repeats with unit size 7–14 bp, which is listed in either category in the scien-
tific literature.

The number of units, i.e., overall length of micro- and minisatellites, can vary
from generation to generation and this property makes them very useful in studies of
sequence polymorphism in eukaryotic populations. Growing evidence indicates that
micro- and minisatellite expansion occurs by different mechanisms: the former
mostly due to polymerase slippage, and the latter due to an illegitimate recombina-
tion process stimulated by double-stranded breaks. Tandem repeats are often trans-
formed to a cryptically simple DNA composed of various sequence motifs rearranged
and often obscured by mutations. Tandemly repeated sequences include satellite
DNA. Satellites are primarily located in centromeres, whereas other tandem repeats
tend to be interspersed within genomic DNA. Like other tandem repeats, satellites
are quite variable and even closely related species may carry completely unrelated
satellites. Satellite variability may be fueled by mechanisms similar to those involved
in minisatellite variability.

Transposable Elements (TEs)
The major source of interspersed repetitive DNA are transposable elements (TEs).

There are two major classes of TEs in the eukaryotic organisms: class 1, retro-ele-
ments; class 2, DNA transposons; including rolling-circle transposons, which was
recently discovered in plants and nematodes (see Fig. 1).

Retroelements include long interspersed nuclear elements (LINEs) and elements
related to retroviruses, including some domesticated endogenous retroviruses. All
retroelements use reverse transcriptase to copy their RNA to DNA as a part of their
reproduction process. LINEs generate a variety of retropseudogenes including SINE
elements.

In the case of mammalian LINE1 (L1) element, reverse transcription is initiated
(primed) by a reverse trancriptase-generated nick in host DNA. A second nick is gener-
ated on the opposite strand leading to target site duplication (TSD) where the duplicated
target is represented by a short, ~15 bp long DNA fragment delimited by the nicks. The
final integration is probably completed by the host replication system. Unlike LINEs,
retroviruses appear to be inserted in a separate step after they are reverse transcribed to
DNA. There is no specific mechanism for excision of retroelements although integrated
retroviruses can be deleted due to homologous recombination between long terminal
repeats (LTRs), leaving behind a single (solo) LTR repeat.

DNA transposons (class 2) encode transposase, which is involved in insertion and
excision of these elements to and from host DNA. The transposase recognizes termi-
nal inverted repeats (TIRs). Replication of a DNA transposon is accomplished by the
host replication system. If excision does not occur, the transposon becomes perma-
nently integrated usually as an inactive repetitive element.

The third class of eukaryotic TEs is represented by complex rolling-circle (RC)
transposons. In addition to a cleavage and replication transposase, RC transposons use
enzymes such as helicases and the single-strand DNA-binding protein, probably
adopted from the host. RC transposons integrate at AT dinucleotides without target
site duplication.
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Fig. 1. Basic categories and biological characteristics of repetitive elements. (A) Tandem repeats
including minisatellites, microsatellites, and satellites. (B) Structure of LINE (autonomous) and SINE
(nonautonomous) retroelements; black boxes show transcription promoters and (Pu)n indicate purine
(A or G) tails. Target site duplications (TSDs) and other target components throughout the figure are
indicated by brackets [ ]. (C) LTR-retrotransposons and retrovirus-like elements. Characteristic
sequence features of LTRs: 5’ TG, 3’ CA, and polyadenylation signal AATAAA are indicated in the
enlarged long terminal repeat. (D) Autonomous and nonautonomous DNA transposons. Black tri-
angles at both ends indicate terminal inverted repeats (TIRs). (E) Autonomous and nonautonomous
rolling-circle transposons. Characteristic 5’ TC, 3’ CTTR and hairpin-like structures (inverted black
triangles) are indicated.
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All classes of autonomous TEs in eukaryotes are associated with nonautonomous
elements that do not encode any active enzymes. They depend on their autonomus
relatives for reproduction and insertion into the genome. In this context, autono-
mous TEs can play a role of mutator genes that must be restricted or tightly con-
trolled by the host. In general, only few active TEs at a time appear to find favorable
circumstances for proliferation in any given population. They produce a discrete
genomic fossil record of repetitive families/subfamilies derived from a limited num-
ber of actively expressed source genes or active TEs. Both autonomous and
nonautonomous elements have their actively expressed source genes. Source genes
can be active for millions of years but are eventually replaced by their variants or
become extinct. Interestingly, copies of nonautonomous elements, particularly short
ones, tend to predominate over the autonomous ones.

It appears that all eukaryotic genomes integrated a patchwork of TEs inserted at dif-
ferent times from the beginning of their evolutionary history. As indicated earlier, the
human genome is among the best repositories of repetitive DNA going back over 200
million years. Unlike humans, all repetitive elements in plants and insects appear to be
relatively young. This may indicate a rapid turnover of TEs in plant and insect genomes.

Reference Collections of Repeats
A practical approach to identifying and masking repetitive DNA began with cre-

ating comprehensive reference collections of repeats that could be compared against
newly sequenced DNA. Prior to whole-genome sequencing projects, only human
sequences were available in sufficient quantities to reveal a significant variety of
human repeat families. These studies laid the foundation for the first collection of
53 representative human repeats. It was followed by collections of other mamma-
lian repeats and placed in a database named Repbase. Since 1997, Repbase was
succeeded by Repbase Update and over time it included repeats from other eukary-
otic species as they became available. Originally, Repbase Update (RU) played the
role of a database and an electronic journal releasing newly discovered repetitive
families that were not published elsewhere. As of September 2001, all previously
unreported families are first published in a peer-reviewed electronic journal entitled
Repbase Reports (see Website: http://www.girinst.org), and subsequently released
to RU. This arrangement is designed to facilitate proper referencing and documen-
tation of the original data deposited in RU.

Current Content of Repbase Update
The current release of RU contains around 2400 unique entries from all sequenced

eukaryotic species. The primary release of RU is in the EMBL format. A sample entry is
shown in Fig. 2. Simultaneously, RU is also released in fasta format (without annota-
tions) as well as in preprocessed, software-specific RepeatMasker format. The major
files in the current release include repeats from humans (humrep.ref), rodents
(rodrep.ref), other mammals (mamrep.ref), Zebrafish (zebrep.ref), other vertebrates
(vrtrep.ref), Caenorhabditis elegans (celrep.ref), Drosophila melanogaster (drorep.ref),
other animals (invrep.ref), Arabidopsis thaliana (athrep.ref), other plants and fungi
(plnrep.ref), and simple repeats (simple.ref). Some sections can be merged together,
pending specific needs. For example, the reference collection of plant repeats used by
CENSOR server (see Website: http://www.girinst.org) includes two RU files: athrep.ref
and plnrep.ref.
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Fig. 2. This is a sample entry from RU that describes a new class of human DNA transposons,
related to PiggyBac transposon in cabbage looper. Its sequence has been reconstructed from the
genomic fossil record (see subheading “Identification, Reconstruction and Classification of New TEs”).
The entry includes: a uniqe sequence identification name (ID); definition (DE), date of creation and of
the latest update (DT), keywords (KW), biological classification of the species in which it was found
(OC), reference (RN, RA, RL), basic commentary (CC), source of the sequence data (DR), and base
composition of the consensus sequence (SQ). This particular consensus sequence led to identifica-
tion of a PiggyBac-like gene in the human genome.
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Sequences deposited in RU continue to be updated over time and the record of modi-
fied entries is preserved in appendix files accompanying the active files. For example,
changes in the active file of human/primate repeats humrep.ref are documented in
humapp.ref; changes in rodrep.ref are documented in rodapp.ref. Appendix files are
for documentation purposes only, and they should not be used for annotation. Most
repetitive elements deposited in RU have been assigned to general biological catego-
ries discussed earlier. For practical reasons, some of these categories are expanded
within the framework of the original classification. For instance, mammalian
retroviruses include true retrovirus-like elements and a distinct category of retro-
elements called MaLRs, distantly related to retroviruses. Moreover, long terminal
repeats (LTRs) are listed separately from internal protein-coding retrovirus sequences.
LTRs often represent the only known fragments of retroviruses in RU because they
are by far more abundant and more readily identifiable than the internal sequences.
Finally, except in the case of LINEs and SINEs, separation between autonomous and
nonautonomous elements is not always possible because many elements in RU are
reconstructed from inactive genomic copies. Therefore, nonautonomous and autono-
mous LTR-retroelements and DNA transposons are listed together.

Nomenclature
Each repetitive element listed in RU carries a unique name. Originally, standard

names such as medium reiteration frequency repeats or MERs were assigned to
unclassified sequence fragments discovered at the time. As more sequence informa-
tion became available the nomenclature has evolved. For example, MER37 was later
classified as a DNA transposon and became Tigger, MER115 and MER118 led to
identification of Zaphod (see Repbase Update). The evolving nomenclature has been
preserved in the keyword KW sections of RU entries (see Fig. 2), and in the appendix
files. Unfortunately, new names usually are not any more informative than the old
ones, as there are no standards that would systematically relate particular names to
biological classification. Entire genomes have been sequenced and annotated based
on Repbase Update. The value of such annotation depends to a large extent on the
ability of non-specialists to rapidly classify particular repeats based on their names.
This requires comprehensive indexes linking individual names, or groups of names
from RU to the corresponding classes of repeats. Because repeat annotation in the
human genome is based exclusively on RU and the reference collection of repeats is
among most complete in RU, the first such index was prepared for human TEs. This
index is expanded here (see Table 1 on pages 157 and 158) to include the nomencla-
ture of other mammalian repeats from RU. Table 1 includes three columns. Column 3
summarizes individual and group names of repetitive families/subfamilies as used in
RU. Column 1 lists major biological categories discussed in the previous section.
Column 2 reflects further subdivision of TEs based on biological attributes as well as
on their occurrence in different mammalian species. It must be noted here that many
repetitive elements are shared among different mammals (e.g., MIR, MIR3) or are
closely related (e.g., L1 elements). For practical purposes, the shared elements are
listed only once in Table 1. For example, MIR, MIR3, and L3 present in all mammals,
are listed only under human/shared category. This category also contains human-
specific sequences such as Alu, SVA, and SVA2.

The current release of RU contains 835 mammalian repeat families and subfami-
lies, many of which share variants of the same name (e.g., MT2A, MT2B, MT2C).
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Table 1
Major Categories of Mammalian Repetitive Families from Repbase Update and Their Family/Subfamily Loci Names

Major categories Subcategories Family/Subfamily loci names

LINEs Human/shared IN25, L1*, L2A, KER2, L3, CR1_HS

Rodent/shared LINE3_RN (L1_RN), LX*, LLME

Other mammalian ARMER1, ART2*, BDDF*, BOV2, BTALU2, LINE1E_OC, LINE_C, THER2

SINEs Human/shared Alu*, FLA*, HAL1*, L2B, MIR, MIR3, SVA, SVA2

Rodent/shared B1*, B2*, B3*, BC1, FAM, ID_B1, MUSID* (ID1-6), PB1*, RDRE1_RN (ID_RN), RNALUIII,
RSINE1, RSINE2*(B4*), SQR2_MM

Other mammalian BCS, BOVA2, BOVTA, BTALU1, BTCS, C_OC, CHR-1, CHR-2, D_CH, DRE1, MAR1,
MON1, MVB2, NLA, PRE1_SS, SINEC*, THER1

Retroviruses and MaLRs- human/shared MLT1R, MLT1AR (MLT-int), MLT1CR (MLT1-int), MLT1FR (MLT1F-int), MSTAR (MST-int),
retrovirus-like THE1BR
elements (internal sequences)

MaLRs- rodent/shared MTAI (MT-int), ORR1AI (ORR1-int), ORR1BI (ORR1B-int).

Other human/shared ERVL, HARLEQUIN, HERV*, HRES1, HUERS-P*, LOR1I, MER4I, MER4BI, MER21I,
     retroviruses MER31I, MER41I, MER50I, MER51I, MER52AI, MER57I, MER57A_I, MER61I, MER65I,

MER66I, MER70I, MER83AI, MER83BI, MER84I, MER89I, MER110I, PABL_AI, PABL_BI,
PRIMA4_I, PRIMA41

Other rodent/shared ETNERV, IAPA_MM, IAPEYI, IAPEZI, MERVL, MMETN, MMLV30, MULV,
     retroviruses MYS1_PL (MYSPL), MYSERV

Long terminal MaLR LTRs- human/shared MLT1*, MST*, THE1*
repeats (LTRs) a

MaLR LTRs- rodent/shared MTA, MTB, MTC, MTD, MTE, MT2*, ORR1A*, ORR1B*, ORR1C, ORR1D

Other human/shared HARLEQUINLTR, LTR*, LOR1, MLT2*, MER4*, MER9, MER11*, MER21*, MER31*,
     retrovirus LTRs MER34*, MER39*, MER41*, MER48, MER49, MER50*, MER51*, MER52*, MER54*,

MER57*, MER61*, MER65*, MER66*, MER67*, MER68*, MER70*, MER72*, MER73,
MER74*, MER76, MER77, MER83*, MER84, MER87, MER88, MER89, MER90, MER92*,
MER93*, MER95, MER101*, MER110*, PABL_A, PABL_B, PRIMA4_LTR, PTR5

(continued on next page)
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Table 1 (continued)
Major categories Subcategories Family/Subfamily loci names

Other rodent/shared BGLII, LTRIAPEY, LTRIS, MERVL_LTR, MYS1_LTR, NICER_RN, PMR89, RAL,
     retrovirus LTRs RLTR*, RMER2,RMER3, RMER4, RMER5, RMER6*, RMER10, RMER12, RMER13*,

RMER15, RMER16, RMER17*, RMER19,RMER20

Other mammalian ALTR2, BTLTR1, ECE1LTR, FCLTR1, MTV9LTR1_SM
     retrovirus LTRs

DNA Transposons Human/shared BLACKJACK, CHARLIE*, CHESHIRE*, GOLEM*, HSMAR*, HSTC2, LOOPER, MADE1,
MARNA, MER1*, MER2*, MER3, MER5*, MER6*, MER8, MER20*, MER28, MER30*,
MER33, MER44*, MER45*, MER46, MER53, MER63*, MER69*, MER75, MER80, MER81,
MER82, MER85, MER91*, MER94, MER96*, MER97*, MER99, MER103, MER104*,
MER105, MER106*, MER107, MER113, MER115, MER116, MER117, MER119, ORSL,
PMER1, RICKSHA*, TIGGER*, ZAPHOD, ZOMBI*

Rodent/shared URR1

Minisatellites Human IVR, R66
Satellites

Human/shared ALR*, BSR, CER, (GGAAT)n, GSAT*, HSATI*, LSAU, MER22, MER122, MSR1, REP522,
SAR, SATR*, SN5, TAR1

Rodent/shared CENSAT, GSAT_MM, ISAT_RN, R91ES8_RN, SATI_RN, SATMIN, ZP3AR_MM

Other mammalian BMSAT1, BTSAT*, FASAT(?), OOREP1(L1?), OSSAT*, SSRS2, RTREP1, SATIA_MM

Composite/simple Human MER120

Rodent SQR1_MM

Other mammalian MRSAT1, SSRS1

Unclassified/ Human HIR, MER35, MER109, MER112, MER121
incomplete

Rodent ALSAT_RN (L1?), C573, CYRA11_MM, DRB_RN, LPKR_RN, MREP_MC, PMR89 (HERVL?),
RMER1*, SQR4_MM, YREP

Other mammalian LMER1

a This list does not include the internal sequence names listed above.
* Indicates multiple names starting with the same theme name. For example, RMER1* represents three subfamilies named RMER1, RMER1A,
   and RMER1B. The theme name RMER1 is shared among the three.
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Such variants are grouped together and the variations are indicated by asterisks (MT2*,
see column 3). For example, RLTR* stands for 27 different long terminal repeats
(LTRs). For historical reasons LTRs also carry other unassuming names such as
BGLII, PMR89, and RMER. The corresponding internal retroviral sequences, if avail-
able, are listed in a separate section above the LTR section in Table 1. The application
of Table 1 to the interpretation of repeat annotation is discussed in the next section.

Analysis of Repetitive DNA
Identification and Annotation of Known Repeats

The basic routine underlying identification and annotation of repetitive DNA
remains essentially unchanged since it was first implemented in the Pythia server,
and re-implemented in XBLAST and CENSOR. Since 1996, major progress has been
achieved in terms of speed and sensitivity of repeat detection based on dedicated
hardware used in CENSOR server (see Website: http://www.girinst.org/Censor_
Server.html), and an efficient implementation of Smith-Waterman algorithm used in
RepeatMasker (see Website: http://repeatmasker.genome.washington.edu).

Detection and annotation of repetitive DNA is based on comparing a query
sequence against representative collections of repeats as schematically shown in Fig. 3.

WWW

Fig. 3. A scheme for automated identification and annotation of repetitive DNA. Continuous
arrows indicate critical steps, whereas broken arrows show major variants of the process. Typical
output files include: maps of repeats (see Fig. 4), masked query file(s), a list of masked sequences
and alignments against the reference sequences as described in the text.
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To avoid nonspecific matches, it is first advisable to filter out simple repeats from
the query or reference sequences prior to the analysis by replacing sequence letters
with neutral characters such as “N” or “X.” There are several ways to identify sim-
ple repeats based on their similarity to a reference set, or on their non-random base
composition. Another program, particularly useful for analyzing cryptically simple
repeats, has been implemented as a part of repeat analysis on the CENSOR server
(see Website: http://www.girinst.org/Censor_Server.html). After simple repeats are
masked, complex repeats can be detected by sequence comparisons using the FASTA
(1988), BLAST (1990), or Smith-Waterman (1981) algorithms. FASTA and BLAST
are significantly faster but less sensitive than Smith-Waterman-based programs. The
latter are essential to detect very old repetitive elements such as the extinct human
MIR3 and LINE3 elements that are related to CR1 elements from birds. Conversely,
relatively young repeats such as most Alu subfamilies can be detected using a less
sensitive approach. Therefore, dividing repeats into detectable categories and the
selective application of different algorithms may facilitate the detection process.
Apart from these knowledge-based improvements, there are algorithm-based attempts
to accelerate repeat detection without sacrificing the sensitivity of the process. It
must be noted, the major determinant of speed, sensitivity, and accuracy is the qual-
ity of reference collections as discussed in the next section.

There are several types of output files generated by repeat annotation programs
(examples are listed in Fig. 3). They include maps of repeats summarizing location
and basic characteristics of individual elements, query file (s) with masked repeats,
sequences and coordinates of the identified repeats and alignment to reference
sequences for detailed inspection. A sample of repeat maps generated by CENSOR
(see Website: http://www.girinst.org/Censor_Server.html) is shown in Fig. 4. The
top part of the figure (Fig. 4A), illustrates a human endogenous retrovirus HERV3
flanked at both ends by long terminal repeats (LTR61). It also contains a MER11A
element inserted in opposite orientation. All MER11 elements are classified as LTRs
different from LTR61 (see Table 1). Therefore, MER11A most likely represents a
remnant from a different retrovirus inserted at that spot. The internal portion of the
retrovirus (HERV3) and the 5' LTR are chopped by the program into smaller frag-
ments separated by blank regions without any identified repeats. Because the blank
regions are relatively short (<50 bp), the fragments can be combined into a single
LTR (see the bottom part of the figure). If the bank regions are much longer in
relative terms, additional testing may be required. For example the first two 5' frag-
ments of the internal sequence HERV3 are separated by 457 bp. A corresponding
gap of similar size can be seen in the reference sequence from RU (see columns
4–6). This suggests that the nucleotide sequence at positions 54,059–54,515 repre-
sents another homologous fragment of the same retrovirus not detected by the algo-
rithm. In such cases a separate test may be needed to verify whether or not such a
spot does not represent any unknown element (s) inserted in the retrovirus. In this
case, additional alignment has shown that this region is most similar to HERV3 and,
therefore, it can be incorporated in the internal portion of the retrovirus pictured
below the map.

The bottom example (Fig. 4B), shows a more complicated pattern of insertion into
another endogenous retrovirus (HERVK22I), flanked by LTR22. This retrovirus con-
tains two independent L1 elements (L1PA2 and L1PA3) inserted in its internal
sequence. L1PA2 appears to be complete or nearly complete whereas L1PA3 is repre-
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sented only by a short 419 bp 3' fragment and its orientation is opposite to L1PA3. Due
to this opposite orientation, and typical 5' truncation, it is likely that L1PA3 represents
a separate integration event of an incomplete L1 element.

Identification, Reconstruction and Classification of New TEs
Interspersed repetitive DNA seldom contains complete copies of TEs. It is

believed that from the start many retro (trans)posons generate 5' truncated copies of
themselves (e.g., L1PA3 in Fig. 4B). Even if the inserted copies are originally com-
plete, over time they can undergo genetic rearrangements or partial to complete

Fig. 4. Sample maps of repetitive elements generated by CENSOR (see Website: http://
www.girinst.org), and their graphic interpretation. Column 1 lists the GenBank accession numbers
of the query sequences, followed by coordinates of the repeats. Column 4 lists repeat names and
coordinates relative to RU sequences. Column 7 shows the orientation of the repeats (direct or
complementary), and the last column shows similarities to sequences from RU. Graphic interpreta-
tions are given below the maps. (A) HERV3 flanked by LTR61. (B) HERVK221 flanked by LTR22.
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deletion. Furthermore, copies of TEs undergo base-substitution mutations, acceler-
ated by methylation of CpG dinucleotides, due to conversion of the 5-methyl-
cytosine to thymine by spontaneous deamination. As a result methylated CpG dou-
blets mutate to CpA or TpG at a rate about a factor of magnitude higher than the
average mutation rate. Thus, fragmented and mutated copies usually represent the
only source of information about complete and active TEs. For this reason most TEs
deposited in RU represent consensus sequences reconstructed from scattered partial
sequence information. Consensus sequences are not only more complete, but also
more similar to individual repeats than individual repeats to each other. The rela-
tionship between similarity to the consensus (y) and average pairwise similarity
between individual repeats (x) is given by the Equation 1:

y = 1 + 12x – 3
4

[Eq. 1]

For example, individual repeats that are on average 50% similar to each other will
be 68% similar to their quality consensus sequence (i.e., for x = 0.5, y = 0.68). This
significantly facilitates the identification of highly diverged repeats.

The reconstruction process is usually, but not necessarily, associated with discov-
ering new repetitive elements. There are many different ways in which previously
unknown repetitive elements can be identified. For example, the coordinates of
potential new repeat sequences can be determined from blank spots in the maps simi-
lar to those described above. A routine approach, presented in Fig. 5, takes advantage
of the same computer software as used in annotating known repeats. It starts with
masking the existing repeats from a Genbank file or other large data set. The masked
sequence data is then compared against itself, preferably in opposite orientation to
minimize obvious matches from known multi-copy genes. The resulting output file
will contain homologous sequence fragments including repeats. These repeats need
to be tested to exclude matches between duplicated genes or other obvious similari-
ties not related to repetitive DNA. The next critical step is the generation of a mul-
tiple alignment as a basis for developing a consensus as summarized in Fig. 5.
Multiple alignment of partial sequences can be carried out using CLUSTALX pro-
gram (see Chapter 31), but it usually requires refinement using sequence editors. A
partial consensus sequence may be used to realign sequence fragments in order to
verify and improve the original alignment. This iterative approach is particularly
useful in the case of highly diverged sequences.

Prior to consensus building it is important to subdivide repetitive elements into
meaningful subfamilies if the number of repeat sequences is sufficient. In most cases
it can be done using a standard phylogenetic analysis package (e.g., PHYLIP;
see Website: http://evolution.genetics.washington.edu/phylip.html). In the past, con-
structing phylogenetic trees proved to be unsuccessful in determining Alu classifi-
cation, and alternative approaches were necessary. Retrospectively, most difficulties
encountered using tree-based classification for repeats were due to interference
between rapidly mutating CpG doublets and other sequence positions containing
critical information. Therefore, in the case of at least CpG-rich repeats, it may be
important to exclude CpG doublets and their common derivatives (TpG, CpA) when
constructing phylogenetic trees.

Initial reconstruction almost always leads to partial consensus sequences. To deter-
mine exact boundaries, it is important to obtain maps of repeats that would include the
newly built consensus sequence. The best way to determine exact ends of the new
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repeat is to study its insertions into other repetitive elements. This is also the best way
to determine target site duplications that are often essential for proper classification of
the repeat.

Systematic analysis of sequence data during the last decade has revealed a large
variety of transposable elements in eukaryotic genomes. This has led to the creation of
specialized databases and tools essential for eukaryotic genome analysis during the
sequencing era. Some approaches outlined in this chapter are relatively straightfor-
ward. However, much of the analysis still relies heavily on human judgement and
creativity that have not yet been encoded in computer software. Transposable ele-
ments are intrinsically involved in biological processes that still remain to be under-
stood. Therefore, repetitive DNA is no longer viewed as a troublesome junkyard but
rather as a gold mine of information underlying biology of eukaryotic genomes.

Fig. 5. Identification and reconstruction of TEs. The steps involved are: (A) masking known
repeats in the query database; (B) generation of a complementary database; (C) comparison of
direct and complementary databases in search of homologous regions, followed by selection of
potential repeats; (D) multiple alignment and consensus building; (E) evaluation of consensus and
determination of target sites as detailed in the text.
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Molecular Genetics of Disease
and the Human Genome Project

Paromita Deb-Rinker and Stephen W. Scherer

Introduction
The haploid (n) human genome contains approx 3 billion nucleotides (or bases) of

DNA strung amongst 23 chromosomes (see Fig. 1). The diploid (2n) complement,
which consists of a haploid genome inherited from each parent, therefore comprises
46 chromosomes of 6 billion nucleotides of DNA, all contained within the cell
nucleus. The same complement of DNA is found in every cell (except red blood cells)
in the body. Mitochondrial DNA, which is a circular molecule of genetic material,
16,000 nucleotides long, is also part of the human genome. It is located outside the
nucleus in the cytoplasm of the cell and encodes a small but important subset of
human genes. Mitochondrial DNA is only transmitted from mothers to their offspring.
On average, the human genome is 99.9% identical between any two individuals, with
nucleotide differences existing only about 1 in every 1000 bases. Less than 5% of the
genome contains genes or protein-coding regions. The remaining 95% (noncoding
part) contains repetitive elements (see Chapter 8) and other sequences whose func-
tions are not completely understood and is often referred to as junk DNA. These
regions may play a role in maintaining the structural integrity of chromosomes. There
at least 30,000–40,000 genes in the human genome, ranging in size less than 1 to 200
kilobases (kb), with the average size of a gene being 50 kb. General information on
the human genome is provided in Table 1.

Genes are comprised of exons—regions that code for mature mRNA—and
introns—intervening segments of DNA that are transcribed, but then cut out from the
transcript during mRNA processing (see Fig. 2). There is no uniformity to the number
or size of introns; this is the main reason why there is a vast range of gene sizes. Genes
contain promoter sequences at their start (5' end). Typical promoters contain several
DNA sequence motifs that bind regulatory proteins and control the level of transcrip-
tion and the start position of the mRNA. Expression of tissue-specific genes are unique
to individual or sets of tissues (muscle, brain, liver, etc.) in our bodies. There are also
housekeeping genes that are expressed in all cell types because their products provide
basic functions (see Table 2).

Simple and Complex Patterns of Inheritance
Every individual has two copies of each gene, one on each of the chromosomes.

Owing to DNA sequence variation, there can be two or more alternative forms of a gene
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Fig. 1. The 23 chromosomes in the human genome. There are 22 autosomes (chromosomes 1 to 22) and two sex chromosomes (X and Y).
Females inherit 22 autosomes and one X chromosome from each parent (46;XX). Males inherit 22 autosomes from each parent, an X chromo-
some from the mother and a Y chromosome from the father (46;XY). Metacentric chromosomes have a centromere (where spindle fiber binds
during cell division) in the middle. Acrocentric chromosomes (chromosomes 13, 14, 15, 21, and 22) have their centromere near the end. The
lighter bands of the chromosomes represent regions that have a higher GC-nucleotide content and more genes than the darker bands. House-
keeping genes tend to be located within the light bands and tissue-specific genes in the dark bands. The distribution of genes between
chromosomes is also not uniform. For example, chromosome 21 is relatively gene-poor, while chromosome 19 is extremely gene-rich.
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Table 1
Components of the Human Genome

• The genome is the total genetic material in a cell.
• The nuclear genome is comprised of 46 chromosomes, which come as 23 pairs; one of each pair

comes from either parent.
• Mitochondrial DNA is also part of the genome. It is always inherited from the mother and is found

in the cytoplasm.
• Chromosomes are made of deoxyribonucleic acid (DNA).
• DNA is made of four chemical units (nucleotides) called adenine (A), guanine (G), cytosine (C),

and thymine (T).
• The genome is comprised of about 3 billion A, C, G, and Ts.
• Genes are the portions of DNA that encode functional RNA molecules or proteins.
• There are approx 30,000–40,000 genes in the genome.
• Proteins provide the structure for the cell and are involved in biochemical reactions (enzymes).

Fig. 2. Anatomy of a gene. Information flows from DNA to RNA (transcription) to protein (translation).

(called alleles), that result in different gene products. This variation contributes to the
uniqueness of individuals. The term genotype is defined as the complete heritable
genetic composition of an individual. Phenotype is the physical or biochemical manifes-
tation of that genotype, and in some instances this can be associated with disease. How-
ever, in most cases, different alleles contribute to physical characteristics such as height,
hair color, and other nondisease related cellular functions. The dominant and recessive
forms of a trait in any given person are governed by which alleles (dominant or reces-
sive) are inherited from the parents (see Fig. 3). Only individuals with two recessive
alleles will show the recessive form of a trait (e.g., blue eyes). However, in the presence
of a dominant allele (e.g., brown eyes), the trait associated with the recessive allele is not
expressed phenotypically. Recessive alleles are not lost in a population; they can be
passed on to subsequent generations where in the presence of another copy of the allele,
the recessive trait reveals itself again.

See
companion CD
for color Fig. 3
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Table 2
Gene Expression

Transcription The synthesis of a single-strand RNA molecule from a DNA template in the cell nucleus.
This process is controlled by the interactions between proteins and DNA sequences near each gene.

RNA processing
     Capping Addition of a modified nucleotide chain to the 5' end of a growing mRNA chain. This is required for the normal

processing, stability, and translation of mRNA.
     Splicing The process of removing introns and joining exons into a mature mRNA molecule.
     Polyadenylation Addition of 20–200 adenosine residues (poly A tail) to the 3' end of the RNA transcript.

Transport The fully processed RNA is taken to the cytoplasm where translation takes place.

Translation The synthesis of a protein from its mRNA template.

Housekeeping genes Expressed in all cell types because their products provide basic functions in cells.

Tissue-specific genes Expressed in only certain cell-types because their products have specific functions.
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There are a number of diseases that are manifested owing to this simple domi-
nant/recessive pattern of expression. Sickle cell anemia and cystic fibrosis are com-
mon examples of when the disease (termed autosomal recessive) develops owing to
the presence of two copies of the recessive gene. A person with only one copy of the
recessive allele does not develop the disease, but remains a carrier, because the nor-
mal copy of the gene predominates. Autosomal dominant disorders like Huntington’s
disease are produced when a single mutated dominant allele is present even if the
other copy of the allele is normal. Diseases resulting from mutations in genes on the
X chromosome are known as X-linked disorders. Since males only have one X chro-
mosome, these diseases (e.g., hemophilia) act like dominant mutations in males.
Females on the other hand, act as carriers and in the next generation their male off-
spring may or may not be affected (see Fig. 3).

Not all disorders and traits follow a simple pattern of inheritance as described ear-
lier. One gene can influence more than one trait (pleiotropy) and several genes can
affect only one trait (polygenic disorders). Although genes may determine whether or
not a person will have heart disease or be predisposed to cancer, many traits can be
triggered or influenced by the environment as well, as in the case of complex multifac-
torial diseases such as schizophrenia and alcoholism.

DNA Sequence Variations and Gene Mutations

The human genome is predominantly stable and does not vary significantly between
individuals. As described earlier, the genome of two individuals is only 0.1% differ-
ent. Some parts of the genome are more prone to variations than others, based on
properties inherent to the DNA sequence. Most of these variations are found outside
the coding regions of genes and are thus not harmful. These variations include muta-
tions and polymorphisms.

Fig. 3. Patterns of inheritance for autosomal recessive, autosomal dominant and X-linked disor-
ders. Recessive alleles are indicated by ‘a’ and dominant alleles by ‘A’. Males only have one X
chromosome, therefore only one allele is shown for X-linked inheritance.
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A mutation is any permanent, heritable change in the DNA sequence that in some
cases can result in disease. There are different kinds of genetic mutations. Gene
mutations can be inherited from a parent or acquired during an individual’s lifetime.
The former, known as germline mutations, exists in the reproductive cells and can
be passed on to later generations. This type of mutation is present in every cell that
descended from the zygote to which the mutant gamete contributed. Somatic muta-
tions are changes that occur in non-sex cells in the body (e.g., bone marrow or pan-
creatic cell), and are not passed on to the next generation. Whatever the effect, the
ultimate fate of that somatic mutation is to disappear when the cell in which it
occurred, or the individual, dies. On average, approx 200 somatic mutations accu-
mulate within the genome during each of our lifetimes.

Genes can be altered in many ways (see Table 3). An incorrect base may be incor-
porated into the DNA sequence (point mutations) or a nucleotide or more may be
left out (deletions) or added (insertions). In some diseases like cystic fibrosis, differ-
ent mutations in the same gene can produce different effects in different individuals
(see Fig. 4), but mutations in several different genes can also lead to the same clinical
consequence, as in some forms of Alzheimer’s disease. In some cases, the effects of
mutational changes may not be critical to the proper functioning of proteins and these
are called silent mutations. Other mutations can affect the structure and function
of proteins. The outcome is related to the degree of change in the protein and the role
a particular protein might play in the body. At times, longer stretches of DNA, mil-
lions of nucleotides long, can also be deleted or inserted. Occasionally, longer seg-
ments of DNA are doubled (duplications) or interchanged between chromosomes
(translocations). The gain or loss of entire chromosomes or chromosomal segments
can also occur. Common disorders associated with these kinds of chromosomal
changes include Down’s syndrome, trisomy 18 and trisomy 13. Patients with these
diseases carry an extra chromosome 21, 18, or 13, respectively, in their cells.

Polymorphisms are differences in the genetic make-up of individuals that can be
observed at the chromosomal, gene or even single base-pair level. They were originally
considered to be genome variations that were neither harmful nor beneficial. However,
there is evidence that polymorphisms can sometimes influence an individual’s risk to
disease. A single nucleotide polymorphism (SNP), which is a DNA point mutation,
comes from variations in single nucleotides where any four of the bases may be substi-
tuted at a particular position. Most SNPs tend to have only two alleles instead of four.
Considering that the human genome contains more than 3 million SNPs that make up
90% of polymorphisms and most of the genome variations, the trend towards genome-
wide screening for insights into disease mechanisms is increasing.

Microsatellites (also called short tandem repeats, STRs) represent another
class of genetic polymorphism. These are tandemly repeated sequences, where the
repeating unit is 1–4 nucleotides long. The number of times the unit is repeated in a
given STR can be highly variable, a characteristic that makes them useful as genetic
markers. The majority of microsatellites occur in gene introns or other noncoding
regions of the genome. Generally, the microsatellite itself does not cause disease;
rather it is used as a marker to identify a specific chromosome or locus. When being
used as a marker, the specific number of repeats in a given STR is not critical, but
the difference in the number of repeats is of importance. There are other genetic
markers that vary in length from 2–60 nucleotides; these are called variable number
tandem repeats (VNTRs).



Molecular Genetics of Disease — 175

Table 3
Types of Mutations and Their Effects

Missense mutations Single-nucleotide changes resulting in the substition of an amino
acid in the protein.

Nonsense mutations Single-nucleotide changes that create one of the three termina-
tion codons (TAA, TGA, or TAG) resulting in a shortened, dys-
functional protein.

Silent mutations Have no detectable phenotypic effect.
Splice-site mutations Altered sequences at the ends of introns (5' donor or 3' acceptor)

during RNA processing, that affect gene splicing and function.
Insertions Addition of extra DNA sequences of varying sizes.
Duplications Doubling of DNA sequences.
Translocations Interchange of segments of DNA between two different chro-

mosomes.
Inversions Occur when a region of DNA inverts its orientation with respect

to the rest of the chromosome.
Trinucleotide repeats Expansion of triplet repeat sequences.
Deletions Loss of part of a DNA sequence (could be loss of a single nucle-

otide or millions of nucleotides).

Deletion of: Effects:

     A gene No protein product
     An exon Truncated protein
     An intron Usually no phenotypic change
     Promoter Gene nonfunctional
     Splice-site Protein nonfunctional
     Many genes Chromosomal abnormalities and usually a heterogeneous

phenotype

The Human Genome Project and DNA Sequencing

The Human Genome Project (HGP) was formally initiated in the early 1990s, as an
international effort to determine the complete DNA sequence of the human genome
and all of the genes it encodes. The most immediate benefit of this information was to
facilitate disease gene research.

DNA sequencing is the process of determining the specific order and identity of the
three billion base pairs in the genome, with the ultimate goal of identifying all of the
genes. Mapping is the process of identifying discrete DNA molecules of known posi-
tion on a chromosome, which are then used for sequencing. Mapping is a crucial step
for proper reconstruction of the genome. It usually precedes sequencing but is also
necessary at the postsequencing stage.

Sequencing is now carried out through a process called fluorescence-based dideoxy
sequencing. Fragments of DNA are first cloned in bacteria; they are then put into a
polymerase catalyzed reaction with free nucleotides, some of which are tagged with
fluorescent dyes. Nucleotides attach themselves to the DNA fragments in a particular
order. Similarly, dyed nucleotides can attach themselves to the DNA fragments, but
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other nucleotides will not adhere to the dyed nucleotides. Thus the enzymatic reaction
generates DNA fragments of varying lengths that terminate at fluourescently labeled
A, T, C, or G nucleotides. An automated sequencing machine then determines the
underlying sequence for the range of DNA fragments created in the chemical reaction
(see Fig. 5). The fluorescently tagged bases at the ends of the fragments are detected
with a laser and a computer collects the resulting information. The order in which the
particular tagged nucleotides are read reflects their order on the stretch of DNA that
has been replicated. Each reaction reveals the sequence of at least 500 letters (G, A, T,
C) of DNA before the process runs its course.

Once these relatively tiny sequences are obtained, their place in the overall genome
DNA sequence must be determined. To achieve a working DNA sequence draft of the
genome, two approaches were followed. The HGP began by creating detailed genetic
and physical maps, to provide a framework for ordering the generated DNA sequences.
Using this approach, the HGP divided the genome into about 30,000 segments (a tech-
nique called physical mapping), each containing an average of 100,000–200,000 base
pairs. Each of these sections was then broken down into even smaller fragments, of
about 2000 base pairs and sequenced. Initially, the plan was to put the fragments in
order and systematically determine the sequence of each fragment so that the entire
human DNA sequence would be revealed. This method produces a highly accurate
sequence with few gaps. However, the up-front process of building the sequence maps
is costly, time-consuming, and therefore, determines the speed at which the project is
completed.

A second approach used by the HGP to generate a draft sequence of the human
genome is what is called the whole genome shotgun or WGS (an approach that
bypasses the need to construct physical maps). In WGS, sufficient DNA sequencing is
performed at random so that each nucleotide of DNA in the genome is covered numer-
ous times, in fragments of about 500 base pairs. Determining where those individual
fragments fit in the overall DNA is accomplished through the use of powerful comput-
ers that analyze the raw data to find overlaps. A working draft of DNA sequence usu-
ally covers 95% of the genome (maintaining 99% accuracy) but it is divided into many
unordered gapped segments. Additional sequencing is required to generate the fin-
ished DNA sequence, such that there are no gaps or ambiguities. The final sequence
has an accuracy of greater than 99.99%. Only partial data was collected from each
DNA fragment. This was then assembled to generate a working or rough draft. This
change of strategy was partly due to the launching of a privately funded company,
Celera Corporation.

Fig. 5. DNA sequencing. Four different fluorescently tagged dyes (red for thymines, green for
adenines, blue for cytosines, and black for guanines) represent the four nucleotides.

See
companion CD
for color Fig. 5
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Positional Cloning

Positional cloning is the process by which disease-causing genes are identified
on the basis of their chromosomal location, with limited or no prior knowledge of
the gene’s function (see Fig. 6). Positional cloning can be divided into the following
three steps.

Step 1: Family Studies
The first step in the positional cloning process is the collection of information on

families who have the disease. Family trees (pedigrees) are established and DNA from
blood is used for genetic analyses. Critical to this step is the diagnosis and assignment
of proper phenotypic features to family members affected by the disease. Finding
suitable families can be rate-limiting, particularly when the disease is rare, or for dis-
orders in which affected individuals die at a young age. Two general approaches are
used when collecting families for studies. A small number of very large families can
be studied, where all affected members of the pedigree are known to have the same
genetic disease, presumably caused by a mutation in a single gene. The alternative
approach is to collect a large number of smaller families. This is easier to do for rela-
tively common diseases, but it carries the risk that not all families may have the
genetically identical disorder. However, with proper epidemiological studies, the mode
of inheritance of the disease (X-linked, autosomal recessive, autosomal dominant or
multifactorial) can often be determined.

Step 2: Mapping and Sequencing
The next step in positional cloning is to identify informative chromosomal rear-

rangements or genetic markers that are always found in family members affected by
the disease. In the simplest case, the disease gene might be closely associated with a
chromosomal anomaly, which helps define the position of the causative gene on the
chromosome. Unfortunately this is a rare event and not the case for most genetic dis-
orders. In the remainder of cases, genetic mapping is performed to determine the chro-
mosomal region containing the disease gene being sought. This is accomplished by
examining genetic markers that have already been mapped to particular chromosomes
across the genome, to determine which ones are linked to the disease. If each family
member that has the disease also has a particular DNA marker, it is likely that the gene
responsible for the disease is in close proximity to that marker, thus defining where
the gene search should be focussed.

Step 3: Candidate Gene Isolation and Mutation Analysis
The last step in positional cloning is to identify the genes within the candidate

region. Historically, mapping the disease gene was followed by the construction of
physical maps by ordering overlapping fragments of DNA along the region of inter-
est and determining the nucleotide composition of the clones. Now that most of the
human genome has been sequenced, candidate genes from the chromosomal
region of interest are usually available for further study. However, a complete gene
catalogue is not yet established. Therefore, at times, one must scan the DNA
sequence to look for features characteristic of genes. Since the coding sequence of
genes is usually not continuous, this is not always simple. Looking for exon-intron
boundaries of coding and noncoding regions, amino acid encoding DNA sequences
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to determine the start and end of the gene, or evolutionarily conserved DNA seg-
ments, all help to focus this search. The confirmation that a candidate gene is caus-
ative in the disease requires a direct association between a mutation in that gene and
expression of the disease phenotype. The identified mutation should be present only
in affected individuals and not in unaffected relatives or controls. However, in some
individuals the mutation may not cause the disease, a phenomenon known as incom-
plete penetrance. The mutation could also cause a variation of the disease, a phe-
nomenon known as reduced penetrance. In the case of a late-onset disorder like
Huntington’s disease, the mutation may not have had time to manifest itself. A key
issue while looking for mutations in a disease gene is the ability to discriminate
between nondisease-causing sequence polymorphisms that may just be linked to
the disease gene and the actual disease-causing mutations. Various bioassays can be
designed to show that a particular gene defect (correlated to an altered amino acid in
the protein) can cause the phenotype in question. For example, the abnormal gene
can be introduced in an animal model to see if it causes the disease. Alternatively,
the normal form of the gene can be introduced and tested to determine if it can
replace the abnormal copy of the gene.

The HGP is rapidly identifying all of the genes in the human genome. The goal of
this effort is to find the location and pinpoint the function of the at least 30,000–
40,000 human genes by the year 2005 (see Fig. 7). Positional cloning has thus far been
used to identify hundreds of disease genes, including the gene for cystic fibrosis,
Huntington’s disease, some types of Alzheimer’s disease, and early-onset breast can-
cer. The identification of a gene prior to the HGP is described in the following.

Identification of the Gene Causing Cystic Fibrosis

The gene for cystic fibrosis (CF) was identified in 1989, providing a paradigm for
dozens of future disease gene discoveries using HGP data. CF is the most common fatal,
autosomal recessive disorder in the Caucasian population. It is characterized by chronic

Fig. 6. Disease gene identification by positional cloning using mapping and DNA sequencing
techniques.
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lung disease and pancreatic insufficiency, and affects 1 in 2500 individuals. The sever-
ity of the disease can often be correlated with the mutations present (see Fig. 4).

In order to locate the CF gene, researchers tested DNA from CF families with a
large number of genetic markers. A total of 211 families were pooled and analyzed and
eventually two markers located on chromosome 7 were found to flank the gene. This
key finding, published in 1985, indicated that the CF gene must be inherited along with
the markers on chromosome 7. Next, a combination of genetic techniques, including
chromosome walking and jumping, was used. In walking to either direction of a known
marker, an initial clone containing the marker gene is used to isolate another clone that
contains overlapping information from the genome. The DNA segments can then be
placed in an order corresponding to that on the chromosome and the process is
repeated. A complimentary approach to this technique, called chromosome jumping,
utilizes only the ends of cloned segments, making jumps over uninformative or repeti-
tive regions of DNA. In the search for the CF gene, each DNA fragment isolated was
compared to DNA from animal species in order to determine whether any of these
fragments were conserved during evolution. A match was found with a sequence from
chicken, mouse, and cow, suggesting that this gene was also encoded in these animals.
This fragment of DNA represented the start of the CF gene and was used to identify the
remainder of the gene. Since no chromosomal abnormality was evident in the patients,
researchers then began searching for a difference between DNA from normal and CF
patients. In 1989, a small deletion was found in a particular DNA fragment that
appeared in 70% of the chromosomes from CF patients, but was absent from normal
chromosomes. The gene was found to be 250 kb long, comprised of 24 exons, encoding
a trans-membrane protein, 1480 aa long. This gene located on chromosome 7 was called
CFTR (cystic fibrosis trans-membrane conductance regulator), which encodes a chlo-
ride channel protein. In the majority of patients, the error that causes CF is minute, only

Fig. 7. Timeline of the Human Genome Project (HGP). A historical summary of some of the
enabling technologies (on the left) and the achievements (on the right) leading up to and including
the HGP are shown. The formal international HGP began in 1990. Other aspects of the HGP are the
study of model organisms, analysis of genome variation, and the development of bioinformatics.
Establishing training and public education programs, as well as the study of the ethical, legal, and
social issues of genetics research in society, are also important priorities.
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three of the base pairs are missing. This principal mutation, DeltaF508 (deletion of
phenylalanine amino acid at position 508 in the protein), is found in approx 70% of
carriers of European ancestry, and is enough to radically disrupt the function of patients’
lungs, sweat glands, and pancreas. The CF gene is also associated with mutational het-
erogeneity. Over 550 other mutations have been identified. Many of these are extremely
rare, but a few reach frequencies of 1–3 % in CF carriers.

The Human Genome Project and Disease Gene Identification

With the development of new mapping resources and technologies, and massive
amounts of DNA sequence generated by the HGP, the ability to clone rearrangement
breakpoints and map disease genes has been greatly simplified. This has also accel-
erated the pace of discovery of new disease loci and the underlying mutational
mechanisms. For example, the gene for Parkinson’s disease (alpha synuclein) on
chromosome 4q21-q23 and the gene for speech and language disorder (FOXP2) on
chromosome 7q31, were identified within only a few months of determining their
chromosomal location.

After a decade of experience in positional cloning, and with the HGP DNA
sequence now well-advanced, it has become possible to dissect the molecular genetics
of multifactorial diseases such as cancer and cardiovascular disease. These involve
multiple combinations of genes and strong environmental components. Scientists will
continue to work on the HGP with an emphasis on annotating the DNA sequence to
find new genes, determine the function of the gene products (functional genomics),
and apply all of this information to the study of common diseases.

Glossary and Abbreviations

Acrocentric  Human chromosomes (13, 14, 15, 21 and 22) with the centromere
near one end.

Allele  One of the alternative versions of a gene that may occupy a given locus.
Autosome  The nuclear chromosomes other than the sex chromosomes.
Base pair (bp)  A pair of complementary nucleotide bases in double stranded DNA.
CF  Cystic fibrosis.
CFTR  Cystic fibrosis trans-membrane conductance regulator.
Chromosome  The threadlike structures in the cell nucleus consisting of chromatin

that carries the genetic information (DNA).
Deletion  A loss of a sequence of DNA from a chromosome.
DNA Deoxyribonucleic acid.  The molecule that encodes the genes responsible

for the structure and function of living organisms and allows the transmission of
genetic information from parents to offspring.

Dominant  A trait is dominant if it is phenotypically expressed in heterozygotes.
Exon  A transcribed region of a gene that is present in mature messenger RNA.
Gamete  A reproductive cell (ovum or sperm) with the haploid chromosome number.
Gene  A hereditary unit, a sequence of chromosomal DNA that is required for the

production of a functional product.
Genetic disorder  A defect caused by genes.
Genetic map  The relative positions of genes on the chromosomes.
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Genetic marker  A characteristic of DNA that allows different versions of a locus
to be distinguished from one another and followed through families in genetic studies.

Genome  The complete DNA sequence containing the entire genetic information.
Genotype  The genetic constitution of an individual.
Germline  The cell line from which the gametes are derived.
Haploid  The chromosome number of a normal gamete.
HGP  Human genome project.
Housekeeping genes  Genes expressed in most or all cells because their products

provide basic functions.
Insertion  A chromosomal abnormality in which a DNA segment from one chro-

mosome is inserted into a non-homologous chromosome.
Intron  A segment of a gene that is initially transcribed but then removed from within

the primary RNA transcript by splicing together the exon sequences on either side.
Locus  The position occupied by a gene on a chromosome.
Mitochondrial DNA  The DNA in the circular chromosome of mitochondria that

is maternally inherited.
mRNA  Messenger RNA.
Mutation  Any permanent heritable change in the sequence of genomic DNA.
Nucleotide  A molecule composed of a nitrogenous base, a 5-carbon sugar and a

phosphate group.
Pedigree  A diagram of a family history indicating the family members, their

relationship with the proband and their status with respect to a particular hereditary
condition.

Penetrance  The fraction of individuals with a genotype known to cause a disease
who have any signs or symptoms of the disease.

Phenotype  The observed characteristics of an individual as determined by his or
her genotype.

Physical map  A map showing the order of genes along a chromosome and their
distances apart in units such as base pairs.

Pleiotropy  Multiple phenotypic effects of a single gene or gene pair.
Point mutation  A single nucleotide base-pair change in DNA.
Polygenic  Inheritance determined by many genes at different loci.
Polymorphism  The occurrence in a population of two or more alternative geno-

types.
Positional cloning  The molecular cloning of a gene on the basis of its map posi-

tion, without prior knowledge of the gene product.
Promoter  A DNA sequence located in the 5' end of a gene at which transcription

is initiated.
Recessive  A trait that is expressed only in homozygotes or hemizygotes.
RNA  Ribonucleic acid.  A nucleic acid formed upon a DNA template, containing

ribose instead of deoxyribose. Messenger RNA is the template on which polypeptides
are synthesized.

Sequence  The order of nucleotides in a segment of DNA or RNA.
Sex chromosomes  The X and Y chromosomes.
SNP  Single nucleotide polymorphism.
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Somatic mutation  A mutation occurring in a somatic cell.
STR  Short tandem repeat.
Transcription  The synthesis of a single-stranded RNA molecule from a DNA

template in the cell nucleus, catalyzed by RNA polymerase.
Translocation  The transfer of a segment of one chromosome to another chromo-

some.
Trisomy  The state of having three representatives of a given chromosome instead

of the usual pair.
VNTR  Variable number tandem repeat.
WGS  Whole genome shotgun.
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Heredity

C. A. Rupar

Introduction

Clinical geneticists classify human traits and genetic disorders on the basis of the
patterns of inheritance in families: sporadic, autosomal dominant, autosomal reces-
sive, X-linked, and mitochondrial. A compendium of genetic information, McKusick’s
Online Mendelian Inheritance in Man (OMIM) (see Website: http://www.ncbi.nlm.
nih.gov/omim/), has been assembled primarily based on clinical observations as to
how traits and disease states appear to be inherited.

Identification of the patterns of inheritance of genetic disorders has enabled geneti-
cists to make significant contributions to health care. The recognition of the pattern of
inheritance of a disorder in a family may be an important diagnostic aid, permit the
identification of individuals in a family who are at risk to develop the disorder, and
enable informed counseling of family members about the recurrence risks of having
another affected child.

Early in 2001, the results of the publicly and privately funded human genome
sequencing projects indicated that the human genome contains about 3 billion bases
arranged in a genome, which encodes at least 35,000 genes. This represents consider-
ably fewer genes than had been anticipated. As of September 22, 2001 the definitive
catalog of human genes, OMIM listed a total of 12,954 loci with 7,441 mapped to
specific sites in the genome. Clearly there are many more genes to be identified and
the knowledge of how the expression of genes are regulated spatially and temporally
is still in its infancy.

The majority of clinical genetics is devoted to the family, but genes are shared not
only within families but also within populations. Many rare genetic traits affect indi-
viduals throughout the world, whereas other normally rare traits are much more preva-
lent in some populations. There are a number of reasons why a population may have a
higher frequency of a particular allele that may be favorable or unfavorable. Individu-
als in populations whose gene pool has been relatively isolated for generations and
populations whose gene pools originate from a small number of founder individuals
are more likely to share alleles that may be rare outside that population.

 In other situations one population may experience selective pressures that favour a
particular allele but another population may not experience the same selective pres-

WWW
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sure. Perhaps the best example is heterozygosity, when an individual carries both alle-
les, for otherwise deleterious globin gene mutations it protects individuals in tropical
climates against malaria.

Dominance and Recessiveness

Dominance and recessiveness refer to clinical phenotypes. A condition is recessive
when the phenotype of a heterozygous individual is the same as the phenotype of
homozygous normal individuals. However, upon closer inspection, heterozygous
individuals in many recessive conditions may have a measurable biochemical differ-
ence when compared to homozygous normal individuals. For example, phenylketo-
nuria (PKU) is most often due to mutations in the PAH locus, which codes for
phenylalanine hydroxylase. Individuals with PKU are unable to convert phenylala-
nine to tyrosine and have plasma concentrations of phenylalanine much higher than
normal individuals. Individuals who are heterozygous for PKU do not have a clinical
phenotype but when plasma concentrations of phenylalanine and tyrosine are mea-
sured, heterozygotes may be distinguished from homozygous normal individuals.

In principle a condition is dominant when the clinical phenotype of heterozygous
individuals is indistinguishable from homozygous affected individuals. There are
probably few examples of true dominant disorders, with the most notable example
being Huntington’s disease. Most mutations are deleterious when compared to
the wild-type or normal allele and behave in a recessive manner. It is unlikely that a
newly and randomly introduced change in protein structure will result in a protein
with improved function.

The explanation as to why a given disorder is inherited in a dominant or recessive
manner is often not understood but there are observations that do provide clues. For
example most enzyme deficiencies are inherited in a recessive manner with the het-
erozygous individual not having a phenotype. Presumably most enzymes are expressed
in sufficient excess that a heterozygote who may have about half (to a first approxima-
tion) of the enzyme activity of a homozygous normal individual has a level of activity
that prevents a phenotype.

Dominantly inherited disorders are often caused by genes that code for structural
or developmentally important proteins where presumably half of the normal amounts
of the gene product are inadequate. There are also examples of dominant mutations in
regulatory enzymes. Porphobilinogen deaminase (PBG) is a notable example. PBG
catalyses the first and rate-limiting step in heme biosynthesis. A deficiency in PBG
deaminase results in the autosomal dominantly inherited condition, acute intermittent
porphyria. Another type of example of dominant inheritance is familial hypercholes-
terolemia, owing to a deficiency of the low-density lipoprotein (LDL) receptor. This
plays a key role in regulating cellular cholesterol metabolism.

Whether a given mutation behaves in a dominant or recessive manner is best
explained by knowledge of the biochemistry and physiology of the gene product of
specific mutations. Indeed, different mutations in the same gene may behave in domi-
nant or recessive manners. An important concept is that of dominant negativeness,
which describes the situation that occurs when a mutant protein from one chromo-
some interferes with the function of the normal protein from the other chromosome.
There are elegant examples of dominant negativenss in disorders of the structural pro-
tein collagen and in some multimeric enzymes.
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There are also examples of dominantly inherited mutations that result in a gain of
function for a protein. This new function may be deleterious or even toxic to cells. An
example is Huntington’s disease, where there is a gain of function associated with the
expansion of a CAG trinucleotide repeat. Other examples like hypermethioninema
described below, cause loss of function.

Methionine Adenosyl Transferase OMIM #250850
Methionine adenosyl transferase (MAT) catalyses the synthesis of adenosylme-

thionine from methionine and ATP. Adenosylmethionine is an important methyl
donor in transmethylation reactions and a deficiency of MAT results in hyper-
methioninemia. Most often the phenotype, hypermethioninemia, is inherited in an
autosomal recessive manner with at least 17 mutations in MAT1A identified in the
human population. However there are families in which the phenotype is inherited
in an autosomal dominant manner. MAT exists in two forms MATI and MAT III.
MATI and III are, respectively, homotetramers and homodimers of the peptide that
is encoded by the MATA1 gene. A mutation that results in the substitution of argin-
ine with histidine at position 264 greatly reduced MATI/III activity by preventing
homodimer formation that is essential for catalytic activity and is inherited in a domi-
nant manner.

Understanding Pedigrees
Pedigrees are an important tool that geneticists use to understand the pattern of

inheritance of a disorder or trait in a family. Pedigrees are drawn with standardized
symbols and follow some simple conventions. Each generation is assigned a Roman
numeral with the first or oldest generation of the pedigree numbered I. Each individual
within a generation is assigned a number with number 1 being the individual at the left
of the pedigree. Thus every individual in a pedigree has a unique number based on
generation number and position within the generation. Within a family, the children
are drawn in decreasing age from left to right. Figure 1 displays the various symbols
used in the construction of pedigrees.

Autosomal Dominant Inheritance
An individual with an autosomal dominant condition has a mutation in only one

allele, with the allele on the other chromosome being normal. Families with autosomal
dominant disorders typically show vertical patterns of inheritance in pedigrees. The
low frequency of most alleles that contain mutations makes the likelihood of an indi-
vidual to inherit dominant mutant alleles from both parents quite low, but neverthe-
less, this has been observed. Typically individuals who are double dominant will have
a more severe phenotype.

In autosomal dominantly inherited disorders a mutant gene may not always be
expressed in a phenotype or the phenotype that is expressed may be variable in dif-
ferent individuals even in the same family. These concepts are referred to as reduced
penetrance and variable expressivity. The underlying biological explanations of
reduced penetrance and variable expressivity are generally not understood but pre-
sumably lies in the effects of other loci or environmental factors on the expression of
the phenotype.

Often in the family of an affected individual there is no evidence of the previous
presence of a dominant gene. This may be explained by the mutation in the affected
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Fig. 1. The key to understanding pedigrees.

individual being a new mutation. New mutation rates have been determined for a num-
ber of disorders and typically occur in the range of 5 × 10–6 to 1 × 10–4 mutations per
gamete per generation. Because a new mutation is a relatively rare event, it is unlikely
to happen twice with the same couple. Empirical data gained by studying many fami-
lies indicate that the recurrence risk of having another affected child is usually signifi-
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cantly greater than that of acquiring a new mutation. Those couples who do have
another affected child are most easily explained by one of the parents being a gonadal
mosaic. That is, a mutation has occurred in a germ-cell lineage and that parent may
have a mixed population of sperm or ova with some cells having the normal allele and
others having the mutation.

Trinucleotide repeat disorders are a particularly interesting group of dominantly
inherited disorders. The underlying mutation is the expansion of a repetitious region
of the gene. There are several triplet expansion disorders with many being primarily
neurological. The following examines the clinical and genetic phenotype of muscu-
lar dystrophy.

Myotonic Dystrophy (OMIM # 160900)
 Myotonic dystrophy is a fascinating example of a trinucleotide repeat as a muta-

tion. Individuals with myotonic dystrophy have a progressive state of muscle tight-
ness due to chronic spasms and other clinical features, including cataracts, early
frontal hair loss, electrocardiographic changes, muscle wasting, and hypogonadism.
Clinical geneticists have recognized for years the phenomena of anticipation in myo-
tonic dystrophy: each successive generation has a more severe and earlier presenting
disease. The gene for myotonic dystrophy is located at chromosome position 19q13.3
and codes for the protein dystrophia myotonia protein kinase. In the 3' untranslated
region of the mRNA the sequence CTG is repeated from 5–35 times in tandem in
unaffected individuals. In individuals with myotonic dystrophy, the repeat has
expanded and may become as long as 5 kb. There is a rough correlation between the
length of the repeat and the severity of disease. The repeat often becomes longer in
successive generations although the opposite has also been observed. Often, the most
severely affected individuals, those with congenital myotonic dystrophy, inherit the
mutation from their mothers.

Characteristics of Autosomal Dominant Inheritance
• The trait often appears in every generation. Exceptions occur in the case of new

mutations and with disorders that can have reduced penetrance or expressivity.
Reduced penetrance occurs when some individuals who have inherited a particu-
lar geneotype do not express the typical phenotype. Penetrance can be described
mathematically as the percentage of individuals who have the gene for a condi-
tion who actually show the trait. Expressivity of a phenotype is variable when
different individuals with the same mutated gene express different phenotypes.

• Affected individuals will pass on the mutation to half of their children.
• Males and females are equally likely to inherit the trait.
• Unaffected members of the family will not pass on the trait to their children.

A typical pedigree for an autosomal dominant inherited disorder is shown in Fig. 2.

Autosomal Recessive Inheritance
An autosomal recessive trait is only expressed in homozygotes. Affected individuals

have inherited a gene with a mutation from both parents. The parents, who are het-
erozygotes, are generally unaffected. Most inborn errors of metabolism, which are due
to enzyme deficiencies, are inherited in an autosomal recessive manner. Recessive dis-
orders are rare in most populations. However there are many groups where certain rare
recessive disorders are relatively common because the population has been isolated by
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geographical, cultural, religious, or linguistic barriers. Another situation that raises the
risk for recessive disorders is when the parents are related, which is termed consan-
guinity. The more closely the parents are related, the greater the risk of sharing rare
recessive alleles. In the extreme cases of parent-child and brother-sister matings, the
children are homozygous at one quarter of their gene loci.

There are often many mutations in the population and it is of considerable interest
to geneticists to establish genotype-phenotype correlations. Can the knowledge of an
individual’s genotype at a locus be used to predict the severity of disease? This
becomes complex in autosomal recessive disorders where many affected individuals
are compound heterozygotes, i.e., they inherited different mutations from each par-
ent. Phenylketonuria, described below, is a classic example of an autosomal reces-
sive disorder.

Phenylketonuria (OMIM # 261600)
 Phenylketonuria is a classic example of an autosomal recessive disorder. Most

individuals with phenylketonuria have mutations in the gene, which codes for pheny-
lalanine hydroxylase (PAH). PAH converts phenylalanine to tyrosine and when it is
dysfunctional the plasma and tissue concentrations of phenylalanine rise dramatically.
This causes a devastating progressive neurological disorder that results in profound
developmental delay with affected individuals dependent on others for their care. The
incidence of PKU is about 1 in 15,000 births, which means nearly 1 in 60 in the popu-
lation is a heterozygote carrying one PAH allele with a mutation. Many countries
throughout the world screen newborn children for PKU because the profound devel-
opmental delay is preventable by a diet that is low in phenylalanine. PKU, like many
other genetic disorders has a dedicated website. This provides information for fami-
lies and a database for students and researchers (see Website: http://ww2.mcgill.ca/
pahdb). Some mutations in the PAH locus have a relatively small impact on the func-
tion of phenylalanine hydroxylase and result in benign hyperphenylalaninemia,
whereas other mutations have a severe impact on the presence or function of the
enzyme and result in PKU. The presence of the phenotype is determined by the con-
centration of plasma phenylalanine. Benign hyperphenylalaninemia does not require
dietary treatment.

Fig. 2. An autosomal dominant pedigree.
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Characteristics of Autosomal Recessive Inheritance
• Usually the phenotype is present in brothers and sisters not in parents.
• Statistically one-quarter of the sibs of an affected child will also be affected.
• Males and females are equally likely to be affected.
• Occurs more frequently in consanguineous relationships.

A typical pedigree for an autosomal recessive disorder is shown in Fig. 3.

X-linked Inheritance
Phenotypes of mutations in genes on the X chromosome are inherited in character-

istic patterns that are determined by males having one X chromosome and females
having two X chromosomes. Most disorders on the X chromosome are recessive in
nature and are expressed primarily in males. Females are not always totally protected
by the X chromosome with the normal allele because the Lyon hypothesis predicts
random inactivation of one of the X-chromosomes early in embryonic development.
Females with a mutation on one X chromosome then become mosaics with some cells
inactivating the chromosome with the normal sequence gene, while others inactivate
the X chromosome with the mutation. By random inactivation, some females inacti-
vate a high proportion of the normal X chromosome. Even so, they essentially have a
milder phenotype of the male disorder. In some disorders, a female may not have
a phenotype, she may have a measurable biochemical abnormality as typified by X-
inactivation of ornithine transcarbamylase as X described next.

Ornithine Transcarbamylase (OMIM # 311250)
 Ornithine transcarbamylase catalyzes the synthesis of citrulline from ornithine and

carbamyl phosphate in an early step in the urea cycle. The most common presentation

Fig. 3. An autosomal recessive pedigree.
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of affected males is an acute life-threatening hepatic encephalopathy brought on by
very high levels of blood ammonium at a few days of age. Affected females usually
present later in infancy or childhood with a less severe disease. These females have
inactivated too great of a proportion of the X chromosomes carrying the normal
allele in their livers. Like many X-linked disorders, many different mutations have
occurred in the population. When parents of children with ornithine transcarbamylase
deficiency are genotyped, it is apparent that frequency of new mutations in sperm is
much higher than ova.

Characteristics of X-Linked Inheritance
• The incidence of the disorder is much greater in males than females.
• All the daughters of an affected male will be carriers of the mutant allele.
• A father can never transmit the mutant allele to his sons.
• Female carriers may show variable expression of the disorder.

A typical pedigree for an X-linked trait is shown in Fig. 4.

Mitochondrial Inheritance

Mitochondria, the powerhouse of the cell, are unique structures possessing their
own DNA. The complete sequence of human mitochondrial DNA has been known
since the early 1980s. It is a 16,569 nucleotide double-stranded molecule that codes
for 13 polypeptides essential for oxidative phosphorylation, 22 tRNAs and 2 riboso-
mal RNAs. However, the vast majority of mitochondrial proteins are encoded in the
nucleus. There has been intense interest in the contribution of mitochondria DNA to
human disorders (see Website: http://www.gen.emory.edu/mitomap.html). This has
enabled the identification of mutations that cause genetic disorders. Approximately
125 pathological point mutations have been identified in the mitochondrial DNA
sequence. There have also been a large number of deletions characterized in patients
with mitochondria DNA disorders. Distinguishing pathological mutations from
benign polymorphisms is sometimes difficult. Unlike the nuclear encoded muta-
tions, there are yet expression systems to study the effects of a mitochondrial DNA
mutation on protein or cellular function.

Fig. 4. An X-rated pedigree.
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At the time of conception all mitochondria originate from the ovum; the sperm makes
no contribution in humans. Thus, any attribute or disorder that is a consequence of the
mitochondrial genome is inherited along the maternal lineage. A mitochondrion may
contain several copies of its genome and many cell types have large numbers of mito-
chondria; consequently, mitochondrial DNA is present in multiple copies within a cell.

A mutation in mitochondrial DNA, either inherited or a new mutation, can result in
a mixed population of mitochondrial DNA consisting of normal sequence DNA and
DNA with the mutation. This is called heteroplasmy. During mitosis, mitochondria in
the parent cell are distributed to the daughter cells in a random manner resulting in
daughter cell populations that may have different populations of mitochondrial DNA.
These range from cells having only the normal sequence cells to cells that have a higher
percentage of mutant DNA than the parent cell. The maternal pattern of inheritance
mitochondrial DNA mutations provides a major clue as to whether a mitochondrial
disorder is due to a mutation in a nuclear encoded or mitochondrial-encoded gene.

Mitochondrial DNA accumulates spontaneous mutations about 10 times faster than
nuclear DNA. Two possible reasons for this sensitivity to damage are the presence of
free radicals in mitochondria as a consequence of the electron transport chain and the
lesser competence of mitochondria when compared to the nucleus to repair damage to
DNA. Mitochondrial DNA mutations exhibit a threshold effect, in that, often about
85% of the mitochondrial DNA must contain a mutation before a clinically detectable
phenotype occurs. An example of MELAS syndrome is described as follows.

 MELAS Syndrome (OMIM # 540000)
 MELAS syndrome, which is the acronym of mitochondrial myopathy, encephal-

opathy, lactic acidosis, and stroke-like episodes, is most frequently due to an A to G
mutation at position 3243 of the mitochondrial genome. This region of the mitochon-
dria codes for a leucine tRNA. Interestingly, many individuals with the nt 3243 muta-
tion do not have MELAS syndrome but rather develop seemingly unrelated health
problems such as bilateral sensorineural hearing loss and adult-onset diabetes. There
are other mutations in the same leucine tRNA that also cause MELAS, but also muta-
tions that cause seemingly unrelated disorders such as cardiomyopathy. Genotype-
phenotype correlations within mitochondria DNA disorders are not often evident,
making molecular diagnoses difficult. Presumably much of the variability reflects ran-
dom segregation at cell division and threshold effects.

Characteristics of Mitochondrial Inheritance
• Inheritance is only along the maternal lineage. A male cannot pass the disorder to

his children.
• There is no gender preference.
• Many, but not necessarily all, of an affected female’s children will inherit the

mutation but the clinical impact may be quite variable.

A typical pedigree for a mitochondrial inherited trait is shown in Fig. 5.

Multifactorial Inheritance
Although there are thousands of disorders that are inherited along recognisable

Mendelian patterns of inheritance, most are relatively uncommon. Many common dis-
eases such as schizophrenia, diabetes, alcoholism, coronary artery disease, and neural
tube defects often “run in families” but are not inherited in a Mendelian pattern. These
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common disorders are inherited in a multifactorial manner that includes the influences
of multiple genetic and environmental factors. It will be one of the great accomplish-
ments of human genetics to identify and quantify the contributions of genes to the
risks of developing common disorders.

Studies using the incidence of disorder data in monozygotic (identical) and dizy-
gotic (fraternal) twins, have made significant contributions to identifying the presence
of a genetic susceptibility component to common diseases. As expected, disorders as
diverse as cleft lip and palate, insulin-dependent diabetes, and coronary artery disease
are more concordant in monozygotic than dizygotic twins.

In most cases, all the genetic and environmental contributions to the end point of a
common disease have not yet been identified. However, there are models to help
understand the principles of the roles of multiple contributions. The multiple additive
locus model views phenotypes as the sum of the contribution of individual alleles. If
at a given gene there are two possible alleles: a and b, then there are three possible
genotypes: aa, bb, and ab. Alleles a and b may have different functional efficiencies
and hence genotypes aa, bb, and ab may have quantitatively different contributions to
a metabolic pathway. Applying the same logic to several genes whose gene product
contributes to a phenotypic endpoint indicates how related individuals who share a
number of alleles that may be less favorable, share an increased risk. It is easy to see
how the multiple additive locus model can be applied to traits that are quantitative
with endpoints that cover a continuum of values such as blood pressure.

Other multifactorial traits appear to be better explained by a threshold model of
inheritance. The threshold model is particularly applicable to traits such as congenital
malformations that tend to behave in an all-or-none manner. In the threshold model of
multifactorial inheritance, when a combination of genetic and environmental factors
reach a threshold value, the disorder is expressed. The threshold may be envisioned as
having a constant value. The threshold may be exceeded in an individual by increas-
ing either the genetic or environmental burden. Close relatives of an individual who
exceeded the threshold for a congenital malformation, for example, share a greater
percentage of genes than unrelated individuals and are more likely to exceed the
threshold. A classic example of a multifactional genetic effect is typified by neural
tube defects as described.

Fig. 5. Pedigree for a mitochondrial inherited trait.
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Neural Tube Defects
Neural tube defects in the absence of other congenital malformations are a heter-

ogenous group of disorders that range from anencephaly to spina bifuda occulta, a
benign form of spina bifuda. Neural tube defects are caused by the embryological
failure of the neural groove to close and form the neural tube at about the third week
after conception. The most familiar type of neural tube defect is spina bifuda in the
lumbar region. This results in the tissues covering the spinal cord and often the spinal
chord protrudes from the back. After surgical repair the infant will often be paralyzed
below the hips. The world-wide incidence of neural tube defects is about 1 per 1000
live births with some populations such as in Great Britain having a much higher inci-
dence. The genetic contributions to neural tube defects are illustrated by the fact that
the occurrence of neural tube defects in first degree (parent or sibling) relatives is
much greater than in the general population with a recurrence risk of about 3%. The
environmental aspect to the etiology of neural tube defects is illustrated by the fact
that the incidence of neural tube defects can be greatly reduced by supplementing the
diet of women with folic acid prior to conception.
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The Clinical Genetics Databases

Peter J. Bridge

Introduction

This introduction to Clinical Genetics reviews a selection of major internet
resources drawn from the current large and growing listing. These include genetic
variation, diagnostics, laboratory services, regulatory bodies and sequence data. Each
of these sites can be regarded as the starting point for a journey to the wealth of infor-
mation. Many sites provide a page of further links for those seeking additional or
specific information. A selection of sites are shown in the figures and all referenced
and linked websites are provided on the CD supplement.

OMIM (On-line Mendelian Inheritance in Man)

The principal catalog of genetic variation in humans has long been McKusick’s
Mendelian Inheritance in Man (MIM). This has been published in book form and
revised approx every 2–3 yr by the Johns Hopkins University Press since 1966. An
internet-based database and catalog called On-line Mendelian Inheritance in Man
(OMIM) has now become available at Website: http://www.ncbi.nlm.gov/omim as
part of the NCBI Entrez System. This curated database is updated daily and contains
direct links to most of the other important clinical genetics databases as well as com-
prehensive hypertext links to other entries within OMIM.

The scale of OMIM is staggering. Great detail is provided on all known human
phenotypes, and more recently, on many genes that have yet to be associated with any
specific phenotype. When using OMIM it is important to be aware that the entries
frequently have a significant historical component, from which outdated material is
slowly purged. It is often difficult to be absolutely clear, which parts are a historical
description vs current consensus.

Figure 1 shows the top of the entry page. Statistics concerning the database and the
conventions used within it must be accessed through this entry page. As shown in
Fig. 2, one can also proceed directly to the “searchomim.html” page for routine
genetic searches. Try entering cystic fibrosis in the search box and clicking title in the
field box. Several entries will be returned. Entry 602421 contains the gene and 219700
is the entry for the clinical phenotype. Either entry will also provide clickable boxes
that contain direct links to the specific entry on cystic fibrosis in other databases.

WWW

See
companion CD

for color
Figs. 1 and 2
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Databases of Human Mutations
Lists of mutations in each gene are compiled at the Human Gene Mutation Data-

base (HGMD). This has a new web address (see Website: http://www.hgmd.org).
Clicking on the HGMD Search link (top left, see Figure 3), permits progression to the
search page where diseases or genes can be entered in a fashion similar to the OMIM
search page. Remember that this site is based in the UK. Entering, for instance, a well-
known disorder named hemochromatosis, returns nothing because in the UK it is
spelled haemochromatosis. One might expect similar results from many other data-
bases that are maintained outside North America like the Human Genome Variation
Society (see Website: http://ariel.ucs.unimelb.edu.au:80/~cotton/mdi.htm), based at
the University of Melbourne.

WWW

WWW

Fig. 1. OMIM: Online Mendelian Inheritance in Man home page.

Fig. 2. Online Mendelian Inheritance in Man search page.

See
companion CD
for color Fig. 3
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Gene-Specific Databases (Caution)
There are a great number of disease-specific mutation databases on the internet.

Most are associated with research laboratories and it is difficult to judge the accuracy
and completeness of many of these: user beware! A comprehensive listing of such
sites is maintained at Cardiff (without warranty) by the Human Gene Mutation Data-
base (see Website: http://archive.uwcm.ac.uk/uwcm/mg/docs/oth_mut.html). The
Cardiff site also hosts a database called FIDD, which provides frequencies of inherited
disorders around the world (see Website: http://archive.uwcm.ac.uk/uwcm/mg/fidd/).

Repositories of Sequence Data
The cDNA sequence of most genes can be conveniently accessed through the

Human Gene Mutation Database. Genomic sequences are found at several sites
including the Genome Database (GDB; see Website: http://gdbwww.gdb.org/) and the
National Center for Biotechnology Information (NCBI; see Website: http://www.
ncbi.nlm.nih.gov/). GDB links are provided through OMIM. One of the more compre-
hensive starting points is a site on the Human Genome Project Information page main-
tained for the Department of Energy by the Oak Ridge National Laboratory (ORNL)
(see Fig. 4, see Website: http://www.ornl.gov/hgmis/links.html).

GeneClinics
 Each entry in the GeneTests database is provides diagnostic and clinical manage-

ment information. It curated by an expert or panel of experts on that particular disease.
Clicking the Find Disease-Specific Information heading at the top right of the entry
page (see Fig. 5), presents a disclaimer page that the user must indicate he/she has read
before proceeding. As an example, if the term cystic is entered into the search box, you
will retrieve cystic fibrosis, polycystic kidney disease, and autosomal recessive. Click-
ing on the text info box next to cystic fibrosis will lead to a long and very detailed
article on the clinical aspects of cystic fibrosis. This database is partnered with the
GeneTests database.

Fig. 3. Genetics Societies home page.

See
companion CD
for color Fig. 4

See
companion CD
for color Fig. 5
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GeneTests
This is a comprehensive and well-curated database of genetic tests and testing labo-

ratories in North America. It is necessary to have a password to enter the database, but
this is readily available by following the instructions at the top left of the first page
(see Fig. 6). Once a user ID and password have been established, entry is obtained by
typing these in the boxes at the top left and clicking the log in. In the center of the next
page, under the blue box, is a link to Genetics Lab Directory (see Fig. 7). This leads
one through a disclaimer page, to a searchable database of genetic laboratories (see
Fig. 8). Entering achondro will return several entries including achondroplasia.
Achondroplasia has two boxes next to it LAB List and TEXT Info. Clicking the LAB
List box will provide a list of laboratories that provide testing for achondroplasia
(including mine in Canada and several in other countries). Clicking the TEXT Info

Fig. 4. Genetic Professional Societies home page.

Fig. 5. HGMD Human Gene Mutation Database.

See
companion CD

for color
Figs. 6 , 7,

and 8
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Fig. 7. GeneClinics.

Fig. 6. Oak Ridge National Laboratory (ORNL) Links to the Genetic World.

Fig. 8. GeneTests Login.
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box will take you to the GeneClinics entry for achondroplasia in the database
described earlier. On the right-hand side of the search page (see Fig. 8), are a series of
boxes that give other search options. Clicking the Director box on the right and then
entering Bridge describes this author’s laboratory.

EDDNAL
EDDNAL (European Directory of DNA Labs) is a database of genetic tests and

testing laboratories in Europe. Clicking the Start a request link at the left of the entry
page allows one to search the database by entering a McKusick code, i.e., an OMIM
number; disease name; contact; e.g., lab director; or country, to retrieve a list of all
laboratories in that country (see Website http://www.eddnal.com/).

National Colleges
The national college governing the practice of medical genetics in the United

States is the American College of Medical Genetics (ACMG). Founded in 1992, the
ACMG has grown steadily both in numbers of members and in degree of influence
(see Website: http://www.acmg.net/). This key website can be accessed for regula-
tions and policy in the United States.

The national college governing the practice of medical genetics in the Canada is
the Canadian College of Medical Geneticists (CCMG). Founded in 1975, the CCMG
has a long history of leadership in the field of medical genetics. In Canada, the CCMG
is also the examining body whereas in the United States this function is separate from
the ACMG. (see Website: http://ccmg.medical.org/).

Genetic counselors in both the United States and Canada have a specific profes-
sional Society or Association. In the United States there is the National Society of
Genetic Counselors (NSGC; see Website: http://www.nsgc.org/) and in Canada there
is the Canadian Association of Genetic Counsellors (CAGC; see Website: http://www.
cagc-accg.ca/).

Examining Boards
In the United States, the board examinations are administered by the American

Board of Medical Genetics (ABMG; see Website: http://www.abmg.org), in Canada,
it is administered by the Canadian College of Medical Geneticists (CCMG;
see Website: http://ccmg.medical. org/), or the Royal College of Physicians and Sur-
geons of Canada (RCPSC; see Website: http://rcpsc.medical.org/). Examinations in
genetic counseling are administered by the American Board of Genetic Counseling
(ABGC; see Website: http://www.abgc.net/) and by the Canadian Association of
Genetic Counsellors (CAGC; see Website: http://www.cagc-accg.ca/). Information
about laboratory technologist certification is available through the Association of
Genetic Technologists (AGT; see Website: http://www.agt-info.org/) in the United
States, the Canadian Society for Medical Laboratory Science (CSMLS; see Website:
http://www.csmls.org/) in Canada, and the Clinical Molecular Genetics Society
(CMGS; see Website: http://www.ich.ucl.ac.uk/cmgs/cmgshelp.htm) in the UK. The
latter also posts its curriculum on this website.

Learned Societies
There is a general starting point for several societies at the Federation of Ameri-

can Societies for Experimental Biology (FASEB; see Fig. 9, see Website:  http://

WWW

WWW

WWW

WWW

WWW

See
companion CD
for color Fig. 9
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www.faseb.org/genetics/). This organization is still the host of the American Soci-
ety of Human Genetics (ASHG; see Website: http://www.faseb.org/genetics/ashg/
ashgmenu.htm) homepage and until very recently also hosted the American College
of Medical Genetics (ACMG). A more global perspective can be found at the sites
for the European Society of Human Genetics (ESHG; see Website: http://www.
eshg.org/), the International Federation of Human Genetics Societies (IFHGS; see
Website: http://www.ifhgs.org/), and the Human Genetics Society of Australasia
(HGSA; see Website: http://www.hgsa.com.au/). There is a comprehensive listing
of societies worldwide to be found at the Genetics Education Center, University of
Kansas Medical Center (KUMC; see Fig. 10; see Website: http://www. kumc.edu/
gec/prof/soclist.html).

WWW

Fig. 9. GeneTests.

Fig. 10. GeneTests Search for clinical tests provided by various laboratories.

See
companion CD

for color
Fig. 10
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Population Genetics

Jill S. Barnholtz-Sloan

Introduction

A species is comprised of many populations of individuals who breed with each
other, each with their own unique set of genes (or loci) and alleles. Even so, the popu-
lation as a whole shares a pool of all genes and alleles. Evolution is the change of
frequencies of alleles in the total gene pool. Some genotypes, such as those associated
with rare and sometimes deadly human diseases, are important to understand from a
population genetics perspective so that changes in the incidence of disease can be
predicted. Most individuals do not carry the genotypes that cause an extreme pheno-
type (or trait), but of the ones that do carry these rare genotypes or combination of
genotypes, their phenotype varies greatly from the average person in the population.

Population genetics is the study of evolutionary genetics at the population level.
We study the exchange of alleles and genes within and between populations and the
forces that cause or maintain these exchanges. This exchange of genes and alleles
causes changes in specific alleles and hence genotype frequencies within and between
populations. Through the study of this evolution of alleles and hence, genotype fre-
quencies, we can better understand how to use human populations as a data set to
clarify genetic predisposition to disease. A glossary of terms and example calculations
is provided at the end of the chapter.

Hardy-Weinberg and Linkage Equilibrium

A basic understanding of the equilibrium that exists in populations is needed in
order to begin to understand these changes in allele frequencies over time and across
generations. The two types of equilibrium assumed in populations are Hardy-Weinberg
Equilibrium (HWE) within loci and Linkage Equilibrium (LE) between loci.

Fundamental to understanding these equilibria is the understanding that genotype
frequencies are determined by mating patterns, with the ideal being random mating.
Random mating assumes that mating takes place by chance with respect to the locus
under consideration. With random mating, the chance that an individual mates with
another having a specific genotype is equal to the population frequency of that genotype.

One’s genotype at any locus is made up of two alleles (one of two or more forms
that can exist at a locus), one allele from the mother and one allele from the father. A
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gene (or locus) is the fundamental physical and functional unit of heredity and will
carry information from one generation to the next. (Note: Gene and locus will be
used interchangeably in this chapter.) By definition, a gene encodes an RNA product
that can be structured or encode a protein like an enzyme. The number of alleles that a
gene may have can vary from two alleles, a bi-allelic locus, to a large number of
alleles, a multi-allelic locus. A genotype can either be homogeneous, i.e., both alle-
les received from the mother and father are the same allele, or a genotype can be
heterogeneous, i.e., the alleles received from the mother and the father are different.

As an example of random mating, consider the locus, L, with two alleles A and a.
We would then have three possible genotypes, AA, Aa, and aa. If the population pro-
portions of these genotypes were 0.20, 0.70, and 0.10, respectively, then the chance
that a male with AA genotype would randomly mate with a female of genotype AA,
Aa, or aa is 0.20, 0.70, or 0.10, respectively. These same proportions would apply to
female mates with Aa or aa males. However, in human populations, mating seems to
be random with respect to some traits, e.g., blood groups and nonrandom with respect
to others, e.g., height, ethnicity, age, and other physical and cultural characteristics.

Independently in 1908, G. H. Hardy and W. Weinberg both published results show-
ing that the frequency of particular genotypes in a sexually reproducing diploid popu-
lation reaches equilibrium after one generation of random mating and fertilization
with no selection, mutation, or migration. The population size is assumed to be very
large and the generations are not overlapping. They then showed that the frequencies
of the genotypes in the equilibrium population are just simple products of the allele
frequencies. Again consider locus L, has alleles A and a, with p = frequency (A) = f (A)
and q = f (a) = 1 – p. Then, if members of the population select their mates at random,
without regard to their genotype at the L locus, the frequencies of the three genotypes,
AA, Aa, and aa, in the population can be expressed in terms of the allele frequencies:
f (AA)=p2; f (Aa) = f (Aa) + f (aA) = 2pq; f (aa) = q2 (see Table 1).

Statistical tests for the presence or absence of HWE for each of the loci of interest
are performed using either a chi-square goodness of fit test or an exact test, to test the
null hypothesis that the locus is in HWE versus the alternative hypothesis that the
locus is not in HWE. Both tests are testing the fit between the numbers observed and
expected numbers, i.e., if the observed is similar enough to the expected, then we
accept the null hypothesis of the locus being in HWE. Exact tests are used when there
are small sample sizes and/or multi-allelic loci are involved.

Table 1
Observed and Expected Frequencies of the Genotypes AA, Aa and aa at Hardy-Weinberg
Equilibrium After One Mating of Female and Male Gametes, for a Total Sample of n Individuals.

Female Gametes
Observed = p =f (A) Observed = q = f (a)

Male Gametes Observed = p = f (A) Observed = p2 = f (AA) Observed = pq = f (Aa)
Expected = np2 Expected = npq

Observed = q = f (a) Observed = pq = f (Aa) Observed = q2 = f (aa)
Expected = npq Expected = nq2
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Hence, for locus L, with alleles A and a, with frequencies, p and q, respectively, the
observed number of the three possible genotypes are nAA, nAa, and naa. Assuming the
null hypothesis of HWE is true, we can calculate the expected number for each geno-
type, AA, Aa, and aa, which are np2, 2npq, and nq2, respectively, where n is the total
number of individuals in our sample (see Table 1). Hence, the chi-square goodness of
fit test statistic for locus L with one degree of freedom (i.e., the total number of pos-
sible classes of data = 3, minus the number of parameters estimated from the data = 1,
(i.e., the allele frequency p), – 1) is

χ1
2 = Σ

genotypes

Observed – Expected 2

Expected [Eq. 1]

Exact tests for HWE are more computationally expensive and complicated then
the chi-square goodness of fit test. This test is more powerful for multi-allelic loci
and small sample sizes than the goodness of fit chi-square test, because it does not
depend on large sample asymptotic theory. The exact test for HWE is permutation
based and is based on the theory proposed by Zaykin, et al. (1995), and Guo and
Thompson (1992). Zaykin, et al. (1995) proposed an algorithm that performs an exact
test for disequilibrium between alleles within or between loci. The probability of the
set of multi-locus genotypes in a sample, that is conditional on the allelic counts, is
calculated from the multinomial theory under the null hypothesis of equilibrium
being present. Alleles are then permuted and the conditional probability is calcu-
lated for the permuted genotype array. In order to permute the arrays, they employ a
Monte-Carlo method. The proportion of permuted arrays that are no more probable
than the original sample provides the significance level for the test. Because of the
complexity of this testing procedure, a computer program must be used.

Hence, equilibrium refers to the concept that there are no changes in genotypic
proportions in a population from generation to generation. This equilibrium will
remain constant unless the frequencies of alleles in the population are disrupted. Dis-
torting effects could be any one of the following: selection, migration, nonrandom
(assortative) mating and inbreeding, population substructure or subpopulations, muta-
tion or genetic drift.

When we consider a single locus we find two important random-mating principles:
1) genotype frequencies are simple products of the allele frequencies and 2) HWE is
reached after one generation of random mating. However, independently, when we
consider two or more loci, the first principle is correct for each locus, but not necessar-
ily the second, because the alleles of one locus may not be in random association with
the alleles of the second locus. Hence, the state of LE is defined by random allelic
association between alleles at any loci. In other words, considering any two loci, the
probability that the combination of alleles, one from each locus, is the same if the loci
are in the same individual or in different individuals. This state of LE will be reached
given enough time, but the approach to equilibrium is slow and highly dependent on
the recombination fraction, θ.

The distance in centimorgans (cM) between two loci can be estimated from the
recombination fraction, θ, between these loci, where θ can be calculated as the prob-
ability that the gamete transmitted by an individual is a recombinant, i.e., an indi-
vidual whose genotype was produced by recombination. After DNA duplication,
adjacent chromosomes can change parts, i.e., recombine (see Fig. 1), and it is this
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genetic shuffling that enables species to have a rich diversity of phenotypic expres-
sion from generation to generation in a given population. If the loci are extremely
close on the same chromosome, then the likelihood of a crossover between them and
the recombination fraction will approach zero. If the loci are far apart or on different
chromosomes, then recombination will occur by chance in 50% of meioses and the
alleles at one locus will be inherited at random with respect to the alleles at the other
locus. Loci with recombination fractions close to zero are tightly linked to each other
and loci with recombination fractions of 0.5 are not linked to each other.

Thus, allelic linkage disequilibrium (LD) is measured by a statistic D, which is
defined as D = Pij – Pi qj, where Pij is the frequency of the gamete carrying ith allele of
one locus and the jth allele of another and pi and qj are the frequencies of the ith and jth

alleles of the two loci. D can be a positive or negative number or zero. In random
mating populations with no selection, LD is reduced in every generation at a rate of θ
(recombination fraction), 0 < θ < 0.5; leading to D (t) = (1 – θ)t d (0), where D (t) is the
disequilibrium at generation t and D (0) is the disequilibrium at generation zero.

Tests for significant allelic LD for combinations of alleles from two and three loci
(different combinations of the alleles of the loci of interest that are adjacent to each
other on a chromosome), are performed using a chi-square test to test the null hypoth-
esis that d (ij) = 0 versus the alternative that d (ij) = 0. In order to calculate an allelic
disequilibrium measure, d (.), allele and genotype/haplotype (the combination of sev-
eral alleles from multiple loci), frequencies must first be calculated. This can be done
very simply by a direct counting method of the possible genotypes/haplotypes present
in the population of interest, which can then be used to assess allele frequencies.

Let us assume that locus 1 has i alleles, locus 2 has j alleles, and locus 3 has k
alleles and that the loci lie adjacent to each other. Then the calculations for combina-
tions of alleles (haplotypes) at the three loci are as follows:

d (ij) = f (ij) – f (i)f (j) = f (jk) – f (j)f (k)
d (ijk) = f (ijk) – f (i)d (ij) – f (j)d (ik) – f (i)f (j)f (k)

where

d (ij) = disequilibrium of allele i at locus 1, and allele j at locus 2;
d (jk) = disequilibrium of allele j at locus 2, and allele k at locus 3;
d (ijk) = disequilibrium of allele i at locus 1, and allele j at locus 2, allele k at locus 3;
f (i) = frequency of allele i at locus 1, f (j) = frequency of allele j at locus 2;

Fig. 1. A pictorial of recombination or crossing over between chromosomal segments (or loci).
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f (k) = frequency of allele k at locus 3;
f (ij) = frequency of haplotype ij (locus 1 and locus 2);
f (jk) = frequency of haplotype jk (locus 2 and locus 3);
f (ijk) = frequency of haplotype ijk (considering all three loci);

which would yield calculations for d (allele i at locus 1 and allele j at locus 2),
d (allele j at locus 2 and allele k at locus 3) and d (alleles i, j, and k at loci 1, 2, and
3). The significance of the two locus disequilibrium is tested using an allele specific
chi-square test, which tests whether or not d (allele i at locus 1 and allele j at locus 2)
and d (allele j at locus 2 and allele k at locus 3) are significantly different from zero.
The two-locus test used is the test proposed by Hill (1974), given by

χij
2 =

n d ij 2

f i 1 – f i f j 1 – f j
[Eq. 2]

which follows a χ2 distribution with one degree of freedom.
For the three locus test, the test statistic used is the one suggested by Weir (1996),

given by
χijk

2 =
d ijk 2

Var d ijk
 , with one degree of freedom

where

Var d ijk = 1
n
πiπ jπk + 6d ij d jk d ik + πi τ jτkd jk – d jk 2 + π j τiτkd ik – d ik 2

+ πk τiτ jd ij – d ij 2 + d ijk τiτ jτk – 2τid jk – 2τ jd ik – 2τkd ij – d ijk

in which
π i = f i 1 – f i ; π j = f j 1 – f j ; πk = f k 1 – f k

τi = 1 – 2 f i ; τ j = 1 – 2 f j ; τk = 1 – 2 f k [Eq. 3]

which tests whether d (alleles i, j, and k at loci 1, 2, and 3) is significantly different
from zero and also follows a chi-square distribution.

Linkage disequilibrium can be the result of many different circumstances. LD could
have occurred in the founding population and because of a very small θ, has not had
sufficient time (in generations of random mating) to disappear. The loci could be
tightly linked, so that recombinants are rare, causing the approach to equilibrium to be
slow. Population admixture, or the matings of different subpopulations with different
allele frequencies, can also cause LD. Interaction between the loci of interest can cause
LD to be present because of the proximity of the loci, i.e., the loci are closely linked.
Selection of specific heterozygotes can also overcome the natural tendency for D to go
to zero. Lastly, LD can be caused purely by chance, in that some loci may present
themselves in a higher frequency in a population and stay at that frequency. For fur-
ther information on estimating and testing of LD refer to Hill (1974) and Weir (1996).

Darwin and Natural Selection

The previously mentioned assumptions of equilibrium and hence allele and geno-
type frequencies, are all directly affected by the forces of evolution that exist all around
us, such as natural selection, mutation, genetic drift and mutation, inbreeding, nonran-
dom mating, and population structure. The mechanism of evolution was the subject of
speculation by several individuals in the early nineteenth century, but it was Charles
Darwin who took up this problem. He proposed that the cause of evolution was natural
selection in the presence of variation; natural selection is the process by which the
environment limits population size.



2 1 2 — Barnholtz-Sloan

He based this theory on three key observations: 1) When conditions allow indi-
viduals in a population to survive and reproduce, they will have more offspring than
can possibly survive (population size increases exponentially); 2) Individuals will
vary in their ability to survive and reproduce, most of the time because of a lack of
available resources; and 3) No two individuals are the same because of variation in
inherited characteristics, therefore they all vary in their ability to reproduce and sur-
vive. From these observations he deduced the following: 1) There is competition for
survival and successful reproduction; 2) Heritable differences that are favorable will
allow those individuals to survive and reproduce more efficiently as compared to
individuals with unfavorable characteristics; i.e., elimination is selective; and 3) Sub-
sequent generations of a population will have a higher proportion of favorable alleles
present than previous generations. With the increase of these favorable alleles in the
population, comes an increase of the favorable genotype(s), so that the population
gradually changes and becomes better adapted to the environment. This is the defini-
tion of fitness; genotypes with greater fitness produce more offspring than less fit
genotypes. Fitness of a gene or allele is directly related to its ability to be transmitted
from one generation to the next.

Individuals are forced to compete for resources in order to stay alive and repro-
duce successfully, therefore, certain genotypes that are the genetic determinants for
the more favorable characteristics in a population, will become more common than
the less favorable genotypes. As a result, different genotypes will have different
likelihoods of success. The effects of relative frequencies of the genotypes, group
interactions and environmental effects can complicate this likelihood. Sexual selec-
tion is a key component to the likelihood of success and can be affected by direct
competition between individuals of the same sex for a mate of the opposite sex or by
mating success, which is a direct result of the choice of a mate.

There are three modes of natural selection (see Fig. 2): 1) Stabilizing selection: this
removes individuals who deviate too far from the average and maintains an optimal
population, i.e., selection for the average individual; 2) Directional selection: this
favors individuals who are at one extreme of the population, i.e., selection of either of
the extreme individuals; and 3) Disruptive selection: this favors individuals at both
extremes of the population, which can cause the population to break into two separate
populations.

Neo-Darwinism arose when it was realized that variation is a direct result of spon-
taneous mutation. The theoretical basis of Neo-Darwinism was then developed, based
on a mathematical framework and has become essential to understanding molecular
evolution. From the 1930s to the 1950s researchers worked to try to better understand
the empirical basis of Neo-Darwinism, but this was met with great difficulty, because
a human’s lifetime is generally not long enough to be able to observe substantial
changes in populations.

Types of Variation
Darwin’s work and the work of the Neo-Darwinists helped us better understand

that the variation within and between populations is caused and maintained by muta-
tion, genetic drift, migration, inbreeding, and nonrandom mating, including the types
of natural selection discussed in the previous section. A summary of whether or not
each of these components of evolution increases or decreases variation within and
between populations is given in Table 2.
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In 1953, the Watson-Crick model of DNA (deoxyribonucleic acid) was put for-
ward, opening doors to the application of various molecular techniques in population
genetics research. Because DNA is the chemical substance that encodes all genes,
relationships between and within populations could now be characterized through the
study of DNA. Now researchers could study the variation within a species instead of
having to study the species as a whole. Researchers began by studying amino acid
changes. With the advent of electrophoresis, a simpler method of studying protein
variation, they then switched to studying genetic polymorphism within populations
in the mid 1960s, Many other technical breakthroughs have since emerged such as
restriction enzyme digestion, gene cloning, and rapid DNA sequencing. Together,
these tools have uncovered many unexpected properties of the structure and organi-
zation of genes.

Fig. 2. Three types of natural selection—stabilizing, directional and disruptive—over the course
of three different time periods 1, 2, and 3 (three subsequent generations of mating) and their effects
on the normally distributed initial population in time period 1.

Table 2
The Effect of the Different Forces a of Evolution on Variation Within and Between Populations

Evolutionary component Within populations Between populations

Inbreeding and nonrandom mating Decrease Increase
Genetic drift Decrease Increase
Mutation Increase Decrease
Migration Increase Decrease
Selection
  – Stabilizing Increase Decrease
  – Directional Decrease Increase and decrease
  – Disruptive Decrease Increase

a Either an increase or decrease of variation within and/or between populations is shown for each force.
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Mutation
Through these new methods of molecular study, it was discovered that all new

variation begins with a mutation or a change in the sequence of the bases in the
DNA. A mutation in the DNA sequence caused by nucleotide substitution (e.g.,
sickle cell hemoglobin production), insertions/deletions (e.g., hemophilia A and B,
cystic fibrosis, cru-du-chat syndrome), triplet expansion (e.g., Huntington’s dis-
ease), translocation (e.g., Down’s syndrome), etc., may be spread through the popu-
lation by genetic drift and/or natural selection and eventually become fixed in a
species. If this mutant gene produces a new phenotype, this new characteristic or
trait will be inherited by all subsequent generations unless the gene mutates again.
Some mutations will not affect the protein product and these are called silent muta-
tions. Some mutations will occur in noncoding regions, which may or may not have
regulatory roles. Hence, it is the regions where the sequence is important for func-
tion where variation is the most interesting in terms of effects on the population.

Spontaneous mutation rates are appreciably small, 10– 4–10– 6 mutations per gene
per generation, so it is the cumulative effects of mutation over long periods of time
that become important (see Fig. 3). The simplest kind of mutation is when one nucle-
otide is replaced by another (a base substitution). These substitutions can be transi-
tions, A to G or C to T, or transversions, all other types of substitutions. If a base
substitution results in the replacement of an amino acid in the protein product, this is
a missense mutation. Mutations can also result in a loss or gain of genetic material,
deletion or insertion, which can result in frame-shift mutations. Genetic material can
also be rearranged, by translocation, where pieces of different chromosomes change
places with one another. Mutations owing to gene conversion come from the mis-
alignment of DNA, which is associated with the unequal crossing over of parts of
adjacent chromosomes.

Fig. 3. The cumulative effect of mutation over generations of mating (over time) on the change
in frequency of allele A, where the mutation rate for A to become a, is maintained at a constant rate
of 10–5.
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With the purpose of better grasping the concept of mutation, tabulating correct
allele and genotype frequencies for a population under study is imperative. A basic
understanding of polymorphisms, heterozygosity, and gene diversity is also critical.

Allele and Genotype Frequencies
The most fundamental quantitative variable in the study of population genetics is

the allele frequency. In a population of N diploid individuals we have 2N alleles
present. If the number of alleles i in the population is ni, then the frequency of that
allele in the population is defined as pi = ni / 2N. There is no limitation to the number
of alleles that may exist at a single locus but their frequencies must always sum to one.
When a locus has only two alleles we denote their frequencies as p and q = 1 – p. A
biallelic locus, L, with alleles A and a, has three possible genotypes, AA, Aa, and aa.
However, not all genotypes are necessarily present at all times in a population.

The genotype frequencies at a particular locus are defined similarly; the frequency
of a particular genotype is the number of that genotype present in the population
divided by the total number of genotypes present. Like the allele frequencies, geno-
type frequencies must sum to one over all genotypes present in the study population.
However, the number of genotypes is constrained and equals [m (m + 1)]/2 if there are
m alleles at the locus: m homozygotes and [m (m – 1)]/2 heterozygotes.

As an example of how to count alleles and genotypes in a population, the MN
blood group will be used. Assume that a population consists of 543 MM (phenotype
M), 419 MN (phenotype MN), and 457 NN (phenotype NN) individuals (total = 1419
individuals). We then need to determine the values of p = f(M) and q = f(N) and the
genotype frequencies in the population. In this simple example, the values of p and
q and the genotype frequencies can be determined by counting the genotypes and
alleles. To determine the genotypic frequencies we simply divide the number of
each genotype present in the population by the total number of individuals present in
the population (see Table 3), where the genotypic frequencies will add to one. To
determine the allelic frequencies we simply count the number of M or N alleles and
divide by the total number of alleles. There are 543 MM individuals, which means
there are 543 × 2 = 1086 M alleles being contributed. 419 MN individuals will con-
tribute 419 M alleles and 419 N alleles. And there are 457 NN individuals contribut-
ing 457 × 2 = 914 N alleles. Therefore, there are 1086 + 419 = 1505 M alleles total in
the population and 419 + 914 = 1333 N alleles total in the population. So, p =f(M) =
1505/[2(1419)] = 0.53 and q = f(N) = 1333/[2(1419)] = 0.47 = 1 – p.

Table 3
Genotypic Frequencies of the Three Genotypes Present in the MN Blood Group;
MM, MN and NN, Calculated from a Total of 1419 Individuals

Genotype Number of Individuals Genotypic Frequencies

MM   543 543/1419 = 0.38
MN   419 419/1419 = 0.30
NN   457 457/1419 = 0.32

Total 1419 1.0
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Polymorphism
When a locus has many variants, or alleles, it is referred to as being polymorphic.

Polymorphism is defined as the existence of two or more alleles with large relative
frequencies in a population (occurrence of no less than 1–2%). The limiting frequency
of the most common allele, and thus for the polymorphism, is set at 99%. The exist-
ence of these multiple alleles is generated by mutation(s) and recombination at a
locus. Most are eliminated from the population by genetic drift or purifying selection
and only a small number of them are incorporated into the population by chance or
selection. The first human polymorphism discovered was the ABO blood group by
Landsteiner (1900). Most polymorphisms are genetically simple, in that two alleles
directly determine two versions of the same protein. Others can be highly complex,
with multiple, related loci engaged in a complex system on a chromosome.

There are four primary ways to determine polymorphisms: Restriction Fragment
Length Polymorphisms (RFLPs), Minisatellites or Variable Number of Tandem
Repeats (VNTRs), Microsatellites or Short Tandem Repeats (STRs) or Single Nucle-
otide Polymorphisms (SNPs). RFLPs are DNA segments of different lengths gener-
ated by restriction enzyme digestion, targeted to specific base sequences. The
different-sized DNA fragments can be separated using electrophoresis. Because
RFLPs are based on single nucleotide changes, they are not very polymorphic in
the population and usually have heterozygosities of less than 50%. Minisatellites or
VNTRS are repeats of a relatively short oligonucleotide sequence that vary in num-
ber from one person to another. They are much more polymorphic than RFLPs.
Micro-satellites or STRS are multiple (often 100 or more) repeats of very short
sequences (2–4 nucleotides), e.g., (CA)n repeats that are amplified by polymerase
chain reaction (PCR) and electrophoresed to score allele sizes. These are highly poly-
morphic in the population, with most individuals being heterozygous. Thousands of
such markers are available, and are conveniently located throughout the genome.
Tri- and tetranucleotide repeats are often easier to score than dinucleotide repeats.
Microsatellites are often the markers of choice for genetic studies. SNPs are a class
of recently identified markers characterized by variation at a specific nucleotide. Only
2 alleles exist for a given SNP in the population, therefore they are not as polymor-
phic as microsatellites. However, they are abundant throughout the genome.

Gene Diversity and Heterozygosity
When a large number of loci are examined in a population for variation, the amount

of variation is usually measured by the proportion of polymorphic loci. This can be
reported for a single locus, as an average over several loci or as the average heterozy-
gosity per locus or gene diversity. The heterozygosity (the proportion of heterozygotes
or polymorphic loci) is defined purely in terms of genotype frequencies in the popula-
tion. If nij is the observed count of heterozygotes ij at locus L, where i and j are differ-
ent alleles, in a sample of size n, then the sample heterozygosity for that locus L is
given by

HL = Σ
i
Σ
i≠ j

nij
n [Eq. 4]

Heterozygosity is calculated separately for each locus under study and then averaged
over all loci under consideration (m), to give

H = 1
m

m

Σ
l=1

HL [Eq. 5]
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Average heterozygosity or gene diversity is a more useful measure of variation
than the proportion of heterozygotes (heterozygosity) because it is not subject to bias
caused by sample size, whether it be the size of the study sample or the number of loci
being examined. Also, it is calculated from allele frequencies and not genotype fre-
quencies. Assume that pj is the frequency of the jth allele at the lth locus, then the gene
diversity at this locus, L, is

DL = 1 – Σ
j

pj
2 [Eq. 6]

and as an average over m loci ,
D = 1 – 1

m Σ
l
Σ
j

pjl
2 [Eq. 7]

where l = 1,...,m. In a randomly mating population, D is equal to the average propor-
tion of heterozygotes per locus. Hence, a very polymorphic locus will have a higher
gene diversity, because, as more alleles are present at a locus, more heterozygotes will
be possible.

However, it is not just mutation that is responsible for sustaining variation. Natural
selection, genetic drift, and migration also play key roles in its maintenance, as well as
inbreeding and nonrandom mating and the genetic structure of a population. Selection
acts against the dysfunctional alleles that are continuously created by mutation. At
equilibrium, the number of new dysfunctional mutations equals the number lost by
selection. Selection, in fact, favors heterozygotes, because they maintain two different
alleles in their genotypes and rare alleles are more common in a heterozygous indi-
vidual. Hence, the heterozygous individual can carry more information than the
homozygous individual.

Genetic Drift and Migration
Genetic drift is the change in allele frequency that results from the chance difference

in transmission of alleles between generations. The gene pool changes at each genera-
tion, so that the frequencies of particular alleles will change (drift) through time, and
these frequencies can go up or down, accumulating with time. Drift’s largest effects are
seen on small populations (larger samples will be closer to the average) and on rare
alleles (the transmission frequency will be higher than the expected average frequency if
it is a common allele). Drift is important because it has a greater effect on transmission
of rare alleles than selection, as it helps remove or promote very rare alleles.

In small populations, drift can cause certain allele frequencies to be much larger
or smaller than would likely occur in a large population. This is called the founder
effect, when a small, underrepresented group forms a new colony. The Amish in the
United States are a good example because the roots of this population can be traced
to a small number of immigrant families. When a population is reduced to a small
number, possibly because of disease, and later becomes the parents of a new large
population, this is called bottle-necking. Drift can also cause small isolated popula-
tions to be very different from the norm, which can lead to the formation of new
species and races.

The basic calibrator of genetic drift is effective population size, Ne. This is the size
of a homogeneous population of breeding individuals, half of which are male and half
are female, that would generate the same rate of allelic fixation as observed in the real
population of total size N. Hence, in the real population of size N, the variance of the
random deviation of allele frequencies is [p(1 – p)]/2N and the rate of decay is 1/2N.
A human population is structured in many different ways, i.e., its individuals are of
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different sexes, ages, and geographical and social groups. This does not match the
“ideal” population. Accordingly, Ne is estimated indirectly to be N/2 to N/3, but can be
estimated directly if the heterozygosity or the inbreeding coefficient of the population
is known.

Migration also causes variation within populations, because of the possibility of
mixing many populations together. Geographically defined populations generally
show variation between each other and such variation can effect the fate of that popu-
lation. Through migration, these populations subdivide and mix with new individuals
to form new, sustainable populations. Population subdivision causes a decrease in
homozygous individuals, known as Wahlund’s principle, because it will increase
variation in this newly formed population. In human populations, the main effect of
this fusion of populations is that it will decrease the overall frequency of children born
with genetic defects resulting from homozygous recessive genes that have a high fre-
quency in one of the mixing populations.

Wright’s Fixation Indices
Genetic structure of a species is characterized by the number of populations within

it, the frequencies of the different alleles in each population and the degree of genetic
isolation of the populations. The evolutionary forces previously discussed will cause
differentiation within and between subpopulations within a larger species population.
Wright (1931, 1943, 1951) showed that any species population has three levels of
complexity, I, the individual; S, the various subpopulations within the total population
and T, the total population. In order to assess this population substructure and test for
allelic correlation within subpopulations, Wright defined three measurements called
fixation indices that have correlational interpretations for genetic structure and are a
function of heterozygosity. FIT is the correlation of alleles within individuals over all
subpopulations; FST is the correlation of alleles of different individuals in the same
subpopulation; and FIS is the correlation of alleles within individuals within one sub-
population. Cockerham (1969, 1973) later showed analogous measures for these three
fixation indices, which he called the overall inbreeding coefficient, F (i.e., FIT), the
coancestry, θ  (i.e., FST) and, the inbreeding coefficient within subpopulations,  f  (i.e.,
FIS). These are all related by the following formula:

f = F – θ
1 – θ

[Eq. 8]

In order to calculate the three fixation indices, we must first calculate the heterozy-
gosities. HI is the heterozygosity of an individual in a subpopulation and can be inter-
preted as the average heterozygosity of all the genes in an individual. HS is the expected
heterozygosity of an individual in another subpopulation and can be interpreted as the
amount of heterozygosity in any subpopulation if it were undergoing random mating.
HT is the expected heterozygosity of an individual in an equivalent random mating
total population and can be interpreted as the amount of heterozygosity in a total popu-
lation where all subpopulations were pooled together and mated randomly.

Then if Hi is the heterozygosity in subpopulation i, and if we have k subpopulations,

HI =
k

Σ
i =1

Hi
k

[Eq. 9]

If pjs  is the frequency of the jth allele in subpopulation s, then HS is the expected
Hardy-Weinberg heterozygosity in subpopulation s,
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HS = 1 –
h

Σ
i =1

pjs
2 , [Eq. 10]

for a total of h alleles at that locus. Hs is the average taken over all subpopulations.
Finally if pj is the frequency of the jth allele, averaged over all subpopulations,

HT = 1 –
k

Σ
i =1

pj
2 , [Eq. 11]

for all k subpopulations. Thus, Wright’s F statistics are

FIS =
H S – H I

H S

; FST =
H T – H S

H T

; FIT =
H T – H I

H T
[Eq. 12]

and these three equations are related by the following identity,

 1 – FIS 1 – FST = 1 – FIT [Eq. 13]

Genetic Distance
The degree of genetic isolation of one subpopulation from another can be measured

by genetic distance, which can be interpreted as the time since the subpopulations that
are under comparison diverged from their original ancestral population. Nei proposed
the most widely used measure of genetic distance between subpopulations in 1972,
even though the concept of genetic distance was first used by Sanghvi (1953). The
mathematics of these measurements was later refined by Fisher (1963) and
Mahalanobis (1963). Thus, Nei’s standard genetic distance is given by D = – ln (I),
where I is called the genetic identity, which corrected for bias, is calculated using the
following equation:

I =
2n – 1 Σ

l
Σ
j
p j1pj2

Σ
l

2n Σ
j
p j1

2 – 1 Σ
l

2n Σ
j
p j1

2 – 1 [Eq. 14]

where we are examining the jth allele at the lth locus for populations 1 and 2 and pj1 is
the frequency of the jth allele at the lth locus for population 1 and pj2 is the frequency of
the jth allele at the lth locus for population 2, from a total sample of n individuals.

Inbreeding and Non-Random Mating (Assortative Mating)
Inbreeding and other forms of nonrandom mating, or assortative mating, can also

have a profound effect on variation within a population. Inbreeding refers to mating
between related individuals. Inbreeding is when genetically similar (related) individu-
als mate more frequently than would be expected in a randomly mating population.
Inbreeding mainly causes departures from HWE and as a consequence of this depar-
ture from equilibrium, an increase in homozygotes. Inbreeding can cause the offspring
of the mating to have replicates of specific alleles present in the shared ancestor of the
parents. Thus, inbred individuals may carry two copies of an allele at a locus that are
identical by descent (IBD) from a common ancestor. The proportion of IBD is how
frequently two offspring share copies of the same parental (ancestral) allele.

The amount of inbreeding in a population can be measured by comparing the actual
proportion of heterozygous genotypes in the population that is inbreeding to the pro-



2 2 0 — Barnholtz-Sloan

portion in a randomly mating population. Inbreeding alone cannot change allele fre-
quencies, but it can change how the alleles come together to form genotypes.

In order to illustrate this change in genotype frequencies, a simple case of inbreeding
will be examined, where the reference population will be the preceding generation so
that the inbreeding coefficient, F, measures the increase in IBD from one generation to
the next. If allele A has a frequency of p and allele a has a frequency of q = 1 – p, then the
frequency of AA genotypes in an inbred gamete will be f (AA) = p2(1 – F) + pF = p2 +
pqF. An individual of genotype AA can be formed by one of two ways, of independent
origin, which has a probability of p (1 – F) and identical by descent, which has a prob-
ability of F. Therefore, if F > 0, there will be an excess of AA homozygotes relative to
what would be expected by HWE. If F = 0, then the frequency of the AA homozygotes
will be as is expected by HWE. Similarly, the frequency of the homozygote aa would be
f (aa) = q2(1 – F) + qF = q2 + pqF. And the same rules would hold for the relationship
between the value of F and HWE. The probability of the heterozygote Aa is more com-
plicated to calculate. But, we know that the frequencies of the genotypes must sum to
one so, f (Aa) = 1 – f (AA) – f (aa) = 2pq (1 – F) = 2pq – 2pqF. Table 4 shows a summary
of the changes in genotype frequencies after one generation of inbreeding.

If natural selection and inbreeding act together they can have a profound effect
on the course of evolution because of the increase in the frequency of homozygous
genotypes. Inbreeding in human populations can result in a much higher frequency
of recessive disease homozygotes, since recessive disease alleles generally have low
frequencies in humans. Inbreeding affects all alleles and hence, genes, in inbred
individuals. This exposes rare recessive disorders that may not have presented if
inbreeding did not occur.

Nonrandom mating or assortative mating is when a mate is chosen based on a cer-
tain phenotype. In other words, it is the situation when mates are more similar (or
dissimilar) to each other than would be expected by chance in a randomly mating
population. In positive assortative mating, a mate chooses a mate that phenotypically
resembles himself or herself. In negative assortative mating, a mate chooses a mate
that is phenotypically very different from himself or herself. Assortative mating will
only affect the alleles that are responsible for the phenotypes affecting mating fre-
quencies. The genetic variance (or variability) of the trait that is associated with the
mating increases with more generations of assortative mating for that trait. In humans,
positive assortative mating occurs for traits like intelligence (IQ score), height, or
certain socioeconomic variables. Negative assortative mating occurs mostly in plants.

Table 4
Frequencies of Genotypes AA, Aa, and aa After One Generation of Inbreeding
Where the Reference Population is the Preceding Generation Before the Inbreedinga

Origin

Identical Original Frequency change
Genotype Independent by descent frequencies after inbreeding

AA p2(1 – F) + pF = p2 + pqF
Aa 2pq (1 – F) = 2pq – 2pqF
Aa q2(1 – F) + qF = q2 + pqF

a The inbreeding coefficient, F and the two different types of origin, independent and identical by descent, are
incorporated in the calculations.
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Conclusions

Even with the advances in molecular biology and genetics, all of this discovery in
the field of population genetics and of the characteristics that cause population-based
changes and their consequences, i.e., how they can affect human disease susceptibil-
ity, had until recently only been assessed one at a time by a technician in a laboratory.
Now with the advent of the gene chips or microarrays, these new methods can be
automated and carried out at a much larger scale, e.g., 10,000 genotypes can be deter-
mined using a single gene chip. These and other faster techniques will permit all genes
to be tested for polymorphism within and between populations for many individuals in
a population at a time and many populations at a time. This new technology will allow
us even greater insight into the relationship between human genetic changes in popu-
lations and evolutionary forces.

Glossary of Terms

Allele  One of two or more forms of a gene or locus that can exist at a locus (variants
of a locus).

Average Heterozygosity (or Gene Diversity)  The average proportion of heterozy-
gotes in the population and the expected proportion of heterozygous loci in a
randomly chosen individual.

Bottle-Necking  When a population is reduced to a small number, possibly because of
disease, and later becomes the parents of a new large population.

Chi-Square Goodness of Fit Test  A statistical test used to test the fit between the
observed and expected numbers in a population; the test statistic has a chi-square
distribution.

Degrees of Freedom  The number of possible classes of data, minus the numbers of
parameters estimated from the data, minus 1.

Directional Selection  Favors individuals who are at one extreme of the population,
i.e., selection of either of the extreme individuals.

Disruptive Selection  Favors individuals at both extremes of the population, which
can cause the population to break into two separate populations.

Effective Population Size, Ne  The size of a homogeneous population of breeding
individuals, half male and half female, that would generate the same rate of
allelic fixation as observed in real population of total size N.

Evolution  The change of frequencies of alleles in the total gene pool.

Exact Test  A statistical test used when the sample sizes are small or the locus under
study is multi-allelic. It is more powerful than the chi-square goodness of fit test.

Fitness  The ability of a gene or locus to be transmitted from one generation to the
next; genotypes with greater fitness produce more offspring than less fit geno-
types.

Founder Effect  when a small, underrepresented group forms a new colony.

Gene (or locus)  The fundamental physical and functional unit of heredity that will
carry information from one generation to the next; generally encodes for some
gene product, like an enzyme or protein. It is comprised of at least two alleles, a
bi-allelic locus, to a large number of alleles, a multi-allelic locus. (Note: gene and
locus are used interchangeably).
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Genetic Distance  The degree of genetic isolation of one subpopulation from another;
interpreted as the time since the subpopulations that are under comparison
diverged from their original ancestral population.

Genetic Drift  The change in allele frequency that results from the chance difference
in transmission of alleles between generations.

Genotype  Composed of two alleles at a particular locus, one from the mother and one
from the father. Homogeneous genotype, i.e., both alleles received from the
mother and father are the same allele or heterogeneous genotype, i.e., the alleles
received from the mother and the father are different.

Haplotype  The combination of several alleles from multiple loci.

Hardy-Weinberg Equilibrium (HWE)  The frequencies of the genotypes in the equi-
librium population. Simple products of the allele frequencies.

Heterozygosity  The proportion of heterozygotes or polymorphic loci in a population.

Identical by Descent (IBD)  How frequently two offspring share copies of the same
parental (ancestral) allele.

Inbreeding  When genetically similar (related) individuals mate more frequently than
would be expected in a randomly mating population.

Linkage Equilibrium (LE)  Random allelic association between alleles at any loci.
Considering any two loci. The probability of the combination of alleles, one
from each locus, is the same if the loci are in the same individual or in different
individuals.

Migration  The movement of individuals within and between populations.

Mutation  A change in the sequence of the bases in the DNA.

Natural Selection  The process by which the environment limits population size.

Non-random Mating (or Assortative Mating)  Mating does not take place at ran-
dom with respect to some traits. Mates can chose each other based on height,
ethnicity, age, and other physical and cultural characteristics.

Phenotype  Trait or characteristic of interest.
Polymorphism  The existence of two or more alleles with large relative frequencies

in a population (occurrence of no less than 1–2%); limiting frequency is 99%;
four ways to determine: Restriction Fragment Length Polymorphisms (RFLPs);
Minisatellites or Variable Number of Tandem Repeats (VNTRs); Microsatellites,
or Short Tandem Repeats (STRs), or Single Nucleotide Polymorphisms (SNPs).

Population Admixture  The matings of different subpopulations with different allele
frequencies.

Population Genetics  The study of evolutionary genetics at the population level.

Random Mating  Mating takes place by chance with respect to the locus under con-
sideration. The chance that an individual mates with another having a specific
genotype is equal to the population frequency of that genotype.

Recombination Fraction (θ)  The probability that the gamete transmitted by an
individual is a recombinant, i.e., an individual whose genotype was produced
by recombination.

Stabilizing Selection  Removes individuals who deviate too far from the average. It
maintains an optimal population, i.e., selection for the average individual.

Wahlund’s Principle  A decrease in homozygous individuals in a population, caused
by population subdivision.



Population Genetics — 223

Example Calculations
Disease Allele Frequency Calculations
Based on Hardy-Weinberg Proportions

Example 1:
Tay-Sachs Disease (autosomal recessive; q is disease allele):

a. U.S. Ashkenazi incidence: 1/3,900 = q2

q = 0.016, p = 1 – 0.016 = 0.984
p2 = 0.968, 2pq = 0.031, q2 = 0.00026
(Sum = 0.99926 ~ 1.0)

Gene frequency = q = 0.016,
Carrier frequency = 2pq ~ 2q = 0.032
Carriers/Affecteds = 2pq/q2 ~ 2q/q2 = 2/q = 125

b. U.S. non-Ashkenazi Caucasian incidence: 1/112,000= q2

q = 0.003, p = 0.997
p2 = 0.994, 2pq ~ 2q = 0.006, q2 = 0.000009

Gene frequency = q = 0.003,
Carrier frequency ~ 2q = 0.006
Carriers/Affecteds ~ 2/q = 667

Ashkenazi carriers/non-Ashkenazi Caucasian carriers = 0.032/0.006 = 5.3

Example 2:
Huntington Disease (Autosomal dominant; p is disease allele):

Incidence: 1/10,000 = p2 + 2pq ~ 2pq ~2p
p = 1/20,000 = 0.00005, q = 1 – p = 0.99995
Heterogygous Affecteds/Homozygous Affecteds ~ 2p/p2 = 2/p = 40,000

Determining if the Genotypes are in Hardy-Weinberg Equilibrium
by a Chi-Square Goodness of Fit Test

(Using numbers from the example given under
 Subheading “Allele and Genotype Frequencies”)

The MN Blood Group:
543 MM (phenotype M), 419 MN (phenotype MN),
and 457 NN (phenotype N) individuals (total = 1419 individuals)

There are 543 MM individuals, which means there are 543 × 2 = 1086 M alleles
being contributed. 419 MN individuals will contribute 419 M alleles and 419 N alleles.
And there are 457 NN individuals contributing 457 × 2 = 914 N alleles.

Genotype Number of individuals Genotypic frequencies

MM (phenotype M)   543 543/1419 = 0.38
MN (phenotype MN)   419 419/1419 = 0.30
NN (phenotype N)   457 457/1419 = 0.32

Total 1419 1.0

Therefore, there are 1086 + 419 = 1505 M alleles total in the population and 419 +
914 = 1333 N alleles total in the population.

So, p = f (M) = 1505/[2(1419)] = 0.53 and q = f (N) = 1333/[2(1419)] = 0.47 = 1 – p.
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A χ2 test of “goodness of fit” is performed to determine if the population is in Hardy-
Weinberg equilibrium proportions, given the values of p and q calculated above:

Phenotype Observed Expected

M 543 p2(1419) = (0.53)2 (1419) = 398.6
MN 419 2pq(1419) = 2(0.53) (0.47) 1419 = 706.9
N 457 q2(1419) = (0.47)2 (1419) = 313.4

From subheading “Hardy-Weinberg and Linkage Equilibrium,” the equation for
the chi-square goodness of fit statistic, with one degree of freedom is:

χ1
2 = Σ

genotypes

Observed – Expected 2

Expected

So, for this example,
χ1

2 = (543 – 398.6)2 /398.6 + (419 – 706.9)2 /706.9 + (457 – 313.4)2 /313.4 = 235.36.
Since the associated p-value < 0.0001, we reject the null hypothesis that the popu-

lation is in Hardy-Weinberg equilibrium.

Allelic Linkage Disequilibrium Calculations
for Two Simple, Biallelic Loci

Assume there are two biallelic loci, L1 and L2. L1 has two alleles A and a and L2 has
two alleles B and b. The total sample size is 50 (n).

Hence, there are four possible haplotypes formed between the alleles of the two
loci, L1 and L2: Ab, ab, AB and aB. The frequencies of these haplotypes are 20, 10, 5,
and 15, respectively. Then

f (Ab) = 20/50 = 0.40, f (ab) = 10/50 = 0.20, f (AB) = 5/50=0.10 and f (aB) = 15/50=0.30
(Note: The sum of these frequencies equals one.) Then, pL1 = f (A) = 20+ 5/50 = 0.50,

which means that qL1 = 1 –pL1 = f (a) = 1–0.50 = 0.50

and that pL2 = f (B) = 5 + 15/50 = 0.40,

which means that qL2 = 1 –pL2 = f (b) = 1 – 0.40 = 0.60.

Calculate the four allelic linkage disequilibria for L1 and L2.

The equation for two-locus LD, d (ij), given in the Hardy-Weinberg and Linkage
Equilibrium section,

d (ij) = f (ij) – f (i)f (j)
d (ij) = disequilibrium of allele i at locus 1, and allele j at locus 2;
f (i) = frequency of allele i at locus 1, f (j) = frequency of allele j at locus 2;
f (ij) = frequency of haplotype ij (locus 1 and locus 2);

Hence for loci L1 and L2, we will calculate d (Ab), d (ab), d (AB) and d (aB).

d (Ab) = 0.40 – (0.50) (0.60) = 0.10
d (ab) = 0.20 – (0.50) (0.60) = – 0.10
d (AB) = 0.10 – (0.50) (0.40) = – 0.10
d (aB) = 0.30 – (0.50) (0.40) = 0.10

Then, the two locus chi-square test, with one degree of freedom, is given by

χij
2 =

n d ij 2

f i 1 – f i f j 1 – f j

So, for the haplotype Ab, formed from allele A from the first locus and allele b from
the second locus,
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χAb
2  = {[50(0.10)2 ]/ (0.50)(1 – 0.50)(0.60)(1 – 0.60)} = 0.5/0.06 = 8.33.

Since the associated p–value = 0.004, we reject the null hypothesis that the two loci
are in linkage equilibrium at alleles A and b, i.e., reject the null hypothesis that d(Ab) = 0.
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13 Introduction to UNIX for Biologists

David D. Womble

Introduction

Much of the bioinformatics software described in the other chapters of this book
(for example, the GCG or EMBOSS programs; e.g., see Chapters 18, 19, and 24) is
installed on computers that have a UNIX operating system, such as Sun Solaris or
Linux. In this chapter, the reader will receive an introduction to using computers with
the UNIX operating system. This is not a comprehensive course in UNIX, but is writ-
ten for general users who want to work with UNIX computers and UNIX software.
Note that the perspective used for this chapter is that of a biologist, not a computer
scientist. After a general introduction, the reader will be presented with examples and
tutorials that will demonstrate several tasks, such as file management or text editing,
on UNIX computers using either the command line or the graphical windows inter-
face. A table of simple but useful UNIX commands is included in Appendix 3.

General Introduction to UNIX
A computer operating system is the program that allows a computer user to access

the various resources, or parts, of the computer, such as memory, hard disks, or the
display screen. It also provides the foundation for the user to install and run software
or programs, to do work with the computer.

UNIX is a computer operating system that allows a computer to be shared provid-
ing secure simultaneous access for multiple users. It is a multitasking operating sys-
tem, which means that a UNIX computer can carry out multiple tasks, such as
commands or programs, all at the same time. UNIX allows the sharing of resources
such as files and hardware across a network. Users can connect to a UNIX computer
from anywhere on the network and operate the computer from a remote location.

Because UNIX is a multi-user operating system, a UNIX computer can be used by a
group of users, either at different times or all at the same time. Each UNIX user has an
account with a username and password that are used to login to the computer. Users can
sit down in front of the computer and login using the keyboard, mouse, and monitor that
are attached to the computer. This is called logging onto the console. Alternatively,
users can connect to the UNIX computer from remote locations using terminals or ter-
minal software on other computers connected via a network, such as Ethernet.

Note: The author has no affiliation with any of the software sources listed in this chapter.
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There are several different versions of UNIX, and most of the larger computer
vendors, such as Sun, IBM, and Compaq, ship their computers with their own versions
of UNIX. Sun Solaris, a widely used version of UNIX, is one example that runs on
computers sold by Sun Microsystems. Installation and systems administration of the
Sun Solaris UNIX operating system are described in Chapters 14 and 15. Linux, an
open source UNIX-like operating system, can be installed on personal computers with
an Intel X86 processor. Most of the information in this chapter will be generally appli-
cable to most any version of UNIX. However, Solaris will be the version that is used
for the examples that follow.

On a UNIX computer, commands are used to instruct the computer to perform
tasks. There is more than one way to issue commands. Most UNIX computers have a
graphical windows interface that allows the user to use a mouse to select and execute
various actions or to start programs. However, the most basic means to operate a UNIX
computer is to use the command line to type the name of a command, followed by
pressing the return or enter key to execute the command. The graphical windows
interface and the command line of a UNIX computer can be used either at the console
or remotely through the network.

UNIX commands instruct the computer to do something. The commands act on
input, e.g., what the user types or is a file stored on the computer’s hard disk. The
result of the command is the output. The output is either displayed on the screen or is
saved in a file.

Switches are additions to the UNIX command that change the way it performs its
actions. Without a switch, the command will act in its default or normal mode. With a
switch, it will act in a different, usually more complex, way. These switches apply to
both the graphical interface and the command line. In the graphical interface, switches
are often activated by using the mouse to check boxes next to various
options. On the command line, the options are typed after the command before press-
ing the return key.

In the examples and tutorials that follow, it is assumed that the users will be con-
necting to and running programs on a UNIX computer called genetics, and that the
genetics server is running the Sun Solaris operating system and is connected to the
Internet. Other UNIX systems are similar, but some details may vary.

Logging on to a UNIX Computer

The first step is to have a user’s account set up on the UNIX computer. The
UNIX administrator, who has special privileges to manage the computer, manages
the accounts including the creation of new accounts. Systems administration for the
Sun Solaris operating system is described in Chapters 15 and 17. Once a user’s
account is set up, the user can either login at the console (i.e., at the computer itself)
or from a remote location in the network.

The most basic method to connect to a UNIX computer from a remote location
(such as from an office down the hall, from a laboratory across the campus, or from a
hotel room across the country) is a program called telnet. Telnet is a computer pro-
gram that allows the user to connect their local computer, such a personal computer, to
the UNIX computer through the network to control the UNIX computer and run pro-
grams. A basic telnet program is currently included with most computer operating
systems, and there are many examples of freeware or shareware telnet (or terminal)
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programs available. The user starts the telnet program like QVT/Term on the local
computer, then connects to the remote server by typing open genetics.

In this case, the name of the remote UNIX computer is genetics, but it would most
likely be in the format of an Internet address such as genetics.myuniversity.edu or
something similar.

Once the connection is established, the login screen would appear, similar to:

login:

The user would then enter their username (e.g., janeuser), after which would appear:

Password:

The user would then type their password. For security reasons, the password itself
does not appear on the screen. After entering the password, a UNIX command prompt
would appear, similar to this:

genetics%

The UNIX command prompt is often the name of the computer followed by the
percent sign (%). The command prompt will be at the left side of the screen on what is
referred to as the command line and, as one would expect, commands are typed on that
line to operate the computer.

Although any basic telnet program will work as described earlier, the author prefers
to use a shareware program called QVT/Term, which can be downloaded from the
Internet (see Website: http://www.qpc.com). QVT/Term is particularly good for con-
necting to UNIX servers running programs such as the GCG package (see Chapters
18, 19, 28, and 33), since it is easy to print the results from the GCG programs through
the network. Printing works well for GCG programs operated either from the com-
mand line or from the graphical windows interface for GCG called SeqLab, both of
which are described in Chapters 18, 19, 28, and 33. The QVT/Term telnet screen is
shown in Fig. 1.

Other than using telnet, the login procedure described earlier also applies to log-
ging onto the console. Either way, once the UNIX command prompt is displayed, the
user can type the names of UNIX commands or programs.

Computer Files

In general, most operations that computers carry out are done with files. Files are
pieces of information that are stored in directories (or folders) on the UNIX computer’s
hard disk(s). Files have names such as my_dna_sequence.txt. Files can contain data,
such as a DNA sequence, or they can be programs, such as one of the GCG programs
that will analyze the data in a sequence file. The following examples and tutorials
describe how to manipulate files stored on the UNIX computer’s hard disk(s).

Home Directory

After logging onto a UNIX computer, the user will be located in a folder on
the computer’s hard disk called the user’s home directory. On a multi-user UNIX
computer, each user will have their own home directory. The user is allowed to
make changes to files located in their home directory (and subdirectories thereof),
such as creating new files, editing existing files, or copying, renaming, or deleting
existing files.

WWW
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Usually, users will not be able to make changes to files except those in their own
home directories, so that one user cannot change files in another user’s home direc-
tory. An exception is the superuser. The superuser is usually the owner or administra-
tor of the UNIX computer who has special permissions to change all files on the
computer, including those of the operating system itself or of the programs that are
installed in the public areas of the computer for all users to run. Ordinary users cannot
usually change operating system files, the publicly installed programs, or even other
ordinary users’ files.

Using the Command Line

The following examples and tutorials will demonstrate how to use the command line
to operate on files and directories on a UNIX computer. The examples assume the user
has logged into a UNIX server and has the genetics% command prompt available.

To get the most out of these examples and tutorials, they should be followed in
sequence, as presented here. Please note that UNIX is case-sensitive, so it is important
to type the commands exactly as indicated. For example, on a UNIX computer, the
filenames myfile and Myfile indicate two different files, both of which may be located
in the same folder.

Where Am I? (pwd command)

To see the name of the current directory in which the user is located, the user types:
pwd and presses the return key. The result, or output, is the name of the current
working directory, which will be displayed on the screen as:
/home/joeuser

Fig. 1. The QVT/Term Telnet Screen Showing the UNIX Command Prompt.
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That indicates that the user, whose username is joeuser, is currently located in their
home directory. Their home directory is a folder named joeuser, and that folder is a
subfolder of the main folder named home. The full directory path to their home direc-
tory is /home/joeuser.

The details of the names of home directories and folders may vary depending on
how the UNIX administrator has set up the user accounts, but the results shown earlier
are typical.

In this first example of using the command line, the UNIX command was the pwd
command, and the output was the name of the current working directory. This is typi-
cal of how commands are executed, and how the output is displayed on the screen. The
other examples that follow are similar.

What Files Are In My Directory? (ls command)
To see a list of the files that are located in the user’s current working directory, the

user types the list files command ls. The result is an alphabetical list of the names of
the files in the current working directory, similar to:

file1.txt   file2.txt

Adding Switches to Change How a Command Operates
In the earlier example, the ls command was used in its default or normal mode.

Most UNIX commands have switches that change the way the command operates. In
the following examples, switches are added to the ls command to change the kind of
information listed about the files in the current working directory.

To see more information about the files, such as their size and modification dates,
the user would add the longform switch -l to the ls command. Switches are added to a
UNIX command by typing a minus sign before the switch, ls -l. The user types the
command, types a space, types a minus sign, then, without typing a space, types the
switch, then presses the return key. The result is an alphabetical list of the files with
all their longform information:

-rw-r--r--    1    joeuser   staff           10 May    7   15:51   file1.txt
-rw-r--r--    1    joeuser   staff           17 May    7   15:51   file2.txt

Although it is beyond the scope of this chapter to describe in detail all information,
the basic pieces are, from right to left: the name of the file, the time and date it was last
modified, the size in bytes, the name of the group to which the file’s owner belongs,
the username of the owner, the number of links to the file, and the read, write, and
execute permissions associated with the file.

Hidden Files (dot files)
To see a list of all the files in the current working directory, including hidden (or

dot files), the user would add the all switch -a to the ls command, ls -a. The result
would be a list of all the files in the current working directory, including those
filenames that begin with a period, or dot, for example:

. /    . . /    .dotfile1      .dotfile2     file1.txt     file2.txt

Dot files located in a user’s home directory are used to configure the operation of
programs that the user runs. For example, files named .cshrc and .login are read by the
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operating system each time the user logs in. These files are required, so they should
not be deleted. However, experienced users can edit the dot files to customize the way
various programs operate according to their preferences.

Adding Multiple Switches to the Command Line

Switches can be combined in one command. An example would be to use the all
and longform switches together with the ls command. That can be done either together
or separately, such as:

\.ls -al

ls -a -l

The output might look similar to this:

drwxr-xr-x     2  joeuser  staff                  512  May   7  15:54  . /
drwxr-xr-x   42  joeuser  staff                3072  May   7  15:53  . . /
-rw-r--r--     1  joeuser  staff                      0  May   7  15:54  .dotfile1
-rw-r--r--     1  joeuser  staff                      0  May   7  15:54  .dotfile2
-rw-r--r--     1  joeuser  staff                    10  May   7  15:51  file1.txt
-rw-r--r--     1  joeuser  staff                    17  May   7  15:51  file2.txt

The UNIX Manual (man command)

In most cases, it does not matter in which order the switches are typed after a com-
mand. However, to see the details of what switches are available and how to use them,
the user should consult the online UNIX manual by typing the man command. The
user types the man command followed the name of the command of interest: man ls.
That will display the manual about the ls command, which includes a list of all
switches available, what they do, and how to use them. To see more of the manual,
i.e., to advance to the next page, press the Spacebar key. To move to the previous
page, press the b key. To quit reading the manual, press the q key.

Adding Arguments to a Command

In the earlier example of using the man command, some additional input was
typed on the command line following the man command, i.e., the name of the com-
mand (ls) for which the manual was wanted. This additional input is called an argu-
ment. Some commands, such as the man command, require an argument on the
command line. For other commands, such as the ls command, an argument may be
optional. As an example, to list the files in the user’s home directory, the user could
type the whole name of the directory after the ls command: ls /home/joeuser . That
would list all the files in the folder named /home/joeuser.

Redirecting Output to a File (> symbol)

In the earlier examples for the ls command, the results (output) appeared on the
screen. The results can be saved to a file instead. This is called redirecting output to a
file. This is done by using the greater than symbol “>”, the user types:

ls -al > ls.out
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That will cause the results of the ls -al command to be saved into a file called
ls.out. The “>” (greater than) symbol redirects the output of the command into the
file. If two greater than symbols are used, like this:  ls -al >> ls.out , the output from
the ls -al command is appended onto the end of the file ls.out, saving the existing
data in that file.

How Can I See What’s In a File? (more and cat commands)

Use the more command to see the contents of a file, type:

more ls.out.

The more command displays the contents of a file one page at a time, e.g., the file
named ls.out created in the previous section. To see more pages (if any) press the
spacebar key. To move back a page, press the b key. To quit reading the file, press
the q key.

Use the cat command to display the entire file contents scrolled across the screen.
Type:

cat ls.out.

Using Multiple Commands on One Line (| symbol)

The cat command is not very useful by itself, but can be used in combination with
other commands. To send the results from one command into another command, the
user types the pipe symbol “ | ” like this: cat ls.out | more.

In this example, the results (output) of the cat command, instead of being displayed
on the screen, are sent (piped) into the more command, i.e., the output of the cat
command is used as input for the more command.

This example might seem a bit facile, since the more command could have been
used directly, but it illustrates a powerful capability of the UNIX command line. Expe-
rienced users can write scripts that will automatically process large numbers of files or
large amounts of data by sending the results of one command to be processed by other
commands down the line.

How Do I Copy a File? (cp command)

Use the copy command to copy a file, type: cp ls.out ls.copy.
This will make a copy of the ls.out file and name it ls.copy. Note that in this case,

two arguments are added to the cp command, the name of the file to copy, and the
name of the destination file. The result is two files, the original and the copy. Other
than its filename, it is identical to the original.

How Do I Rename a File? (mv command)

Use the move command to move a file to a new name, type: mv ls.copy junk. That
will change the name of the ls.copy file to junk.

How Do I Delete a File? (rm command)

Use the remove command to delete a file, type: rm junk. That will delete the file
named junk. Note that there is no undelete command in UNIX.
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How Do I Create a New Folder? (mkdir command)

If the user is located in their home directory, the user can use the make directory
command to create a new subfolder by typing:

mkdir Newfolder

That will create a new folder named Newfolder, and in these examples, it would
have a complete name of:

/home/janeuser/Newfolder

How Do I Change to a Different Folder? (cd command)

To go to a different directory, use the change directory (cd) command to change
from the current working directory to some other directory, for example type:

cd Newfolder
or

cd /home/janeuser/Newfolder

Either command line may take the user to the new folder. The first assumes that the
user is already in their home directory. The second will change into the new folder
from anywhere, no matter what the current working directory.

To change back to the user’s home directory from any other directory, the user
simply types the cd command without an argument.

How Do I Delete a Folder? (rmdir command)

Use the remove directory (rmdir) command to delete a folder, such as the one
created in a previous section named Newfolder. The folder must not contain any files,
i.e., it must be empty before it can be removed. Use the cd and rm commands to
change into and delete the files in the folder. Then use the cd command to change to a
different folder, such as the user’s home directory. Then delete the folder by typing:

rmdir Newfolder

How Do I Edit a File?

Any text file in a user’s home directory can be edited with a text editor. Which
editor is used depends on which text editing programs are installed on the UNIX com-
puter. Most UNIX computers have a standard text editor called vi that can be used to
edit any text file. The vi editor is powerful and has many features, but it is also fairly
difficult for a beginner to use.

An easy-to-use text editor that may be installed on many UNIX computers is called
pico. The pico text editor is what is used to edit email messages in the popular pine
email program—pico stands for pine composer. It is beyond the scope of this chapter
to explain how to use either vi or pico. However, both can be started from the com-
mand line, similar to this example:

pico textfile.txt

This command would start the pico editor and open up a file named textfile.txt. If a
file in the current working directory by that name already exists, it will open that file.
If no such file exists, it will create a new file with that name. Once the file is opened,
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it can be edited by typing new text, deleting text, cutting and pasting. Other text edit-
ing procedures can also be applied. When finished editing, the user saves the edited
file and quits the program.

How Do I Run the GCG Programs From the Command Line?

The main reason for logging onto a UNIX computer is to run programs to do useful
work. One example is the GCG sequence analysis programs. These can be run by
several different means, including the command line. Of course, the systems adminis-
trator must have already installed the GCG programs and made them publicly avail-
able to the ordinary users.

To start the GCG programs from the command line, the user usually types gcg and
presses the return key. This initializes the GCG programs, so that the user can then
type the names of GCG programs, including adding switches, just as if they were
UNIX commands. To run the restriction mapping program, the user would type:

map
map mysequence.seq

The first method simply starts the mapping program, which will then ask the user
for the name of the sequence data file to process. The second uses the name of the
sequence file as an argument on the command line, and the map program will then run
on that particular data file.

Command line use of the GCG programs, and many other kinds of programs, are
described in Chapters 18 and 19.

How Do I Logout From a UNIX Computer? (exit command)

To courteously logout from a UNIX computer, or from a telnet session connected
to a UNIX computer, type the exit command. This will shut down the login and exit
the user from the UNIX computer. One should never just close the telnet program
while connected to a remote UNIX computer, as the UNIX host might not realize the
connection is finished and keep resources open that could better be used to serve
other users.

What Other UNIX Commands are Available?

A table listing of a few simple and useful UNIX commands is included in Appen-
dix 3. Many other commands are available, but those in the appendix are generally
useful for the beginner. For those wishing to acquire more detailed information, there
are many books devoted to using UNIX for users of all skill levels, including entire
books dedicated to using the vi text editor. Additional information for UNIX sys-
tems administrators is presented (see Chapter 15).

Using the Graphical Windows Interface: X Windows

UNIX computers use a graphical windows interface called X Windows. A UNIX
computer can display its X Windows on its own local display screen or on the display
screen of some other remote computer connected via the network. Having the X Win-
dows displayed remotely allows the remote user to control the UNIX computer through
the graphical interface, using the mouse to select commands, programs, or files on
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which to operate. This is an alternative to using telnet and the command line, which
some users may prefer. In the examples and tutorials that follow, X Windows will be
used to operate files and folders on a remote UNIX computer, similar to the operations
that were executed from the command line in the earlier sections of this chapter.

The key to having the remote computer display the X Windows locally is to have
an X Windows server program installed on the local computer. Most UNIX (or
Linux) computers have some kind of X Windows server installed by default. To
display X Windows on an IBM personal computer (PC) or an Apple Macintosh
(Mac), a third party X Windows server program is required. The author uses a com-
mercial X Windows server program called XWin-32. There are more complex (and
more expensive) programs available, but XWin-32 works well with the GCG or
Staden programs (see Chapters 20, 24, 28, and 33). XWin-32 is available for down-
load from the Internet (see Website: http://www.starnet.com/products/).

Setting Up Two Computers to Use X Windows

In the following examples, the user is assumed to be using a local computer that
can connect to a remote UNIX computer through the network. The local computer can
also be a UNIX or Linux computer, but it can also be a PC or Mac with X server
software installed. The author prefers to use QVT/Term to connect and login to the
remote UNIX computer, and start the X programs by typing them on the command line.
The X Windows from the remote UNIX computer will be displayed on the user’s local
computer display screen.

There are three steps required to use X Windows: 1) set up the local computer to
receive X Windows from a remote computer; 2) tell the remote UNIX computer
where to display its X Windows; 3) run the X Windows programs on the remote
computer.

For the first step, the user must install an X server program on their PC or Mac, or
be using a UNIX or Linux computer with built-in X server software. On a local PC
or Mac, the user then starts the X server program and leaves it running, ready to
accept X Windows from a remote computer. From the console, often on a local
UNIX or Linux computer, the user types the xhost command, example:

xhost +

That toggles on the xhost function. For more security, the user can add the Internet
(IP) address of the remote computer to the xhost command line. This will restrict X
displays to that particular computer. To turn off the xhost feature, the user types:

xhost –

The details of using the xhost command may vary, but are contained in the manual
pages that are part of the operating system. They can be viewed by entering the man
xhost command.

For the second step, the user must tell the remote UNIX computer the Internet (IP)
address of their local computer. So, it is necessary to find out what that local IP address
is. That usually can be done by looking in the network configuration control panel of the
local computer, but it may require help from the local network administrator.

The easiest way to use X Windows programs on the remote computer is to first
login to the remote computer using telnet as described earlier in this chapter. Once
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logged on, the user can tell the remote UNIX computer where to display its X Win-
dows by setting the DISPLAY environment variable by typing on the command line:

setenv DISPLAY my.ip.address:0

Substitute the local PC’s IP address, and don’t forget the :0 at the end. That sets
an environment variable called DISPLAY to the value of the PC’s IP address. If the
user always connects from a PC with the same IP address, the user can put that line
in their .login file.

Alternatively, one can set up the X server program on the PC to include all the display
information along with the X program that will be remotely executed. Although that can
be convenient, it does require extra effort.

It may also be necessary to set another environment variable, which can be done
by adding this line to the user’s .cshrc file:

setenv LD_LIBRARY_PATH /usr/openwin/lib

The details of what needs to be on that line may vary with the particular UNIX
computer, so the user should consult with the UNIX systems administrator.

Running X Programs on the Remote UNIX Computer

Having accomplished the first and second steps needed to set up two computers to
run X Windows as described earlier in this chapter, a user can type the name of any X
program on the command line (of the remote computer), for example:

filemgr &

That will start the Sun graphical file manager program, which will display on the
user’s local computer screen. The user can then use their mouse to accomplish the tasks
outlined in the examples and tutorials. The & on the end of the command line causes the
filemgr program to run in the background, so that other commands can be typed from the
command prompt.

Alternatively, the user could build an executable command icon on their local
computer screen using the X server software. The icon would include the name of
the remote host, the remote execution method, and the following command line:

/usr/openwin/bin/filemgr -display your.ip.address:0 &

Selecting  this  single icon will accomplish everything described above. Different
icons can be created for each X program that the user wishes to run on the remote
computer.

Using the Graphical File Manager

The Sun graphical file manager window is shown in Fig. 2. When filemgr starts, the
user is located in a folder on the hard disk called their home directory. Their home
directory is usually something like /home/joeuser.

How Can I See Information About My Files?

There are several different ways to display information in the File Manager win-
dow. For example, using the mouse, right click on the View menu, then left click on
List by Name. To see the hidden files as well, right click the Edit menu, left click
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on Properties, then in the new box, right click the Category button, then left click
on Current Folder Settings, and click on Show next to Hidden Files, click the X in
the upper right, then click on Apply Changes to apply the changes you just made.
The user should see all the longform information about all their files in the File
Manager window. Reverse the steps and click on Icon by Name under the View
menu to return to the original view.

How Can I See What’s In a File?

Using the mouse, left click once on a file to select it, then right click on the File
menu, then left click on Open in Editor. The file will open in the X graphical text
editor. Use the mouse to scroll through the contents. Left click the X in the upper right
to close the file.

How Do I Copy a File?

Left click once on a file to select it, right click on the Edit menu, left click on
Copy, right click on the Edit menu, left click on Paste, then click on Alter name.
Type in a different name if desired.

How Do I Edit a File?

Left click once on a file to select it, then right click on the File menu, then left
click on Open in Editor. Or if it is a plain text file, just double click on the file. Edit
as you like, using the mouse to select text to cut, copy, or paste. To save the changes,
right click on File, then left click on Save or Save as. Left click the X in the upper
right to close the editor.

Alternatively, from the telnet and the UNIX command prompt, type textedit & to
start the text editor program, independently of the File Manager. After the editor opens,

Fig. 2. The Sun Graphical File Manager Window.
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right click on the File menu, left click Open, left click on the file to be edited, and left
click on Open. Left click the X in the upper right to close the editor.

How Do I Rename a File?

Left click on the name of the file, then type the new name and press enter.

How do I Delete a File?

Left click once on a file to select it, right click on the Edit menu, left click on
Delete. Note that unlike deleting a file from the command line, the deleted file is saved
into the Waste Basket, from which it could be later retrieved.

How Do I Create a New Folder?

Right click on the File menu, left click on Create Folder, then type the name for
the new folder and press enter. To create a new file, click on Create Document.

How Do I Change to Other Folders?

Double click on the folder you want to change to, or type the name of the folder on
the Go to line. Alternatively, right click on the Go to menu, then click on one of the
folders listed, or on Home directory.

How Do I Exit From the File Manger Window?

Left click on the X in the upper right, click on Quit File Manager, then click on
Yes to empty the files from the waste.

How Do I Start the GCG SeqLab Interface?

Assuming that the GCG programs are installed on the remote UNIX computer, and
that the user is connected via telnet and X Windows is configured as described, you
first initialize the GCG programs from the command line by typing:

gcg

Once the GCG programs are activated, start the SeqLab program by typing:

seqlab &

That will start the SeqLab interface and display the SeqLab window on the user’s
local computer screen. The SeqLab Window is shown in Fig. 3.

The GCG SeqLab window allows the user to operate the GCG suite of sequence
analysis programs by using the mouse to select sequences and programs. Using the
GCG programs from both the command line and from SeqLab are described in sub-
sequent Chapters 18, 19, 28, and 33.

Many users find using the X Windows interface easier than using the command
line. However, experienced users may prefer to use the command line for several
important reasons. For example, from the command line, it is possible to run pro-
grams reiteratively with the use of switches. This permits a high degree of automa-
tion that is not usually possible when running programs one by one from a graphical
interface, or from the web.
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Other Resources

As mentioned earlier, there are many books devoted to using UNIX available, for
readers of all skill levels. In addition, for users of the GCG programs, the GCG manu-
als contain good basic introductions to using UNIX both from the command line and
with X Windows, with particular emphasis on how to use UNIX for the purposes of
running the GCG programs. The GCG manuals are usually available online at most
installations, via the Internet in either HTML or in PDF format, or both, so the users
can look up or print the information that is of interest to them.

Fig. 3. The GCG SeqLab X Windows Interface.
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Installation of the Sun Solaris™
Operating Environment

Bryon Campbell

Introduction

We will focus on the installation tasks for Solaris 8 on Intel® and SPARC® proces-
sor systems. Information for Sun Solaris™ running on SPARC® architecture is
detailed at Website: http://www.sun.com/solaris and for Intel at Website: http://
www.sun.com/intel. Additional documentation for Sun Solaris™ can be found at
Website: http://docs.sun.com. As always, your User and System Administration
Guides that are part of any Solaris purchase or locally available UNIX/Solaris™
experts are excellent resources.

Sun Solaris™ System Installation

Prior to installing the Solaris8 Operating Environment, fundamental system design
decisions are required to ensure the installation process will be smooth.

• Define system use.
• Determine the SPARC® or Intel® hardware platform you will use.
• Determine how much disk space will be needed and how it will be partitioned.
• Determine how your system will be connected to your network.

System Use
Before you proceed you must determine how the system will be used. If the system

will be used to develop applications, you will need plenty of processor speed and
physical memory. If your intent is to have the system available for multiple users, you
will need to plan for the correct amount of disk space to support their storage needs. If
the system is also used as an application server, you will need to adjust the system
hardware to meet the computational needs of the applications. Your local hardware
vendor or Information Technology support organization can also assist you.

Hardware Platform
The Solaris™ operating system was first supported on the SPARC® platform. The

first SPARC® systems were the SPARC® 5, 10, and 20. These systems were eventu-
ally replaced by faster UltraSPARC® systems that achieved speeds of 400 MHz and

WWW
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greater. It wasn’t until Solaris™ version 2.1 that the Intel® architecture was sup-
ported, so that one could now install Solaris™ in dual boot mode on their Intel-based
system. Potential Solaris Intel® x86 users should verify ISA, EISA, and PCI hard-
ware compatibility in the Solaris 8 Operating Environment (see Website: http://
access1.sun.com/drivers/hcl/hcl.html).

Disk Configuration
Before you decide on a disk-partition scheme, you will first need to decide the

distributions that you will be installing. There are four distributions to choose from,
see Table 1 for disk space recommendations.

The smallest distribution will work well for environments that do not require
applications development. If you plan to develop applications it would be wise to
install the entire distribution with the OEM (original equipment manager). Keep in
mind that disk space is relatively inexpensive.

When partitioning the disk, there are five common partitions that will be created.
These partitions should be a minimum of 300 MB and could extend in size to 1 GB +,
depending on need. The partitions are as follows:

• / –   This is the root partition. This is also the top-level directory. Root is where all
files that support the OS reside.

• /home  The partition contains the user files. Directories below the home level
will contain user specific information for users with accounts on the system.

• /opt  This location contains the optional applications. Depending on how many
optional applications are stored, this area could require substantial disk space.

• /usr  This partition contains the utilities used in the Solaris operating system. The
/bin and /sbin directories are where most of these utilities are located.

• /var  This directory contains the log files, mail files, and print files. If your
system is providing print services, you will need to ensure this partition is quite
large so that it may accomodate the spool files associated with printing.

• /etc  This serves as the location for machine specific configuration files.

As emphasized, disk space has become relatively inexpensive. You should buy a
large disk, containing 10’s of GB’s, to minimize future growth issues as you develop
and or host additional users.

WWW

Table 1
Software Distribution

Distribution Size in MB

End User Support (smallest) 363 + swap space

Developer Support 801 + swap space

Entire Distribution 857 + swap space

Entire Distribution and OEM 900 + swap space
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Network Connectivity

As you install the Solaris™ Operating Environment, you will be asked to provide
network configuration parameters to complete the installation. The basic parameters
that will be needed are:

• Hostname: The name you give to your system.

• IP Address: The Internet Protocol (IP) address that provides network access to
your machine.

• Domain Name: The name that uniquely identifies your system on the Internet.
The fully qualified format is hostname.domainname.com.

• Subnet Mask: In environments with multiple networks or systems, the subnet
mask is required to connect to other systems outside of your subnet. Your net-
work administrator can provide detailed information.

• Default Router (Gateway): This provides the network path to systems outside
of your network or subnet. Your network administrator can provide detailed
information.

Note: If your site utilizes the Dynamic Host Configuration Protocol (DHCP), your
system would automatically configure everything except the hostname.

Methods for Installation

There are three options for installing the Solaris™ Operating Environment: Solaris
Interactive Installation, Jumpstart, and WebStart.

The Solaris™ Interactive installation can be completed on both SPARC® and Intel®

platforms. There are two modes for installation, graphical and text mode. Availability
of these modes will depend on the capability of the monitor and the keyboard con-
nected to the system you are installing. The installation procedures are identified for
both platforms.

The Jumpstart installation is typically used for large Solaris™ installations, where
another server has been pre-configured to install Solaris™ on new machines. You will
want to work with your local system administrator to see if this is an option for you.

The WebStart installation provides a Java-based interface that walks you step by
step through the installation process. The system requirements are higher than the
minimum hardware requirements set forth by Sun. The Sun installation manual can
provide additional WebStart information. A sample WebStart installation is pre-
sented below.

Installing the Solaris Operating Environment Using WebStart

There are two ways to accomplish a WebStart Installation. You can use the graphi-
cal user interface or the command line interface. The graphical installation requires
a local or remote CD-ROM drive, network connection, keyboard, frame buffer, and
graphics monitor.

With the command line interface, you have the same requirements except that a
graphics monitor and frame buffer are not required. The sequence of instructions for
both the graphical and command line interface installation are very similar. Figures 1
and 2 show sample screen shots.
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Pre-Installation Steps
To determine how to install Solaris™, you will need to answer 5 key questions.

1. Where is the Solaris™ software source?
In other words is there a CD-ROM drive attached to your system or a remote
CD-ROM drive on the network.

2. Is the hardware platform you are installing supported on Solaris™?
To answer this question, see the Solaris™ Hardware Platform Guide. Also, if
your system is on the network, you will need to contact your system adminis-
trator to gather the information outlined in Table 2.

3. What Solaris™ components are you going to install?
Disk space recommendations are listed in Table 3.

4. What language will you be using?
Solaris™ Multilingual SPARC® supports the following languages: Chinese
(simplified and traditional), English, French, German, Italian, Japanese,
Korean, Spanish, and Swedish.

5. Is this an upgrade or a new installation?
During the installation process you will be asked if this is an initial or
upgrade installation.

Once the file copy process is complete you will see the following screen (Fig. 3).

Running WebStart
After the Welcome Screen, click the Next button on the graphical display. WebStart

will start gathering information to complete the installation.

Fig. 1. Sample screen shot of the Graphical User Interface (GUI) Time Zone Dialog Box.

Fig. 2. Sample screen shot of Command-Line Interface (CLI) Time Zone Dialog Box.
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Table 2
Networking Parameters

Information Example Solaris commands

Host Name jordan uname -u
Host IP address 10.14.121.115 ypmatch system_name hosts or

nismatch system_nameHosts.org_dir
Subnet mask 255.255.255.0 more /etc/netmasks
Type of name service group: files nis cat /etc/nsswitch
     (DNS, NIS, NIS+) passwd: files nis
Domain name university.edu domainname
Host name of the name server brandan ypwhich
Host IP address of the name server 10.14.110.5 Ypmatch names_server hosts or

Nismatch name_server hosts.org_dir

Table 3
Disk Space Recommendations

Software Recommended disk space

Distribution Plus OEM Support 2.4 Gbytes
Distribution Only 2.3 Gbytes
Developer Support 1.9 Gbytes
End User Support 1.6 Gbytes

 Fig. 3. Welcome Screen.

The next few steps will configure, the network portion of the installation as shown
in Figs. 4–20. Figure 4 begins the process with network connectivity.

If your system will not be connected to a network, then select Non-networked. If
you select Networked, then you will be asked to answer a few more questions. You
will need all the information in Table 2. At the screen shown in Fig. 5, you will type in
the host name of your system. If you have questions with this step or other steps please
see your site system administrator.
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The next step will configure network addressing. The dialog box (see Fig. 6), will
ask if you wish to use Dynamic Host Control Protocol (DHCP). The advantage in
using DHCP is that it configures the network settings automatically for you. This
eliminates potential human error that may occur. If you select No at the DHCP Screen,
you will be required to input all necessary network configuration values.

The next screen will require that you input the IP address for your system (see
Fig. 7). Input the IP address that the system or network administrator has provided
for your machine.

The next screen, shown in Fig. 8, specifies your net mask or subnet mask. Input
the Netmask or Subnet mask for your system, the default value is 255.255.255.0. In
some cases the subnet mask will be different depending upon the sites network con-
figuration. This can be verified with your administrator.

The next screen (see Fig. 9), requires a yes/no response to enable the IPv6, the next
generation Internet Protocol. It is suggested that you select No unless your site is
using this new protocol.

Fig. 4. Network Connectivity.

Fig. 5. Host Name.
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Fig. 6. Dynamic Host Control Protocol (DHCP).

Fig. 7. IP address.

Fig. 8. Netmask or Subnet Mask.
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The screen shown in Fig. 10 allows you to select the preferred name service for
your system. The name service provides friendly name resolution to a physical IP
(network) address.

As indicated, the domain name is requested next (see Fig. 11). Selecting DNS,
NIS, or NIS+ will require you to enter a Domain Name. An example of a domain
name would be “university.edu”. The fully qualified name of the machine would be
“jordan.university.edu.” with “jordan” as the hostname.

If you selected NIS or NIS+ you will be able to specify the name server or it will try
to find a name server on your subnet (see Fig. 12).

If you selected DNS for the name service you will need to input the IP address of
the DNS server. You can input as many as three different DNS server addresses
(see Fig. 13). Primary and secondary servers are recommended to provide alterna-
tive access in case of a DNS server failure. Your network administrator can provide
the IP addresses.

If you selected NIS or NIS+ you will need to input the host name and the IP
address of the NIS or NIS+ server (see Fig. 14).

Fig. 9. IPv6, the next generation Internet Protocol.

Fig. 10. Name Service.
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Fig. 11. Domain Name.

Fig. 12. Name Server, Find one.

Fig. 13. DNS Server Address.
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The screen shown in Fig. 15 will allow you to input the geographic region, offset
from GMT or a Time Zone File. Time zone files are usually located in the /usr/share/
lib/zoneinfo directory.

From the next screen you will need to input the year, month, day, hour, and minutes
(see Fig. 16). This will set the local time for your system.

The screen in Fig. 17 is where you input the superuser password for your system.
Please guard this password with the highest level of security. It is the highest level
of access to the system. A typical password contains both letters and characters in
both upper and lower case. Remember, the Solaris™ (UNIX) operating environ-
ment is case sensitive.

Power management software automatically saves the state of the system after it has
been idle for 30 min. The software is installed by default and requires the user to either
enable or disable the feature (see Fig. 18).

Next, there are two selections for connecting to the Internet, direct connection via a
gateway or a proxy server. If you select proxy server, you need to provide the host

Fig. 14. Name Server Information.

Fig. 15. Time Zone.
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Fig. 16. Date and Time.

Fig. 17. Root Password.

Fig. 18. Power Management.
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Fig. 19. Proxy Server Configuration.

Fig. 21. Main Menu.

Fig. 20. Confirm Information.



Sun Operating Environment — 259

name and the port your proxy server is on (see Fig. 19). Your local network adminis-
trator can advise.

The screen shown in Fig. 20 allows you to verify the settings before they are com-
mitted to the system. When you click on the Confirm button, the system will write the
configuration information to the system. The back button permits scrolling to previ-
ous screens, to change configuration parameters.

Once  you have confirmed your settings, you have completed the operating sys-
tem installation (see Fig. 21). You are now ready to work in the Solaris™ Operating
Environment.

Glossary and Abbreviations

Application  Is a program designed to perform a specific function directly for the
user or, in some cases, for another application program. (Examples of applications
include word processors, database programs, Web browsers, development tools, draw-
ing, paint, image editing programs, and communication programs).

CD-ROM  (Compact Disc, read-only-memory) is an adaptation of the CD that is
designed to store computer data in the form of text and graphics, as well as hi-fi
stereo sound.

Command Line Interface (CLI)  Is a user interface to a computer’s operating
system or an application in which the user responds to a visual prompt by typing in a
command on a specified line, receives a response back from the system, and then
enters another command, and so forth.

Default Router  Is a device or, in some cases, software in a computer, that deter-
mines the next network point to which a packet should be forwarded toward its desti-
nation. The router is connected to at least two networks and decides which way to
send each information packet based on its current understanding of the state of the
networks it is connected to.

DHCP  Dynamic Host Configuration Protocol. DHCP is a communications proto-
col that lets network administrators manage centrally and automate the assignment of
Internet Protocol (IP) addresses in an organization’s network. Without DHCP, the IP
address must be entered manually at each computer and, if computers move to another
location in another part of the network, a new IP address must be entered.

DNS  The Domain Name System. DNS is the way that Internet domain names are
located and translated into Internet Protocol addresses. A domain name is a meaning-
ful and easy-to-remember “handle” for an Internet address.

Domain Name  A domain name locates an organization or other entity on the
Internet. For example, the domain name   www.cnn.com locates an Internet address
for “cnn.com” at Internet address: 64.236.24.20.

Dual Boot  A dual boot system is a computer system in which two operating sys-
tems are installed on the same hard drive, allowing either operating system to be loaded
and given control. When you turn the computer on, a boot manager program displays
a menu, allowing you to choose the operating system you wish to use. A boot manager
works by replacing the original Master Boot Record (MBR) with its own so that the
boot manager program loads instead of an operating system.

EISA  Is a standard bus (computer interconnection) architecture that extends the
ISA standard to a 32-bit interface. It was developed in part as an open alternative to
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the proprietary Micro Channel Architecture (MCA) that IBM introduced in its PS/2
computers. EISA data transfer can reach a peak of 33 megabytes per second.

Giga Byte (GB)  A gigabyte is a measure of computer data storage capacity and is
“roughly” a billion bytes.

GMT  Is the standard time common to every place in the world. Formerly and still
widely called Greenwich Mean Time (GMT) and also World Time, This nominally
reflects the mean solar time along the Earth’s prime meridian. (The prime meridian is
0° longitude in the 360 lines of longitude on Earth.

Graphics Monitor  A monitor that is capable of displaying graphics.
Hostname  Any computer that has full two-way access to other computers on the

Internet. A host has a specific “local or host number” that, together with the network
number, forms its unique IP address. In this context, a “host” is a node in a network.

IP  Internet protocol.  The Internet Protocol (IP) is the method or protocol by
which data is sent from one computer to another on the Internet. Each computer
(known as a host) on the Internet has at least one IP address that uniquely identifies
it from all other computers on the Internet. When you send or receive data (for
example, an e-mail note or a Web page), the message gets divided into little chunks
called packets. Each of these packets contains both the sender’s Internet address and
the receiver’s address.

IP Address  An IP address has two parts: the identifier of a particular network on
the network and an identifier of the particular device (which can be a server or a
workstation) within that network.

ISA  Industry standard architecture. ISA is a standard bus (computer interconnec-
tion) architecture that is associated with the IBM AT motherboard. It allows 16 bits at
a time to flow between the motherboard circuitry and an expansion slot card IPv6
IPv6 (Internet Protocol Version 6) is the latest level of the Internet Protocol (IP) and is
now included as part of IP support in many products including the major computer
operating systems. IPv6 has also been called “IPng” (IP Next Generation).  Network
hosts and intermediate nodes with either IPv4 or IPv6 can handle packets formatted
for either level of the Internet Protocol. The most obvious improvement in IPv6 over
the IPv4 is that IP addresses are lengthened from 32 bits to 128 bits. This extension
anticipates considerable future growth of the Internet and provides relief for what was
perceived as an impending shortage of network addresses.

JAVA  Java is a programming language expressly designed for use in the distrib-
uted environment of the Internet. It was designed to have the “look and feel” of the
C++ language, but it is simpler to use than C++ and enforces an object-oriented pro-
gramming model.

Name Server  A server much like a DNS Server that translates Host Names to IP
Address or IP Address to Host Names.

NIS  Network Information System. NIS is a network naming and administration
system for smaller networks that was developed by Sun Microsystems. NIS+ is a later
version that provides additional security and other facilities. Using NIS, each host
client or server computer in the system has knowledge about the entire system. A user
at any host can get access to files or applications on any host in the network with a
single user identification and password.

OEM  An OEM (original equipment manufacturer) is a company that uses product
components from one or more other companies to build a product that it sells under its
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own company name and brand. IBM is an example of a supplier to the OEM market
(and IBM is also an OEM itself since it uses other companies’ parts in some of its
products).

PCI  Peripheral component interconnect. PCI is an interconnection system between
a microprocessor and attached devices in which expansion slots are spaced closely for
high-speed operation.

Proxy Server  A proxy server is a server that acts as an intermediary between a
workstation user and the Internet so that the enterprise can ensure security, adminis-
trative control, and caching service. A proxy server is associated with or part of a
gateway server that separates the enterprise network from the outside network and a
firewall server that protects the enterprise network from outside intrusion.

SPARC®  Scalable processor architecture. SPARC® is a 32- and 64-bit micropro-
cessor architecture from Sun Microsystems that is based on reduced instruction set
computing (RISC). SPARC® has become a widely used architecture for hardware used
with UNIX-based operating systems, including Sun’s own Solaris systems.

Solaris™  Solaris™ is the computer operating system that Sun Microsystems pro-
vides for its family of Scalable Processor Architecture-based processors as well as for
-based processors.

Subnet Mask  is an identifiably separate part of an organization’s network. Typi-
cally, a subnet may represent all the machines at one geographic location, in one build-
ing, or on the same local area network (LAN).

Superuser  A user that has administrative privileges on the system.  The superuser
account can perform any function on the system.

UNIX  is an operating system that originated at Bell Labs in 1969 as an interactive
time-sharing system. Ken Thompson and Dennis Ritchie are considered the inventors
of UNIX.

x86  Is a generic name for the series of Intel® microprocessor families that began
with the 80286 microprocessor. This series has been the provider of computing for
personal computers since the 80286 was introduced in 1982. x86 microprocessors
include the 386DX/SX/SL family, the 486DX/SX//DX2/SL/DX4 family, and the
Pentium 3 family.
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Sun System Administration

Bryon Campbell

Introduction

This chapter will describe the basic day-to-day administrative tasks necessary to
manage a single or multi-user system. The primary source of information has been
gathered from the Sun documentation website and the experience of the author
(see Website: http://docs.sun.com). Additional and detailed information is always
available as part of your Solaris™ User and System Administration Guides or local
UNIX/Solaris™ experts.

User Administration

Managing User and Group Account Databases
One of the main tasks for the system administrator is to manage user access to the

Solaris™ system(s). This includes the creation of user accounts, password changes,
and user security. The file that contains this information is located in the directory:
/etc/passwd.

The file format is text and utilizes single lines of information to define each user.
The format for the information is: username:x:uid:gid:commment:home_
directory:login_shell. Table 1 describes the field names for the passwd file.

In many cases there are system parameters that predefine the minimum and maxi-
mum values for user accounts and passwords.

The User Account is defined by the username that uniquely identifies the user who
is logging into the system and accessing resources. The author recommends that the
system administrator defines a standard for usernames. This will reduce the potential
for problems as the user base grows.

The Password is the parameter that authenticates the user to permit access to the
system. Again the author recommends defining a standard for passwords (e.g., mini-
mum length and combination of characters and numbers). The location for the
encrypted password file is in: /etc/shadow. This file is only accessible by the root user
(highest level of access).

The format of the /etc/shadow file is much like that of the /etc/passwd file:
username:password:lastchg:min:max:warn:inactive:exprire:flag. Table 2 describes
the various fields.



2 6 4 — Campbell

The User ID uniquely identifies each user on the system. This is analogous to the
name, associated with the user’s account. The range for UIDs is quite large, 0 to
approx 2.1 billion. Solaris™ reserves ranges of IDs for administrative purposes as
shown in Table 3.

The Group IDs are similar to the UID but it identifies a group of users. This allows
a system administrator to apply security to resources to which a group of users have
access. It minimizes the amount of administration that would be required to apply
security privileges to each individual user (UID).

The GID information is stored in the /etc/group file as shown in Table 4. It emu-
lates the format used in the /etc/passwd and /etc/shadow files: groupname:
password:gid:user_list.

Table 2
/etc/shadow File Fields

Field Name Description

Username Unique username

Password 13 character encrypted string—users password

Lastchg Date password was last changed

Min Minimum days required between password changes

Max Maximum days the password is valid

Warn Number of days the user is warned of password expiration

Inactive Number of days the account can be inactive (no login). If left blank the
account will always be active

Expire Expiration of the account should be set for temporary or contract workers

Flag Not in use

Table 1
/etc/passwd File Fields

Field Name Description

Username Unique username

X Locator for users encrypted password

Uid user identification number—used to define user system security

Gid group identification number—used to define the security group to which the
user belongs

Comment Holds additional information about the user or user account

home_dir Directory that the user has been assigned for storing resources (e.g., files
or programs)

login_shell Defines the users default login shell (e.g., sh, csh, ksh)
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Managing User and Group Accounts
There are several commands that are used to manage user accounts. For illustra-

tive purposes the use of a few commands will be demonstrated. All options are case-
sensitive.

The useradd “username” command is executed by the root user (e.g., useradd
christina). This command would create a user named “christina”. There are several
parameters that can be passed in the command line as shown in Table 5. These could
also be used to change user parameters with the usermod command.

Table 4
GID Parameters

Field Name Description

Groupname Symbolic name of the group (maximum of 8 characters)
Password Not used in Solaris 8, carry over from previous Solaris operating systems
Gid Unique numerical number
User_list Comma separated list of users

Table 3
Reserved Solaris™ UIDs

UID Description

0 Root or superuser
1–99 Daemons and system maintenance processes
60001 Special user access nobody, used in specific maintenance activities
60002 Special user access noaccess, used in the same way as nobody
65534 Special user access nobody4, used for backward Solaris operating system compatibility.

Table 5
useradd or usermod Parameters

Option Parameter Name Description

-c comment User comment

-d pathname Path for user home directory

-g groupname or GID Default groupname or group ID for the user

-e expire Expiration for the user account
-f inactive Maximum inactivity period for a user account

-u UID UID to use for the user

-s shell Default login shell

-l newname Used to change user name
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The usermod “option” “username”  command permits the root user to change
the characteristics associated with a specific user account. The parameters listed in
Table 5 can be applied to usermod command.

The userdel “username” command is used to delete a specific user account. This
command deletes the account from the system but does not remove any resources
associated with the account.

The passwd “option” “username”  command is used to change a users pass-
word. The passwd command can be executed by the account owner or the root user.
An example of the parameters that can be used with the passwd command are shown
in Table 6.

The groupadd -g “gid” “groupname” is similar to the useradd command. This
command will create a group when provided a group ID (GID) and groupname.

The groupmod -n “newname” “currentgroupname” command will change the
name of a current group.

The groupdel “groupname” deletes a group from the system.

System Process Administration

System processes are also known as daemons. Daemons are processes that allow
the Solaris™ Operating Environment to be single and multi-user systems. They are
the traffic cops of the operating system. These processes make computer resources
available, manage interactions with other processes, in order to keep them from crash-
ing into one another. They are the backbone of any operating system.

System Startup and Shutdown
There are several modes of operation when the Solaris system starts up. The init

daemon is crucial to this process as init controls the initialization of the system. The
initialization process and parameters are settable from the /etc/inittab file. The main
function of init is to spawn the necessary daemon processes from the configuration
file /etc/inittab.

Information stored in the inittab file handles many situations that arise during the
boot process, (see Table 7).

Shutdown has been made easy with the shutdown command. The parameters for
the shutdown command are: #shutdown -i “run_level” -g “grace_period” -y, where
-i specifies the run level for the shutdown (see Table 8), -g specifies the period of time
before the shutdown starts, and -y supplies the confirmation parameter for shutdown.
If this is omitted the system will ask if you want to really shutdown.

Table 6
passwd Parameters

Option Parameter Name Description

-f username Force the user to change password at next logon

-x days username Number of days the password is valid

-w days username Number of days before the password expires

-n min username Number of days a user has to wait to change their password
-l username Locks the specified user account
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Startup and Shutdown Run Levels
The systems run level or init state defines what services will be made available

during startup or shutdown. Solaris™ has eight run levels defined in the /etc/inittab
file. Table 8 describes the eight available run levels.

System Process Management
System processes are applications that run in support of the operating environ-

ment. These processes manage or control files, security, printing, network, and user
applications. Solaris™ is a UNIX-based operating system and supports a multi-user

Table 8
Solaris Run Levels

Run Level Init State Type Description

0 Power Down Power-down Shutdown system to safely power off system

1 Administrative Single-user Access to user files with user logins

2 Multi-user Multi-user Normal operations, multiple users except the
NFS daemon does not start

3 Multi-user with NFS Multi-user Normal operation with NFS daemon started

4 Alternative Multi-user Multi-user Currently not in use

5 Power Down Power-down Shutdown system to safely power off system
with automatic power off if available

6 Reboot Reboot Shutdown system and reboot to multi-user
state

s or S Single-user Single-user Start as single user system with all resources
available

Table 7
init Actions

Action Description

boot Initialization of a full reboot

bootwait Transition from single-user to multi-user system

initdefault Default run level (on all systems)

off Ensures process termination
ondemand Similar to re-spawn

powerfail State when a power failure is detected

powerwait Waits for process to terminate

respawn Ensures specified process are running

sysinit Safeguard to allow administrator to specify run level

wait Starts a process and waits until it’s started
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environment. These system processes ensure that everyone who is accessing the
system is provided a secure portion of the environment enabling them to perform
the tasks they are trying to accomplish.

There are many tools available in Solaris™ to assist system administrators with
the management of the system. In the UNIX environment users have the ability to
spawn, i.e., create new process. This sometimes creates problems and system admin-
istrators need tools that enable them to monitor or delete processes that are depleting
system resources.

The most useful command is the ps command. There are many “case sensitive”
parameters that can be passed with the ps command that will allow the system
administrator to analyze the current state of the system. Table 9 shows a list of the
parameters and what they provide.

Signals can also be sent to specific process that will stop or halt errant processes
using the kill command. There are two parameters that are used to affect running
processes. All signals are defined in the <signal.h> file. In kill “signal_type” “pid”,
a #kill -9 235 command would kill process 235, whereas a #kill -3 236 command
would kill process 236. Note: -9 terminates any process; -3 exits a process gracefully.

Network Basics

A network is the glue that connects systems together. The following basic network-
ing concepts and commands are outlined.

Network Layers
There are several communication layers that achieve the connectivity that is needed

to share information between one or more systems. Network protocols are the basic
components that constitute the various network layers. These protocols are used to
ensure that information is delivered via the network in a timely and accurately manner
(see Table 10).

Table 9
ps Parameters

Parameter Name Description

-a Frequently requested processes
-e or -d All processes
-c Processes in scheduler format
-f  or - l Complete process information
-g or -G Group information
-j SID and PGID
-p Processes for a specific process
-s Session leaders
-t Specific terminal process information
-u Specific user process information
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As outlined in Table 10, each layer has a specific function as follows:

• Application, is where applications reside. It is the end user interface to the oper-
ating system (UNIX, LINUX, etc).

• Presentation, isolates the lower layers from the application data format. It con-
verts data from the application into a common interchangeable format.

• Session, organizes and synchronizes the exchange of data between application
processes. The session layer can be thought of as a timing and flow control layer.

• Transport, provides the transfer of data from a source end open system to a desti-
nation end open system. It establishes, maintains, and terminates communica-
tions between two machines while maintaining data integrity.

• Network, provides physical routing of the data, determining the path between the
systems. The network layer handles all routing issues. The routing function will
evaluate the network topology to determine the best route to send data.

• Data Link, monitors the signal interference on the physical transmission media. It
also detects and in some cases corrects errors that occur, and provides the means
to control the physical layer.

• Physical, is the lowest layer of the 7-layer OSI model representing the media and
electrical components required for the transmission of data.

TCP/IP
The Transmission Control Protocol/Internet Protocol (TCP/IP) is the backbone of

most networks today. It has become the standard for Internet-based network commu-
nications. This network protocol enables heterogeneous systems to communicate with
one another. The Transmission Control Protocol (TCP) is a communications protocol
that provides reliable exchange of data. It is responsible for assembling data passed
from higher-layer applications into standard packets to ensure that the data is correctly
transferred. Whereas the Internet Protocol (IP) moves the packets of data assembled
by TCP across networks. It uses a set of unique addresses for every device on the
network to determine its destinations and routing.

Table 10
Network Layers

  Network Layers Layer Function

  Application
  Presentation Application data
  Session

  Transport Host to host communications
  Network

  Data Link
Network access

  Physical
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Network Addressing
The IP address is a 32-bit address that is divided into two sections: the prefix for

network address and the suffix for host address. This is designed to make IP packet
routing extremely efficient. IP addresses are presented in dotted decimal notation. The
dotted decimal address range is from 0.0.0.0 through 255.255.255.255. IP Addresses
are grouped in classes, as shown in Table 11.

With the expansion of the Internet there are currently only class ‘C’ addresses avail-
able and the standards committee is considering various means to extend the address
space to meet the growing demand.

Network Services
There are other components of the TCP/IP Protocol that enable network adminis-

trators and users to monitor, troubleshoot, and easily share information. These tools
are Kerberos (security), Simple Network Management Protocol (network manage-
ment), Network File Server (UNIX File Systems), Remote Procedure Calls (program-
ming tool), Trivial File Transfer Protocol, User Datagram Protocol (UDP), and Internet
Control Message Protocol (ICMP).

There are several ports available to the TCP protocol that can be used for specific
functions. The daemon processes on the remote system will monitor or listen to these
ports for connection requests. A detailed list of the ports are available in the file /etc/
services. Some of the more common ports are listed in Table 12.

Network Commands
There are several commands that allow users or administrators to manage network

connections. A few of the common commands are described in Table 13. Additional
Information is available in the user manuals or the “man” pages within the Solaris™
operating system.

FTP Administration

 File Transfer Protocol (FTP) is a mechanism for transferring files between hosts.
This common Internet protocol has been used for many years. FTP is a TCP/IP proto-
col that is referenced in RFC 959. This is one way to allow the sharing of publicly
available files. Little or no security is required to access this information. There are
various levels of security that can be incorporated to protect the information.

FTP Commands
FTP is a command rich environment that has made it extremely easy for users to

upload and download files. Some of the FTP commands that are available are shown
in Table 14.

FTP Access
The most common user of FTP is the anonymous account. This is typically a pub-

licly accessible account and grants users access to public information.

FTP Interface
The interface can be command line or Graphical User Interface (GUI). The GUI

interface is the most intuitive interface from a user’s perspective. The command line



Sun System Administration — 271

interface can be difficult unless one is familiar with FTP. You can find freeware FTP
products that will run on Solaris™ operating system on the Internet (see Website:
http://www.sunfreeware.com).

Device Administration

One of the most important aspects of managing a system is managing the resources
connected to the system. These resources are typically storage devices but other
devices such as scanners, video, and audio devices can be attached to a system. Man-
agement of these devices is relatively simple in the Solaris™ environment. Solaris™

Table 12
TCP Port Numbers

Port Number Service Name Description

7 echo Echo’s back from a remote host

21 ftp Used to control the File Transfer Protocol (FTP)

22 ssh Encrypted communications with remote systems
23 telnet Terminal access to remote systems

25 smtp Mail transfer protocol

514 shell Executing programs on remote systems

80 http Web server

Table 11
IP Address Classes and Values

IP class Prefix bits Number of networks Suffix bits Number of hosts

A 7 126 24 16777214

B 714 16384 16 65532

C 21 2097152 8 254

Table 13
Network Commands

Tool Description

arp Address Resolution Protocol (ARP) is a cache table that is updated based on the
presence of MAC address (network card physical address) in broadcast traffic.

ping Tests the reach ability of remote systems. It uses ICMP, an echo request to test
round trip connectivity.

snoop You must run this as the root user. Snoop will monitor all network traffic passing by
the system it is running on. The interface will be running in promiscuous mode
to monitor all network traffic. You should contact your network administrator
before you run snoop to ensure you will not be violating privacy policies.

WWW
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supports dynamic configurations of devices on some of the SPARC® platforms. This
makes it simple for administrators and users to manage large and small systems. Infor-
mation for each device is stored in a device file, which is in the /dev directory (see
Table 15).

Storage Devices
There are several storage devices supported in the Solaris™ operating system.

CD-ROMs, Zip Drives, Jaz Drives, Tape Drives, Hard Drives, and Floppy Disks are
just a few of the device types that are supported. Hard drives are the most common
device. In some configurations it may be perferred to configure your hard disks with
Redundant Array of Independent Disks (RAID) support. A RAID configuration will
provide you an extra level of redundancy that will protect the data in the case of a

Table 14
FTP Command Options

FTP Command Description

binary Set file transfer type to binary

cd Change remote working directory

close Terminate current FTP session (don’t exit from client)

delete Delete specified file

debug Set debugging mode to on

dir List contents of remote directory

disconnect Terminate current FTP session and exit client

form Set file transfer type to binary or ASCII

get Download specified remote file

help Help with command usage

ls List contents of remote directory

mget Get multiple files from remote system

mkdir Make directory on remote system

mode Set transfer mode to binary or ASCII

open Connect to a remote system

put Upload a file to a remote system

pwd Print the current working directory

quit Terminate FTP session and exit

rename Rename specified file

rmdir Remove directory on remote system

send Upload a file to the remote system

status Show the current status of the FTP session

type Set file type for file being transferred.

verbose Echo detail information to screen

? Print help on local system
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hard disk failure. The most common RAID configurations are RAID-0 (disk mirror-
ing) and RAID-5 (disk stripping with parity bit; see Glossary).

When a hard disk volume is created and configured the Solaris™ operating system
will create several partitions. The partitions that are created on a SPARC® system are
listed in Table 16.

List System Devices
To check for the type of devices connected to your system you can issue the prtconf

command. If you see devices that are not connected, don’t be concerned because
Solaris loads device drivers based on the usage of the device. This allows the system
to optimize resources, ensuring optimal performance.

Adding New Devices
Prior to adding a device to your system, there are several steps to be follow.

1. Purchase a device that is supported by the Solaris™ operating system.
2. Check your system to ensure you have physical capacity for the new device

(internal and external).
3. Check your SCSI bus to ensure you have enough device locations to add the new

device.
4. Follow the directions for installation provided by the vendor you purchased the

device from.

Table 16
Disk Partition

Partition Number Directory

0 / - Root level directory
1 Server swap space
2 Whole disk
3 /export
4 Client swap space
5 /opt
6 /usr
7 /export/home

Table 15
/dev Directory

/dev Description

/dev/console Console device
/dev/null Discarded output
/dev/hme Network interface device
/dev/ttyn Terminal devices attached to the system
/dev/dsk Files for disk partitions
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File System Administration

Managing the file system will allow you to control the resource usage for any given
system. You first need to understand how the file system is structured. The Solaris™
UNIX File System (UFS) came from the Berkley Software Design, Inc. (BSD) envi-
ronment and allows single or multiple users to utilize the Solaris™ operating system.
The following briefly describes how to utilize the partitions of the disk to store and
retrieve information.

Basic Disk Structure
 The disk is made up of four basic components as shown in Table 17. The typical

disk geometry is composed of platters that are magnetically coated. This coating
allows the system to write information to a very small area of the disk using 1’s and
0’s, binary notation (1 = on, 0 = off). There are typically several platters in a disk
drive unit.

The Solaris™ UFS is segmented into specialized areas (see Table 18). This differs
from the original format and creates a higher level of reliability than before.

Formatting A Disk Device
There are several steps that take place when a file system is created for the first

time. How the disk space will be used will dictate how the file system should be
configured. Typically larger partitions for data volumes are created to adjust capacity
as users store data on the system.

When executing the format command Solaris™ will display the available devices
on the system. If there is more than one disk, you will be prompted to enter the device
to format. After selecting the device the system will display a menu that provides
several options as shown in Table 19.

Note: If for some reason you select a device you don’t want to format, you can stop
the program by issuing the ctrl-c command.

Creating A File System
Upon formatting the new device, a new file system must be created. The command

for creating a new file system is #newfs devicename. The device name is the logical
device pathname on the device where the new files system will be created. An
example is #newfs /dev/dsk/c2t3d1s5. (See Glossary for a description of c2t3d1s5.)

Table 17
Physical Disk

Disk Area Description

Platter Magnetic disk that turns on a shaft.

Cylinder A cylinder refers to the location of all the drive read and write heads, typically
accessing multiple tracks.

Track This refers to one of the concentric circles of data on disk media.

Block A specific area within a track that data is written to.
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Various switch options can be used with the #newfs command that allow you to
manipulate the disk configuration after the file system is created.

The -m parameter permits one to adjust the amount of reserved space on the file
system. The -o parameter permits one to specify whether the system should optimize
the disk for space or allocation time. Depending upon your usage of the newly format-
ted device you may want to consider these options.

Having formatted the storage media the disk must be made either available or
unavailable to the operating system. A device must be mounted as part of the system
directory tree. There are many options for the mount command that may be consid-
ered as shown in Table 20. The two commands that assist with this operation are
mount and unmount. The normal syntax for making the resource available is
#mount device directory. An example is #mount /dev/dsk/c2t3d1s5 /etc.

Table 18
UFS Disk Segments

Disk Segment Description

Superblock Contains information on disk geometry, free blocks, and inodes. Multiple
copies are made to ensure reliability.

Inode One inode per file. Ownership, time stamp, size and links are kept in this file.

Data Block Data for the file being stored. The size of the block depends on how the
disk was initialized (e.g., 512K block).

Table 19
Format Menu Commands

Menu Item Description

Disk Select the disk you want to format
Type Define the type of disk your are formatting
Partition Define the partition table
Current Describe the current disk (disk name)
Format Format and analyze the disk
Repair Repair defective sectors
Label Provide the label name for the disk
Analyze Do a surface analysis of the disk
Defect Defect management list (blocks)
Backup Search for backup labels
Verify Read and display labels
Save Save the new disk partition definitions
Inquiry Show vendor product and revision
Volname Define eight character volume name
Quit Leave format menu
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This command would mount the formatted disk in the /etc directory. The directory
that mounts the device must exist. It should be noted that this superimposes the direc-
tory specified with the new system device.

To list the devices mounted on the current system, the mount command from the
prompt is issued and the mounted devices on the system will be displayed. By issuing
the mount -v (verbose) parameter with the mount command, the system will display
detailed information on all mounted devices. In contrast, the unmount command makes
devices or directories unavailable to the system. The #unmount directoryname com-
mand makes directory unavailable to the system and the #unmount devicename
makes the device unavailable to the local system.

In Solaris™ the volume manager daemon manages access to CD-ROM and remov-
able media. The vold daemon listens for insertion of media in these removable media
devices. When the daemon detects that a CD-ROM has been inserted into the drive it
invokes the rmmount command to mount the removable media. The vold daemon is
also responsible for ejecting removable media for the user. If the vold daemon has
frozen, the eject command can be used to eject removable media (CD-ROM, Floppy
Disk, ZIP Drive).

There are two important maintenance activities that will enable the system admin-
istrator to manage storage resources more efficiently. The #df command displays
device capacity information. This command provides:

• Filesystem: Name of the device or directory
• Kbytes: Total capacity of the device
• Used: Space used on the device
• Avail: Amount of space available on the device
• Capacity: Percentage of device space being used
• Mounted on: Directory mount point for the device

There are several optional parameters that can be passed with the #df command.

As a system administrator you also have the ability to define and set quotas on
devices. This helps manage the utilization of storage space and prevents any one user
from filling a volume and potentially disabling the system. Quotas can be set user by
user for any given volume. To set quotas on a volume for a user, follow steps 1–7.

1. Find the etc/vfstab file as the root user.
2. Edit the etc/vfstab file and add the “rq” flag to the mount option field for the

directory you want to establish quotas on (e.g., /usr/jordan).
3. Change to the directory you want quotas to be established (e.g., /usr/jordan).

Table 20
Mount Options

Mount Option Description

rw Mount device with read-write capability
ro Mount device with read-only capability
nosid Eliminates use of user or group identifier bits
remount Remount an already mounted device
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4. Set the permissions on the /usr/jordan to read-write for root user only.
5. To set quotas on the directory, use the edquota command and set the hard and

soft limits for storage space. The hard parameter sets the maximum limit. The soft
parameter sets the overquota or temporary space for a user. An example is #fs /
usr/jordan blocks (soft=2500, hard=5000).

6. You can check to see if quotas are set by issuing the quota command.
7. To enable quotas once they have been defined, you can issue the quotaon com-

mand from root user ID.

Available storage space is something that you as an administrator need to be aware
of and utilizing quotas is the easiest way to ensure you don’t see problems with run-
away storage from users or errant processes.

Backup Administration

System backup is critical to the stability/recoverability of the system. It allows res-
toration of files either deleted accidentally (user initiated) or corrupted. When defin-
ing the backup strategy consider disaster recovery if the system mission is critical to
your operations. Disaster recovery plans are detailed in nature and should be tested at
least once a year. This can also be a costly endeavor so be sure you can justify the
additional cost associated with disaster recovery.

Backup Media

There are several ways to approach the selection of backup media. The amount/size
of data you backup will dictate the best approach for your environment. There are 3
types of media you can direct your backup to:

1. Tape: Reliable and reasonable capacity (DLT: 40GB–80GB).
2. Optical: Could be used for near-line storage (CD-ROM and DVD).
3. Disk: More expensive but fast and readily available (RAID configuration ensures

redundancy).

Backup Methodology
There are two methodologies utilized to backup systems. In Full Backup, a snap-

shot image of all the files on the system is created. This is typically executed on off-
hours (evening) when the system is not being utilized. Alternatively, the Incremental
Backup only effects those files that have changes since the last full backup. This is a
time-saving and efficient process. An example schedule is a full backup on Saturday
starting at 11:00 pm, and an incremental backup every day but Saturday, starting at
11:00 pm.

Note: If you have a database system running, you will need to consult your user/
administrator guide for backup of the database. In many cases the database process
will have to be stopped to ensure a complete backup. If the database file is open, the
backup program may not be able to accurately backup the opened file. This is true for
any file that maybe used by processes running on the system.

Backup Process
There are a few means to execute a backup of the system. The easiest way is with

the tar command. tar is used to create and extract files from an archive file. However,
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tar does not compress the file like other commercially available products. Compres-
sion can be achieved using the Solaris™ compress command.

Another method is using the Solaris™ ufsdump and ufsrestore utilities. These
utilities only work on UNIX (UFS) file systems.

ufsdump allows you to create your full and incremental backup schedules.
ufsrestore is easy to use and works much like the ufsdump command. You can
utilize this utility in interactive mode by passing the “i” parameter with the
ufsrestore command.

Commercially available backup products tend to be more feature rich than ufsdump
and ufsrestore. For the Solaris™ Operating Environment there are two excellent
choices, Legato® Networker (see Website: http://www.legato.com) and Veritas®

Netbackup (see Website: http://www.veritas.com).
Each of these products have their benefits, so you and your system administrator

need to decide if a commercially available product is the best choice for your system.

Web Server Administration

One of the most popular technologies today is web-based technology. This crosses
all boundaries of information today, from research, business, consumer, and enter-
tainment. The backbone protocol for the web is HyperText Transfer Protocol (HTTP),
which uses Universial Resource Locators (URLs) embedded in HyperText Markup
Language (HTML) files that display information in a web browser interface (Netscape
Navigator® and Microsoft Explorer®). The combination of these components allows
people to surf the World Wide Web (WWW) for anything you can imagine. The
Solaris™ environment Apache Server is the component that will make your server
WWW enabled.

Apache Web Server
The Apache Web Server product is free from the Apache website where the neces-

sary components can be downloaded (see Website: http://www.apache.org). The
downloaded file is in tar or tar.Z (compressed) format. Utilize the released version
unless there are specific features in the beta version you need. You should also down-
load or print the release notes specific to the product you have downloaded. These
documents contain useful information such as vendor-specific bug fixes, installation
procedures, and major application changes.

Installing Apache Web Server

Before installing the software on your system, the following pieces of information
are required:

• Your IP Web Server Address (IP address for the Internet).

• Add your server to DNS (Name resolution for your web server).

Steps for Configuring Apache Web Server
1. Configure the application before installing on your system. This is accom-

plished with the configure command that is provided with the Apache server
software distribution. The configure command program assesses your current
system resources to ensure that the server will run reliably on your system.

WWW

WWW



Sun System Administration — 279

2. After running the configure command, compile the software. The Apache soft-
ware distribution provides the make command, which will compile the software
according to the configuration information.

3. Now the complied software can be installed. To install the software you can run
the make install command from the Apache software distribution directory.
This command copies the httpd daemon and associated configuration files to
the installation directory. The Apache software installation is now complete.

 Now lets consider how the system process will startup and shutdown. This can be
accomplished by copying the apachectl file to the /etc/init.d directory. With the ln com-
mand you can create a link to the operating system startup process so that Apache starts
up and shuts down normally and doesn’t require manual intervention every time a reboot
is performed (su to root and then perform this command). Once the Apache server is
running, you can telnet to port 80 to verify the server process is running.

Another important task before making your web server publicly available is to
review and set the parameters in the httpd.conf file. There are three separate sections
to the file:

1. Global Section

• Location of files and directories. An example: ServerRoot /home/http
• Network parameters. An example: Network Timeouts

2. Server Section

• General server parameters. An example: Port 80
(TCP - Port the daemon will be listening to)

• Access control for file directories
• Directory listings
• Apache server logging process (audit control)
• Web browser response parameters

3. Virtual Hosts

• Enables you to configure multiple web aliases on the same server

Setting these parameters will ensure you have not compromised the system to
intruders.

Other Considerations
As you offer web services from your system you will want to ensure that the setup

and configuration of your system is of sufficient performance for the tasks. This is
considered a function of Static Pages that provide information only. The Application
Services that provide analytical services demands (memory and CPU) resources and
the Information Store that allocates space for users to download information to their
local machines (e.g., FTP)..

The simplest of scenarios is Static Pages. They usually do not require a large allo-
cation of system resources to host. The Application Services and Information Store
may require additional resources in the form of storage, CPU, memory or possibly
additional systems. It is important to understand the expected usage and performance
of the web server so you can scale the resources appropriately. Nothing is worse than
visiting a website that has a poor response time. Because it is sometimes hard to define
the use of the web server, you should plan for the worst case (budget and time will
dictate capacity).
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Glossary and Abbreviations
BSD  Berkeley software distribution. BSD refers to the particular version of the

UNIX operating system that was developed at and distributed from the University of
California at Berkeley. BSD UNIX has been popular and many commercial imple-
mentations of UNIX systems are based on or include some BSD code.

Case Sensitive  This term defines the operating systems sensitivity to alpha upper-
case and lower case characters. (Example: If a password or username was created
in all lowercase characters then the operating system would deny access if the user
entered their password or username in uppercase characters).

c2t3d1s5  C = controller, t = target, d = disk, s = slice (c2 = controller 2, t3 = target
SCSI ID 3, d1 = disk 1, s5 = slice number 5).

Command  A command is a specific order from a user to the computer’s operating
system or to an application to perform a function.

CPU  Central processing unit. CPU is an older term for processor and microproces-
sor, the central unit in a computer containing the logic circuitry that performs the
instructions of a computer’s programs.

Disk Quota  The specific amount of disk space that a defined user or service is
allow to use. This is done to prevent over utilization of disk resources.

Disk Mirror (RAID 1)  Provides 100% redundancy of data. This means no rebuild
is necessary in case of a disk failure, just a copy to the replacement disk. Transfer rates
per block is equal to that of a single disk. Under certain circumstances, RAID 1 can
sustain multiple simultaneous drive failures. This is the simplest RAID storage sub-
system design.

Disk Stripping (RAID 0)  RAID 0 implements a striped disk array, the data is
broken down into blocks and each block is written to a separate disk drive. I/O perfor-
mance is greatly improved by spreading the I/O load across many channels and drives.
Best performance is achieved when data is striped across multiple controllers with
only one drive per controller. No parity calculation overhead is involved. Not a “True”
RAID because it is NOT fault-tolerant. The failure of just one drive will result in all
data in an array being lost.

Disk Stripping with Parity Bit (RAID 3 to 6)  Each entire data block is written on
a data disk; parity for blocks in the same rank is generated on Writes, recorded in a
distributed location and checked on Reads. RAID Level 5 requires a minimum of 3
drives to implement and is the most common RAID with Parity Bit used.

DVD  Digital versatile disc. DVD is an optical disc technology that is expected to
rapidly replace the CD-ROM disc (as well as the audio compact disc) over the next
few years. The digital versatile disc (DVD) holds 4.7 gigabyte of information on one
of its two sides, or enough for a 133-minute movie. The DVD can hold more than 28
times as much information as a CD-ROM.

Encryption  The conversion of data (i.e., password) into a form called ciphertext,
which cannot be easily understood. Decryption is the process of converting encrypted
data back into its original form, so it can be understood.

FTP  File transfer protocol. FTP is a standard Internet protocol and is the simplest
way to exchange files between computers on the Internet.

GUI  A graphical (rather than purely textual) user interface to a computer.
HTML  Hypertext markup language. HTML is the set of markup symbols or

codes inserted in a file intended for display on a World Wide Web browser page.
HTTP  Hypertext transfer protocol. HTTP is the set of rules for exchanging

files (text, graphic images, sound, video, and other multimedia files) on the World
Wide Web.
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ICMP  Internet control message protocol. ICMP is a message control and error-
reporting protocol between a host server and a gateway to the Internet.

IP  Internet protocol.  IP is the method or protocol by which data is sent from one
computer to another on the Internet/network. Each computer (known as a host) on the
Internet/network has at least one IP address that uniquely identifies it from all other
computers on the Internet.

IP Address  An IP address has two parts: the identifier of a particular network on
the network and an identifier of the particular device (which can be a server or a work-
station) within that network.

IP Packet  A packet is the unit of data that is routed between an origin and a desti-
nation on the Internet or any other packet-switched network. When any file (e-mail
message, HTML file, Graphics Interchange Format file, Uniform Resource Locator
request, and so forth) is sent from one place to another on the Internet, the Transmis-
sion Control Protocol (TCP) layer of TCP/IP divides the file into “chunks” of an effi-
cient size for routing. Each of these packets is separately numbered and includes the
Internet address of the destination. The individual packets for a given file may travel
different routes through the Internet. When they have all arrived, they are reassembled
into the original file (by the TCP layer at the receiving end).

Kerberos  Is a secure method for authenticating a request for a service in a com-
puter network.

LINUX  Is an UNIX-like operating system that was designed to provide personal
computer users a free or very low-cost operating system comparable to traditional and
usually more expensive UNIX systems.

Man Pages  These are the help files associated with the Solaris™ operating system.
Multi-User System  An operating system (e.g.  UNIX or LINUX) that will support

multiple user access at the same time. (Example: UNIX Operating System)
NFS  Network file system. NFS is a client/server application that lets a computer

user view and optionally store and update file on a remote computer as though they
were on the user’s own computer.

OSI Model  Is a standard reference model for communication between two end
users in a network. It is used in developing products that utilize network technology.

RAID  Redundant array of inexpensive disks. This is a way of storing the same data
in different places (thus, redundantly) on multiple hard disks. By placing data on mul-
tiple disks, I/O operations can overlap in a balanced way, improving performance.
Since multiple disks increases the mean time between failure (MTBF), storing data
redundantly also increases fault-tolerance.

Parameter  Is an item of information such as: a name, a number, or a selected
option that is passed to a program by a user or another program.

Reboot  The process of restarting a computer operating system.
Power-down  The process of shutting down a computer operating system to the

point where power can be disconnected from the hardware.
RPC  Remote procedure call. RPC is a protocol that one program can use to request

a service from a program located in another computer in a network without having to
understand network details.

SCSI  Small computer system interface. SCSI is a set of ANSI standard electronic
interfaces that allow personal computers to communicate with peripheral hardware
such as disk drives, tape drives, CD-ROM drives, printers, and scanners faster and
more flexibly than previous interfaces.

Server  In general, a server is a computer that provides services to other computers
and or multiple users.
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Signal  Messages sent to applications or the operating system to control system
processes (i.e., start, stop, suspend, etc).

Single User System  A computer operating system that supports only one user at a
time  (Example: Microsoft® Windows Desktop Operating System).

SNMP  Simple network management protocol. SNMP is the protocol governing
network management and the monitoring of network devices and their functions.

TCP  Transmission control protocol. TCP is a set of rules (protocol) used along
with the Internet Protocol (IP) to send data in the form of message units between
computers over the Internet. While IP takes care of handling the actual delivery of the
data, TCP takes care of keeping track of the individual units of data (called packets)
that a message is divided into for efficient routing through the Internet or network.

Telnet  Telnet is the way you can access someone else’s computer, assuming they
have given you permission.

TFTP  Trivial file transfer protocol. TFTP is an Internet software utility for trans-
ferring files that is simpler to use than the File Transfer Protocol (FTP) but less
capable. It is used where user authentication and directory visibility are not required.

UDP  User datagram protocol. UDP is a communications protocol that offers a
limited amount of service when messages are exchanged between computers in a net-
work that uses the Internet Protocol (IP).

UFS  The default disk based file system for the Sun Operating System 5.x environment.
UNIX  is an operating system that originated at Bell Labs in 1969 as an interactive

time-sharing system. Ken Thompson and Dennis Ritchie are considered the inventors
of UNIX.

URL  Uniform resource locator. URL is the address of a file (resource) accessible
on the Internet. The type of resource depends on the Internet application protocol.
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Installing Bioinformatics
Software in a Server-Based
Computing Environment

Brian Fristensky

Introduction

To support a diverse institutional program of genomics projects, it is often necessary
to have an equally diverse and comprehensive software base. Although programs may
come from many sources, it is important to make them easily accessible to the user
community on a single computing platform. This chapter will outline the strategies for
installing programs for a server-based molecular biology software resource, accessed by
a large user base. It is assumed that the reader is familiar with basic UNIX commands
and concepts, as described in the previous chapters. The approaches discussed here are
implemented in the BIRCH system (see Website: http://home.cc.umanitoba.ca/
~psgendb), but are generally applicable to any centralized multiuser software installa-
tion. The important parts of the process are described in either program documentation
or UNIX documentation. The tricks and conventions that help to simplify the installa-
tion process will also be highlighted. This should give the novice an idea of what to
expect before wading through the documentation.

Considerations
There are five guiding principles for installation and use that should be applied to

help ensure a smooth operation.

1. Any user should be able to run any program from any directory simply by typing
the name of the program and arguments. It should not be necessary to go to a
specific directory to run a program.

2. System administration should be kept as simple as possible. This saves work for the
Bioadmin1, as well as increasing the likelihood that things will function properly.

3. Avoid interruption of service during installation and testing.
4. The Bioadmin should never have to modify individual user accounts.
5. Even if you have root access, do most of your work on a regular user account.

Log in as root only when necessary.

WWW

1Since bioinformatics software may be installed by a specialist other than UNIX system staff,
the term Bioadmin will refer to the person installing and maintaining bioinformatics software,
distinct from system administrators.
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The Networked Computing Environment

The casual computer user learns only a narrow computing model: the PC model.
PCs are based on the idea that each person has their own computer that is com-
pletely self-contained, with all hardware, software, and data residing physically on
the desktop. Provisions for multiple users on a single machine (e.g., separate home
directories, user accounts, file permissions) may exist, but are seldom taken into
account by PC software developers. Each PC becomes a special case with special
problems. The work of administration grows with the number of computers. Soft-
ware has to be purchased and independently installed for each machine. Security
and backup are often not practiced.

UNIX greatly simplifies the problem of computing with a network-centric
approach, in which any user can do any task from anywhere. Figure 1 illustrates com-
puting in a network-centric environment. All data and software reside on a file server,
which is remotely mounted to one or more identically configured compute servers.
Programs are executed on a compute server, but displayed at the user’s terminal or
PC. Regardless of whether one logs in from an X11 terminal, a PC running an X11
server, a PC using the VNC viewer (see Chapters 13 and 17) or an internet appliance,
the user’s desktop screen looks the same and opens to the user’s $HOME directory.
Consequently, any user can do any task from any device, anywhere on the Internet.

Leveraging the Multi-Window Desktop

The installation process involves moving back and forth among several directories,
which is most effectively accomplished by viewing each directory in a separate
window. One of the issues that makes the typical PC desktop awkward to use is the
one window owns the screen model. In MS-Windows, most applications default to

Fig. 1. Network-centric computing.
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take up the entire screen. One moves between applications using the task bar.
Although it is possible to resize windows so that many can fit on one screen, this is
seldom done in MS-Windows. On Macintosh, even when multiple windows are
present, they depend on the menu at the top of the screen. This requires the user to first
select a window by clicking on it, and then to choose an item from the menu at the top
of the screen. Even worse, the menus often look almost identical from program to
program, so that it is not obvious when the focus has shifted to a new application.

On UNIX desktops, menus are found within the windows themselves. This
decreases the amount of distance the eye has to cover. Focus moves with the mouse
and does not need to be switched with the taskbar. The user simply moves from one
window to another to work. Because UNIX tends to be oriented towards multiple win-
dows, UNIX users tend to favor larger monitors. More screen real estate means more
space for windows. The screen in Fig. 2 appears crowded because it was generated at

Fig. 2. Leveraging the multiwindow desktop. In the example, the environment variable $DB, which
identifies the root directory for bioinformatics software, is set to /home/psgendb. Clockwise from top
left: Double clicking on fastgbs in $DB/doc/fasta opens up a list of locations of database files in a text
editor. Similarly, Makefile33.common has been opened up from $DB/install/fasta. This file contains
Makefile commands that are compatible with all operating systems. A terminal window at lower right
is used for running commands in $DB/install/fasta, while another terminal window at bottom left is
used for running commands in $DB/bin. At bottom, the CDE control panel shows that the current
screen, out of four screens available, is screen One.

Note: To get the C-shell to display the hostname and current working directory in the prompt,
include the following lines in cshrc.source or your .cshrc file:

set HOSTNAME = ‘hostname‘
set prompt=”{$HOSTNAME”:”$cwd”}
alias cd ‘cd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’
alias popd ‘popd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’
alias pushd ‘pushd \!*; set prompt=”{$HOSTNAME”:”$cwd”}’
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1024 × 768 resolution. Although this is a common resolution for PCs, the UNIX com-
munity tends to work with larger monitors, at 19" diagonal or larger, running at 1280
× 1000 or higher resolution. To provide further real estate, UNIX desktops such as
CDE, KDE, and GNOME support switching between several desktops at the push of a
button. Use of multiple windows during an installation is illustrated in Figure 2.

Finding and Downloading Software

Table 1 has a short and by no means exhaustive list of sites where freely available
sequence analysis software can be downloaded. USENET newsgroups such as
bionet.software contain announcements of new software and updates, as well as dis-
cussions on molecular biology software.

Usually, software is downloaded as a directory tree packed into a single archive
file in various formats. Generally, files in these formats can recreate the original
directory tree containing source code, documentation, data files, and often, executable
binaries. Usually, the first step is to uncompress the file and then recreate the original
directory. For example, the fasta package comes as a shell archive created using the
shar command. Because you do not know in advance whether the archive contains a
large number of individual files or a single directory containing files, it is always
safest to make a new directory in which to recreate the archive, using the following
commands:

mkdir fasta create new directory
mv fasta.shar fasta move fasta.shar into the new directory
cd fasta go into the fasta directory
unshar fasta.shar extract files from fasta.shar

Table 2 lists some of the most common archive tools and their usage.
Two goals when installing software are to 1) avoid interruption of service for users

during installation and testing and 2) having the option of deleting programs after

Table 1
Sources of Free Downloadable Software

Source URL

IUBio Archive http://iubio.bio.indiana.edu/
EMBOSS Software Suite http://www.uk.embnet.org/Software/EMBOSS/
Open Source Bioinformatics Software http://bioinformatics.org/
Linux for Biotechnology http://www.randomfactory.com/lfb/lfb.html
Sanger Center Software http://www.sanger.ac.uk/Software/
Staden Package http://www.mrc-lmb.cam.ac.uk/pubseq/
NCBI FTP site http://www.ncbi.nlm.nih.gov/Ftp/index.html
PHYLIP Phylogeny software http://evolution.genetics.washington.edu/phylip.html
BIRCH, FSAP, XYLEM,GDE http://home.cc.umanitoba.ca/~psgendb/downloads.html
FASTA package ftp://ftp.uva.edu/pub/fasta/
Virtual Network Computing (VNC) http://www.uk.research.att.com/vnc/
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Table 2
Archive Commands

File extension Utility Archive command Unarchive command

.tar UNIX tar To create a tar file from To recreate the directory:
a directory called source:      tar xvf source.tar
     tar cvf source.tar source

.zip ZIP To create a compressed To recreate the directory:
archive file called source.zip:      unzip source
     zip source source

.shar UNIX shar To create a shar file from To recreate the directory:
a directory named source:       unshar source.shar
shar source > source.shar or chmod u+x source.shar

or sh source.shar a

.gz GNU zip To compress a file with: To recreate the directory:
     gzip source > source.gz      gunzip source

.Z compress To compress source.tar: To uncompress source.tar.Z:
     compress source.tar      uncompress source.tar.Z

.uue uuencode To encode source.tar.Z To recreate the original
using ASCII characters: binary file:
     uuencode source.tar.Z      uudecode source.uue
     source.uue

a.shar files are actually shell scripts that can be executed to recreate the original directory.

evaluation. For example, a separate directory called install could hold separate direc-
tories for each package during the installation.

Understand the Problem Before You Begin

For many standard office tasks, it is possible to get by without ever reading the
documentation. In molecular biology, the task itself often has enough complexity that
it may not be possible to simply launch, point, and click. In practice, it is almost
always faster to read the documentation before trying to install. Each program will
have installation instructions. These will let you know about important options like
where the final program files will reside and which environment variables must be set.

Reading the documentation at this stage gives you a chance to learn more about
what the program does and to decide if it is really what you need. This weeding out
phase can save a lot of unnecessary compiling, organizing, and testing.

Compilation

Programs distributed as source code, for which no binaries are available, will require
compilation and linking steps. Although these procedures vary somewhat with
the language in which they are written, most of the common packages use protocols of
the C and C++ family of languages. In addition to source files (.c), code items such as
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type definitions, which need to be shared, are found in header files (.h). When you
compile, the code from the header files is inserted into C code, and the .c file trans-
lated to machine code, which is written as object modules (.o). Next, the compiler
calls a linker, which links object modules into a final executable file. In most pro-
grams, object modules from standard libraries (e.g., Tcl/Tk) are also linked. These are
typically linked dynamically, meaning that only a reference to the libraries is made
and the actual library modules are loaded each time the program is run. Consequently,
dynamic linking saves disk space. However, when a program depends on libraries that
may not be found on all systems, static linking can be accomplished, in which object
modules are written to the final executable code file. Static linking favors portability
at the expense of disk space. A short list of the types of files frequently encountered
during installation appears in Table 3.

Virtually all scientific program packages automate these procedures using the make
program. The make program reads a Makefile, containing compilation, linking, and
installation options. For cross-platform compatibility, it is common to include sepa-
rate Makefiles for each platform (e.g., SGI, Linux, Windows, Solaris). For example,
the fasta package has a file called Makefile.sun for Solaris systems. Copy Makefile.sun
to Makefile, and edit Makefile as needed for your system. At the beginning of the
Makefile, variables are often set to specify the final destinations for files. On our
system, fasta’s Makefile would be edited to change the line reading XDIR = /seqprog/
sbin/bin to XDIR = /home/psgendb/bin. Because this directory is in the $PATH for
all BIRCH users, the new programs become available to all users as soon as the files
are copied to this location.

Typing make executes the commands in Makefile, compiling and linking the pro-
grams. It is best to run make in a terminal window that supports scrolling, so that all
warning and error messages can be examined. This is particularly important because
one can then copy error messages to a file to provide the author of the program with a
precise description of the problem. If the authors do not receive this feedback, the
problems do not get fixed. However feedback must be precise and detailed.

If make is successful, executable binary files, usually with no extension, are writ-
ten to the target directory. This may or may not be the current working directory.
Many Makefiles require you to explicitly ask for files to be copied to the destination
directory by typing make install.

In some cases, testing can be carried out at this point, particularly if a test script is
included with the package. In the fasta package several test scripts are found. For
example, ./test.sh will run most of the fasta programs with test datafiles.

Table 3
Common File Types and File Extensions

File extension File type

.c C source code

.h C header

.o Compiled object file
no extension Executable binary file
.1, .l UNIX manual page
.makefile, .mak Makefile
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Note: “./” forces the shell to look for test.sh in the current working directory.
Unless “.” was in your $PATH, it would not be found. However, it is generally consid-
ered insecure to include “.” in your $PATH.

It is important to check test scripts to see where they look for executable files.
For example, if the script sets $PATH to “.” (the current directory), or if programs
are executed with a statement such as ./fasta33, then the shell will look for an
executable file in the current directory. If the directory for the executable file is not
explicitly set, the shell will search all directories in your $PATH to find an executable
file. This could either result in a Command not found message, or if earlier copies of
the programs were already installed, older programs will execute, not the newly com-
piled programs.

Installation

In the BIRCH system, all files and directories are found in a world-readable direc-
tory specified by the $DB environment variable. Thus, $DB/bin, $DB/doc, and
$DB/dat refer to directories containing executable binaries, documentation, and
datafiles used by programs, respectively, as summarized below.

$DB/bin

Although $DB/bin could in principle be set to refer to /usr/local/bin, it is probably
best to keep the entire $DB structure separate from the rest of the system. This
approach has the advantage that the Bioadmin need not have root privileges. All files
in $DB/bin should be world-executable.

One practice for managing program upgrades is to create a symbolic link to point to
the current production version of the program. For example, a link with the name fasta
might point to fasta3:

lrwxrwxrwx 1 psgendb psgendb 6 Jul 18 09:45 /home/psgendb/bin/fasta3 -> fasta*

To upgrade to fasta33:

rm fasta
ln -s fasta33 fasta
lrwxrwxrwx 1 psgendb psgendb 6 Jul 18 09:45 /home/psgendb/bin/fasta33 -> fasta*

Aside from giving users a consistent name for the current most recent version of the
program, this type of stable link eliminates the need to modify other programs that call
the upgraded program.

$DB/doc

Documentation files for software should be moved to this directory. Ideally, the
complete contents of this directory should be Web-accessible. Where a program or
package has more than one documentation file, create a separate subdirectory for each
program. All files should be world-readable.

$DB/dat
A program should never require that ancillary files such as fonts or scoring matri-

ces be in a user’s directory. These should always be centrally installed and adminis-
tered, transparently to the user. Datafiles required for programs, such as scoring
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matrices, lists of restriction enzymes, and so forth should be moved to this direc-
tory. Generally, each program should have its own subdirectory. All files should be
world-readable.

$DB/admin

This directory contains scripts and other files related to software administration.
First time BIRCH users run the newuser script, to append a line to the user’s .login
file:

source /home/psgendb/admin/login.source

and to the .cshrc file:

source /home/psgendb/admin/cshrc.source

These files respectively contain commands that are executed when the user first
logs in, and each time a program is started. All environment variables, aliases, and
other settings required to run these programs are set in these files. Having run newuser
once, a user should never have to do any setup tasks to be able to run new or updated
programs. When a new program is added, the environment variables and aliases needed
are specified in cshrc.source, and therefore become immediately available to the user
community. The net effect is that the Bioadmin should never have to go to each user’s
account when a new program is installed.

Where programs require first-time setup, such as a configuration file being writ-
ten to the user’s $HOME directory, the program should be run from a wrapper script
that checks for the presence of that file. If the file is not present, the script writes a
default copy of the file to $HOME. The user should never have to explicitly run a
setup script before using a program.

All directories that are to be accessible to users must be world searchable (world-
executable), as well as world-readable. For example, to allow users to read files in
$DB/doc/fasta, both $DB/doc and $DB/doc/fasta must be world executable. Use:

chmod a+rx $DB/doc/fasta

Special Considerations for Complex Packages

Some packages come as integrated units whose components can not be moved out
of their directory structure to $DB/bin, $DB/dat, and $DB/doc. Packages of this type
are installed in $DB/pkg. A good case in point is the Staden Package (see Table 1).
The BIRCH login.source file contains the following lines:

Initialize Staden Package Settings
setenv STADENROOT $DB/pkg/staden
source $STADENROOT/staden.login

that cause the commands in staden.login to be executed when the user logs in. This
script in turn sets several environment variables referencing files in the
$STADENROOT directory. As well, login.source adds $DB/pkg/staden/solaris-bin
to the $PATH. This illustrates that there are sometimes no simple solutions. On one
hand, it would be desirable to simply copy all Staden binaries into $DB/bin. However
this has the effect of making it difficult to identify the origin of specific programs in
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$DB/bin as being part of the Staden Package. On the other hand, symbolic links from
$DB/bin to each of the programs in $DB/pkg/staden/solaris-bin would provide a com-
promise. This would require that links be individually maintained.

Documentation and data can be linked more easily in $DB/doc. The following
command:

ln -s $STADENROOT/doc staden

creates a link to the Staden documentation directory, while in $DB/dat, and

ln -s $STADENROOT staden

creates a link to the main Staden directory, from which the user can find several direc-
tories with sample datafiles. In this fashion, the $DOC and $DAT directories appear to
contain staden subdirectories, whose contents are physically located elsewhere.

On Linux systems, complex packages are maintained using programs such as Red
Hat Package Manager (RPM). RPM automates package installation, often requiring
no user input. As files are copied to their destinations, their locations are recorded in
the RPM database (/usr/lib/rpm). In addition to installation, RPM automates pack-
age updating, verification and de-installation. Tools such as RPM make it possible
to install software in system directories such as /usr/local/bin or /usr/bin without
making these directories unmanageable. The one disadvantage is that installation in
system directories can only be accomplished with root permissions.

Special Considerations for Java Applications
Java applications should be installed in a central location, such as $DB/java. Ide-

ally, all that should be required is the inclusion of $DB/java in the $CLASSPATH
environment variable. The Java Virtual Machine (JVM) would search this location
at runtime. However, the precise commands needed to launch an application vary,
so that no single solution exists. For example, some applications are completely
contained in a single .jar file, while others require a complex directory structure
containing large numbers of objects and datafiles. Consequently, Java applications
should be launched from wrappers: short scripts that reside in $DB/bin and call the
application. For example, a script called $DB/bin/readseq runs the Java implemen-
tation of readseq (available from IUBio, see Table 1):

#!/bin/csh
# UNIX script file to run command line readseq

# Full path must be specified to enable us to
# launch readseq from any directory.
setenv CLASSPATH $DB/java/readseq/readseq.jar

# $argv passes command line arguments from the wrapper
# to the application
java -cp $CLASSPATH run $argv

Thus, typing readseq launches the wrapper, which in turn launches the Java readseq
application. Readseq also has a method called app which runs readseq in a graphic
interface. To run in this mode, the Xreadseq wrapper has the following line:

java -cp $CLASSPATH app
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Calling Programs from a Graphic Front-End

Several options exist for unifying a large software base with a graphic front end.
Programs such as GDE (see Table 1), SeqLab from the GCG package (see Website:
http://www.accelrys.com), or SeqPup (see Table 1, IUBio) allow the Bioadmin to add
external programs to their menus, as specified in easy-to-edit configuration files. In
general, the user selects one or more sequences to work with, and then chooses a
program from the main menu. A window pops up, allowing parameters to be set. The
front end then generates a UNIX command to run the program with these parameters,
using the selected sequences.

In many cases, it is best for the front end to call a wrapper that verifies and checks
the parameters and sequences, then executes the program. This is especially important
for programs from packages such as FSAP or PHYLIP (see Table 1), which operate
through text-based interactive menus. If a prompt does not receive a valid response,
programs of this type may go into an infinite loop that prompts for a response.

Launching Programs from the Workspace Menu
The workspace menu is yet another avenue through which users can find pro-

grams. Figure 3 shows a CDE workspace menu organized categorically. At the high-
est level are the main categories of programs, including standalone items for office
packages. The molecular biology menu is further divided into submenus. For
example, the Sequencing submenu contains programs that together cover all steps in
the sequencing process, including reading the raw chromatograms, vector removal,
contig assembly, and submission to GenBank. The downside of the workspace menu
is that it is incomplete, as command line applications, cannot be launched from the
workspace menu.

Fig. 3. The CDE Workspace Menu.
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One should be able to launch GUI applications from the workspace menu, default-
ing to the user’s $HOME directory. In the CDE desktop, this is specified in the .dt
directory. Most recent UNIX desktops, such as CDE 1.4 and GNOME use tree-struc-
tured directories to define the structure of the workspace menu. Again, it is important
to avoid having to update individual user accounts. The easiest way is to create a
directory for molecular biology programs on the Bioadmin’s account, and have new
users run a script creating a symbolic link from their workspace menu directory (e.g.,
.dt/Desktop) to the Bioadmin’s directory. Subsequently, all updates to the Bioadmin’s
menu will become available to all users.

Testing
Testing should not be carried out using the account that owns the programs (e.g.,

root). Testing should always be done in a regular user account. One reason is that
testing on a user account will uncover incorrect permissions. This is likely the single
most common installation error. At the same time, it is probably also best to test in a
subdirectory, rather than in the $HOME directory, to fully demonstrate that the pro-
gram can be run from anywhere.

Using VNC (see Table 1), one can easily eliminate login/logout cycles between
your Bioadmin account and your user account. The vncserver is an X11 server that
runs on a networked UNIX host. It creates an X11 screen in memory. To display that
screen, run vncviewer on your desktop machine. The complete UNIX desktop appears
in a window. For example, the entire screen shown in Fig. 2 was run in a vncviewer
window. Thus, switching back and forth between the user desktop and the Bioadmin
desktop is as easy as switching between windows, facilitating rapid test-modify cycles.
(See Chapter 17 for additional VNC insights.)

Installation Checklist
Before announcing updates or new programs, go through the package in a user

account, checking the following:

• All files world-readable (chmod a+r filename)
• All binaries world-executable (chmod a+x filename)
• All directories world-searchable (chmod a+x directoryname)
• Environment variable set in cshrc.source
• Documentation and datafiles updated

Although installation should result in a finished product, there are often bugs that
need to be worked out as the package or program gets used. At this point, the user base
is probably the best group of testers, becuase they will make mistakes, and they will
try a wider range of data than the Bioadmin would try.
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Glossary and Abbreviations
Front end  A user interface that executes other programs.
GUI  Graphic user interface.
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JVM  Java virtual machine.  JVM emulates a computer architecture in software.
Java programs are compiled into pseudocode (P-code) which is executed by JVM.
Consequently, compiled Java code runs on any computer for which JVM is available.

Thin client  A display device that draws a screen as specified by the X-server. Thin
clients are almost always diskless. Execution of the program occurs on the host, and
the results are displayed on the client. X-terminals, SunRay(r) Internet Appliances,
and even PC’s running X11 server are all examples of thin clients.

Wrapper  A script that automates startup tasks required for execution of a program.
For example, wrappers often check for critical files and set environment variables.

X11 (X windows)  Protocols and libraries for Unix graphic interfaces. The X-server
(X) is a program that executes X11 calls from X-applications, and draws the specified
screen.
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Management of a Server-Based
Bioinformatics Resource

Brian Fristensky

Introduction

The strategies for managing a server-based molecular biology software resource,
accessed by a diverse user community has been discussed in the previous chapters. It
assumes that the reader is familiar with basic UNIX commands and concepts. The
approaches discussed here are implemented in the BIRCH system (see Website: http://
home.cc.umanitoba.ca/~psgendb) but are generally applicable to any centralized
multiuser software installation.

Most major UNIX distributions now come with graphic tools that simplify many
administration tasks. It is therefore realistic to act as your own sysadmin. In fact many
of the principles discussed are valid in the larger context of a general purpose multiuser
system. Although general system administration is a broad field, particular attention
should be paid to: daily and weekly backups, both onsite and offsite; security, includ-
ing rapid installation of security patches; management of user accounts; and disk space
to minimize the work and know-how needed on the part of the user. These topics are
beyond the scope of this chapter, and are covered extensively in books on system
administration, on USENET newsgroups in the comp.* section, and at various
HOWTO websites.

The key factors and considerations when implementing the system are:

1. A user base with a diverse set of needs and usually minimal informatics training.
2. A diverse software base, comprised of programs from many authors, in many

languages, and in many styles.
3. Documentation written in many formats and styles.
4. A complex networked server system.
5. Limitations of disk space and computing resources.

This chapter builds on the organizational scheme described in the previous chapter.
To summarize, the resource is located in a world-readable directory tree referenced by
the $DB environment variable. Program binaries, documentation, and ancillary
datafiles are located in $DB/bin, $DB/doc, and $DB/dat, respectively. To use the
resource, user accounts are set up by running the newuser script. This appends a set of
configuration commands from $DB/admin/login.source and $DB/admin/cshrc.source
to their .login and .cshrc files. The commands in these files are executed when a user
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logs in or starts a new shell. Thus, as the central configuration is updated, all users
have immediate access to the updates. The means to implement this structure are
described in the previous chapter.

Managing Documentation

Documentation is the user’s entry point into the system. Keeping documentation
organized, accessible, and updated accomplishes several tasks. First, it helps to bring
out difficulties that users may face when running programs. Second, it forces the
Bioadmin to see the software base from the user’s perspective. Third, well-organized
documentation works to the Bioadmin’s advantage, making it easy to refer users to the
appropriate documentation, rather than having to answer the same question over and
over. While installation of documentation should be straightforward, there are a few
considerations for providing a consistent web-accessible documentation library.

HTML
HTML is rapidly becoming the most common format for documentation because

of its dynamic capabilities and universal availability. However, it is probably best to
keep a local copy of the program documentation on your website, rather than simply
linking to the author’s website. An author’s website will probably describe the most
recent version of the software, which may not be installed on your system. If the
author stops supporting a software package, he or she may no longer keep documen-
tation on a website. Thus, installation of a local copy of the documentation that was
obtained at the time the package was installed is guaranteed to accurately describe
the version of the software currently installed.

UNIX Manual Pages
BIRCH has a directory for manual pages called $DB/manl. All files in this direc-

tory should be in the form name.l (where l stands for local). In login.source, the line

setenv MANPATH $MANPATH\:$DB

tells UNIX to look for the manual pages in this directory, as well as in any other
directory specified in the system’s $MANPATH. For example, to read the docu-
mentation for align, the user types man align, and the file $DB/manl/align.l will be
displayed. To display on the web, UNIX manual pages can be converted to ASCII
text by redirecting the output from the man command to an ASCII file, e.g.,

man fasta > fasta.txt

Postscript and PDF
Although PostScript viewers are usually available on most UNIX workstations,

acroread, the Adobe Acrobat Reader, has been universally adopted. Therefore, it is
probably safest to convert postscript files to PDF for web accessibility using ps2pdf,
e.g., ps2pdf primer3.ps, will create a file called primer3.pdf. ps2pdf is included with
most UNIX distributions.

ASCII Text
All web browsers can display ASCII text. It should be noted that file extensions

such as .txt or .asc are probably best to use, because these are not commonly used by
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application software. ASCII files with .doc extensions should be changed to some
other extension to avoid confusion with Microsoft WORD files.

Word Processor Documents
Import filters are often less than satisfactory. Therefore, when documentation is in

a format specific to a word processor such as WordPerfect, StarOffice Writer, Applix
Words, or Microsoft Word, it is best to convert it to the PDF format. Some programs
can directly save or print to PDF, while others can only print to PostScript. For the
latter, convert to PDF using ps2pdf as noted earlier.

Communicating with the User Base

Login Messages
Brief announcements can be printed at the user’s terminal by including a state-

ment such as cat ~psgendb/admin/Login_Message the in login.source, where
Login_Message contains a few lines of text with the current announcements. This
message is printed in each terminal window.

Web Site Organization
The BIRCH website provides a number of views to the system (see Fig. 1). The

New User section provides documents that describe BIRCH, how to set up accounts,
and how to learn the system. The Documentation section provides tutorials and other
resources for users to develop their informatics skills while getting useful work done.
Finally, the complete online documentation is available in the Software and Database
sections, describing the full functionality of the system.

All login messages are archived in the file WHATSNEW.html, which can be viewed
in a scrolling window entitled BIRCH ANNOUNCEMENTS. This file provides links to
more detailed information than appears in login messages, so that even users who have
been away from the system for a while won’t miss important changes.

Discussion Groups
Although online discussions can be conducted through a mailing list, these often

become an annoyance as the number of users increase and the number of lists one
subscribes to increases. Most web browsers such as Netscape and Internet Explorer/
Outlook Express, as well as third-party applications, can be used to read and partici-
pate in discussions on USENET newsgroups. Many users are familiar with world-
wide groups, including the bionet.* groups (e.g., bionet.software, bionet.molbio.
genearrays). However, it is also possible to have local newsgroups on any system that
operates a newsserver, as do most campus UNIX systems. The local news Bioadmin
can easily create a group such as local.bioinformatics or local.genomics that will be
accessible to the local user community.

Remote Consultation Using VNC
Remote consultation on UNIX platforms is now greatly enhanced by Virtual Net-

work Computing (VNC). VNC is a package of programs freely distributed by AT&T
(see Website: http://www.uk.research.att.com/vnc/). In essence, vncserver creates an
X11 desktop session on a remote login host, which keeps an image of the screen in
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memory. A copy of vncviewer, running on a PC or workstation anywhere in the world
with a high-speed Internet connection, can display and control the screen as if it were
running locally. Figure 2 shows a screen in which a vncviewer window is displayed.
VNC is available for MS-Windows, Macintosh, and UNIX. The vncviewer can also
run as a Java applet in a web browser, so that vncviewer does not have to be installed
on the local machine. Thus, regardless of where you are, your UNIX desktop looks
and acts the same.

For remote consultation, assume that a user has phoned the Bioadmin with a prob-
lem. If it cannot be easily described over the phone, the user changes their VNC pass-
word using vncpw, and tells the Bioadmin the new password. Next the user starts up a
copy of vncserver:

vncserver -alwaysshared
New ‘X’ desktop is mira:8

Fig. 1. Organization of web-based documentation on the BIRCH home page (see Website: http://
home.cc.umanitoba.ca/~psgendb).
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The -alwaysshared option makes it possible for more than one user to simulta-
neously display the same desktop. The message tells the user that vncserver has cre-
ated desktop 8 on host mira.

Next, the user and Bioadmin each type: vncviewer mira:8 followed by the
password, and the same vncviewer window will appear on both of their screens (see
Fig. 2). If connecting via a browser, vncviewer would be launched by setting the URL
to http://mira.cc.umanitoba.ca:5808, where the last two digits in 5808 indicate the
screen number.

Now, both the user and Bioadmin can see and control the same desktop while
discussing the various operations over the phone. The user can run a program that is
causing difficulty, and the Bioadmin can see everything that happens. The Bioadmin
can demonstrate in real time what the user should be doing, and if necessary, datafiles
or configuration files such as .cshrc can be examined.

Fig. 2. Screenshot of a VNC session. The vncviewer VNC: frist’s X desktop (mira:8) displays in a
window (solid light background) on the local desktop (dark brick background). The VNC window
encompasses 1024 × 768 pixels, against a screen at a resolution of 1600 × 1200. The background for
the mira:8 desktop has been changed to solid, requiring less network bandwidth for refreshing the
screen across a network.

Note: VNC needs to be configured to display the user’s regular X11 desktop. On our Solaris sys-
tem, the file $HOME/.vnc/xstartup should contain the line “Xsession &” to run the standard X11
session using vncserver. For the GNOME desktop, this line would read “gnome-session &.”
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At the end of the session, the Bioadmin reminds the user to kill the VNC session by
typing vncserver -kill :8 and to change their VNC password.

The real value of VNC becomes apparent when traveling. For example, applica-
tions such as Powerpoint produce static presentations, and most people travel with
their own laptop to ensure that it will work. Over the last 2 years, I have given real-
time presentations across North America using VNC on any computer at hand. As
long as a fast Internet connection is available, the full functionality of the desktop can
be demonstrated anywhere there is a computer and a data projector.

Detecting, Handling and Preventing Problems
 A multiuser system poses challenges in terms of managing shared resources, such

as CPU time, memory, disk space, and network bandwidth. Usually it is possible to
design a system that will minimize user errors, and in most cases UNIX is intrinsically
protected from most catastrophes. For example, so that the permissions are explicitly
set otherwise, a user can only read or modify files belonging to him, and usually these
can only reside in the $HOME directory.

Disk Space
$HOME directories should always reside in a separate file system, and user quotas

should be set, regardless of how much disk space exists. The one filesystem that is
potentially troublesome is /tmp, which is writeable by all users. In the event that /tmp
becomes full, programs that need to write temporary files may hang, resulting in a
filesystem full error. The best way to avoid this problem is to have applications write
temporary files to the current working directory, so that in the worst case, only the
user is affected.

CPU Time
Monitoring CPU Usage

Keeping track of CPU usage is critically important. The top command gives you a
real-time picture of the most CPU intensive jobs currently running on the host you are
logged into. If you type top at the command line, your system will generate similar
information to the following:
last pid: 13912; load averages: 2.61, 1.64, 1.31 13:48:41
504 processes: 488 sleeping, 1 running, 6 zombie, 7 stopped, 2 on cpu
CPU states: 16.4% idle, 65.7% user, 17.9% kernel, 0.0% iowait, 0.0% swap
Memory: 640M real, 17M free, 846M swap in use, 3407M swap free

  PID USERNAME THR PRI NICE  SIZE   RES STATE    TIME    CPU COMMAND
11371 umamyks   13  10    0   77M   71M cpu/0   23:19 64.27% matlab
27668 frist     10  58    0   97M   56M sleep    3:06  3.49% soffice.bin
13894 frist      1  33    0 3344K 1672K cpu/1    0:01  1.65% top
13898 umnorthv   1  58    0 6424K 4352K sleep    0:00  0.82% pine.exe
 1629 mills      7   0    0 9992K 7840K sleep    0:24  0.42% dtwm
13704 mhbasri    1  38    0 1464K 1360K sleep    0:01  0.31% elm.exe
 9797 syeung     1  58    0 1000K  816K sleep  267:53  0.28% newmail
 6914 umtirzit   8  58    0   13M 3992K sleep   26:38  0.23% dtmail
26524 mgarlich   1  58    0 9376K 6960K sleep    0:10  0.23% dtterm
29993 simosko    1  58    0 6824K 4528K sleep    0:21  0.23% pine.exe
 7937 jayasin    1  58    0 6112K 3816K sleep    6:55  0.22% Xvnc
 4483 francey    7  48    0 9904K 7920K sleep    0:24  0.21% dtwm
  206 root       6  58    0   76M 8024K sleep  458:13  0.20% automountd
27272 frist      7  58    0   11M 8376K sleep    0:35  0.20% dtwm
  580 syeung     1  48    0 2376K 1976K sleep    2:56  0.19% irc-2.6
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This display is updated every few seconds in the terminal window. To quit, type q.
The top command has many options. For example, you can sort jobs by memory used,
or list only jobs under a given userid. The owner of a job can also kill that job using
top. Type man top for full documentation.

The ps command with no arguments tells which jobs are running in the current
shell (the current window):

 ps
   PID TTY     TIME CMD
  2122 pts/104 0:00 dsdm
 27401 pts/104 2:18 mozilla-
 27376 pts/104 0:00 netscape
  2082 pts/104 0:00 zwgc
 27384 pts/104 0:00 netscape
 27396 pts/104 0:00 run-mozi
  2024 pts/104 0:18 Xvnc
  2041 pts/104 0:00 Xsession
 27305 pts/104 0:01 csh
 27381 pts/104 0:00 netscape
 27457 pts/104 0:14 java_vm

while

ps -u userid

tells which jobs are running under a given userid on the host you are logged into.
The following list summarizes the types of tasks that tend to require a lot of pro-

cessing time:

JOBS THAT TEND TO BE CPU-INTENSIVE:

1. Phylogenetic Analysis

a. Distance matrix methods (e.g., Neighbor Joining, FITCH): Very fast, the
amount of time increases in a linear fashion with the number of sequences.

b. Parsimony (e.g., DNAPARS, PROTPARS): Moderately efficient, the amount
of time increases exponentially with the number of sequences

c. Maximum likelihood (e.g., DNAML, PROTML, fastDNAML): Very slow,
the amount of time increases according to a FACTORIAL function of the num-
ber of sequences.

2. Sequence database searches: The amount of time that is required is proportional
to product of sequence length and database size; use high k values to speed up a
search; protein searches are faster than DNA.

3. Multiple sequence alignments (e.g., CLUSTALX): Cluster type alignments scale
linearly in proportion to the number of sequences.

4. Retrievals of large numbers of sequences: The time required is linear, related to
number of sequences.

5. The efficiency of any sorting operation with a large number of items depends on
the sort algorithm used.

6. Statistical and mathematical packages (e.g., SAS, MATLAB).

JOBS THAT SHOULD NEVER BE CPU INTENSIVE

If the following applications are using significant percentages of CPU time, they
are not functioning normally, and are probably runaway jobs.
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1. Graphic front ends: Programs such as GDE, SeqLab, or SeqPup by themselves
do almost nothing. If you see one using a substantial amount of CPU time, it is
probably a runaway job. One exception is when reading large sequence files,
e.g., large numbers of sequences or very long sequences that are placed in
memory for analysis.

2. Most user apps (e.g., word processors, mailers, spread sheets, drawing programs).

3. Desktop tools (e.g., text editors, filemanagers).

4. Most UNIX commands.

5. Web browsers: For short bursts browsers can be very CPU-intensive, but this
should not persist for more than a minute or two.

Managing Long-Running Jobs

On any multitasking system, all jobs are assigned priorities that govern the
amount of CPU time allocated to them. In UNIX, the nice command determines the
priority. Most user commands default to a nice value of 0. This is especially impor-
tant for applications run through a graphic interface, which need to work in real
time. The higher the nice value, the less CPU time a job will be allocated, and the
less of a load it puts on the system. Programs known to be CPU intensive can there-
fore be set to run at low priority. A higher nice value prevents the program from
taking large amounts of time at high loads, but does not prevent it from utilizing
CPU resources when the load on the system is light.

CPU-intensive tasks such as database searches or phylogenetic analysis should be
run from wrappers, i.e., scripts that set parameters before running the program. The
name of the program is preceded by the nice command. For example, to run
fastDNAml at the default priority, a wrapper might contain the line:

nice fastDNAml arguments... &

The default priority for nice varies from system to system. In the BIRCH system,
most sequence programs are launched from the GDE interface by calling wrappers that
run programs using nice. As well, termination of the command line with an ampersand
(&) tells the shell to run the task in the background. Thus, a user can launch a long-
running job, quit GDE, and logout without terminating the job. When the program is
completed, the output is written to the file, which the user can access when logged in
during the next session.

In some cases, programs that use a graphic interface will perform analyses that
require very long execution times. The problem with this design is that the user must
remain logged in to the terminal from which the program was launched, because quit-
ting the program would terminate the analysis. One can circumvent this problem by
running jobs of this type from a vncviewer window. Killing a vncviewer window has
no effect on the applications currently running, and the user can open up the same
screen at any time from anywhere. This has the added benefit of making it easy to
remotely monitor the progress of long-running jobs.

Killing Runaway Jobs

Sometimes a program will not correctly handle an error, and will begin using up
large amounts of CPU time. Unless the Bioadmin has root permissions, it is neces-
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sary to ask either the owner of the job or a sysadmin to kill it. For example, a run-
away netscape job might show up thus when running the top command:
PID    USERNAME  THR  PRI  NICE  SIZE  RES  STATE  TIME   CPU     COMMAND
25779  frist      13   22   0    24M   11M  cpu/0  23:19  64.27%  netscape

To kill the job, root or the owner would type: kill -9 25779.
Applications that do not normally use a lot of CPU time, but may be prone to run-

away execution, could be contained by running them from a wrapper, in which the
ulimit command is issued prior to running the program, e.g.,  ulimit -t 900, limiting
CPU time in the current shell to 900 seconds (15 min).
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Glossary and Abbreviations
ASCII  Standard character set used by most computer operating systems, in which

characters are represented by 8-bit numbers from 0 to 255.
PDF  Portable document format.  Platform-independent document rendering lan-

guage for text and graphics. Files are more compact than PostScript. However, PDF
viewers such as Adobe Acrobat typically generate PostScript, which is then printed.
PDF was created by Adobe Systems Incorporated (see Website: www. adobe.com).

PostScript  Standard control language used by virtually all laser printers for render-
ing text and graphics. Programs often create PostScript output which can be directly
printed. PostScript was created by Adobe Systems Incorporated (see Website: www.
adobe.com).
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Sittichoke Saisanit

Introduction

Users are most likely to encounter the Wisconsin Package (GCG) via the web
interface as SeqWeb. As the name implies, SeqWeb is a web interface product that
allows access to many programs in the GCG package. However, there are still a
number of advantages for using GCG on the UNIX command line interface. First of
all, the command-line interface is more amenable to batch processing of large
datasets. Secondly, the command-line interface allows access to all programs not
just the web interface subset. The use of GCG under the UNIX command line is
presented in this chapter.

UNIX Commands and Overview

Familiarity with UNIXas presented in Chapter 13 and Appendix 3 is recommended
prior to studying this chapter. Here are a few commands and rules in UNIX that can
help you get started. Unlike DOS and VMS, UNIX is case-sensitive. For example, a
file name mygene.seq is different from Mygene.seq or any other mixed case combina-
tions. The man command is short for manual; it is equivalent to help in other operating
systems and programs. For example, to find out how a certain UNIX command can be
used, type man and the command of interest, then hit Enter at the command prompt
%. For example: % man cd.

Manual pages for the command cd will be displayed. The cd command is used to
change directory from one location to another. For example: % cd /usr/home /usr/
common/myproject. This command changed the current working directory from /
usr/home to /usr/common/myproject.

What if the command itself is not known? One powerful feature of the man pages
is the ability to include a modifier -k to use a keyword feature for finding a com-
mand. For example, to find a command to delete a file, enter % man -k remove.

The command will list titles of man pages that contain the word remove in them.
Introduction to UNIX is covered in Chapter 13 which includes descriptions of many
UNIX commands.

In order to use GCG effectively with the command line interface, it is important
to learn how to manipulate files and directories. This is fundamental to any operat-
ing system.
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Using Database Sequences and Sequence Formats

The GCG package needs to be initialized by sourcing two scripts. This can be auto-
mated at the user log-in as the .cshrc file.

There are several formats of sequence data. Users may be familiar with GenBank
or EMBL format. GCG has its own format. It also provides several program utilities to
convert sequences from one format to another. The GCG format has one notable sig-
nature, i.e., 2 dots (..) to separate annotation and the sequence itself. The annotation
proceeds the 2 dots followed by the sequence. In most cases, users should not worry
about the GCG sequence format. All one needs to do is learn how to retrieve or specify
a sequence from these databases when executing a GCG program. The GCG conven-
tion for specifying a sequence is database:accession or database:locus_name. The
database, is the GCG logical name for a database. These names have been set by the
GCG administrator. For example, it is customary to set gb for a logical name of
GenBank database. To find out whether or not a local installation of GCG has gb as
one of the logical names, issue the following command: % name gb.

To list the logical names, issue the command name without any database name.

Example: % name

To retrieve a sequence, the GCG Fetch command can be used.

Example: % fetch gb:m97796

Assuming that the GenBank database is installed locally and gb is set as its logical
name, the above command will retrieve a GenBank sequence which has an accession
number of M97796. The result will be written to a file with a default name unless a
name is specifically given to the program.

The Fetch program can also work without database name specification.

Example: % fetch m97796

However, if the accession number appears in more than one database, Fetch will
retrieve all of the sequence records. To ensure uniqueness and speed of retrieval, it is
best to use Fetch with full specification of the database name and sequence accession
number.

On the occasion that a GCG sequence is created or modified by a text editor and the
checksum has been altered, GCG programs will not recognize this sequence.
Users need to run a utility called reformat (shown below) to correct the checksum.

Example: % reformat myseq.seq

Another useful file format in GCG is the Rich Sequence Format (RSF). In SeqLab,
which is a graphical user interface for GCG run under X Windows, RSF is particularly
useful because sequence annotations such as domains and phosphorylation sites can
be displayed for visualization. SeqLab can only be run from a UNIX workstation or an
X Windows emulation program. There are two modes of working when inside SeqLab:
main list and editor. The graphical sequence viewer is available in SeqLab editor
mode. The reformat command can be used to convert a GCG sequence into an RSF
format sequence by including the -RSF parameter in the command line: % reformat
-rsf myseq.seq.

It is recommended that users name sequence files consistently. By default, GCG
does not require consistent naming and UNIX does not insist on file types. In con-
trast, DOS and Windows usually require a 3-letter file type extension for files to be
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recognized correctly by the programs. However, after accumulating files it will be
difficult to recognize older files. Users should make a habit of naming sequence
files with meaningful names and consistent name extensions. Appending .dna or
.seq extension for nucleic acid sequence files, or .pep or .pro extension for protein
sequence files will help in recognizing these files. In addition, storing sequence files
in specific directories for each project is generally a good idea. Once a certain project
has been completed, the entire directory can be archived or removed.

Another file format users may encounter is the FASTA format. Most public
sequence utilities on the web can accept or produce sequences in FASTA format. GCG
has a utility to convert GCG sequences into FASTA format sequences and vice versa.
This is useful because it allows one to use other available tools and external sequences.
Tofasta converts a GCG sequence into a FASTA format sequence.

Example: % tofasta gb:m97796

FromFasta converts a FASTA sequence into a GCG format sequence.

Example: % fromfasta pubseq.fasta

Editing GCG Formatted Sequences

The need to edit sequences may come from users’ own sequencing efforts. Addi-
tionally, users may want to track recombinant sequences such as products of mutagen-
esis. SeqEd is a utility to edit sequences in a much more efficient manner than a text
editor. SeqEd has another advantage in that the edited sequence will be recognized by
other GCG programs without the need to run the reformat command. Annotations to
specific residues can also be placed within an edited sequence. SeqEd can be started
by entering: % seqed myseq.seq.

Once inside a SeqEd editor, use Control-D to enter the editor command. Enter-
ing help in the editor brings up a list of commands that can be used inside the editor.

List File

When working with a family of gene or protein sequences, there is often a need to
simultaneously manage a number of sequences. GCG provides a powerful function
called a list file. A list file is simply a text file that contains a list of individual
sequences beginning with 2 dots (..) and separated by new lines. The GCG programs
ignore any text before the 2 dots and any text after an exclamation mark (!). Therefore,
comments or descriptions of sequences can be added. An example of a list file:

Sequences of mammalian EGF receptors and related family members.
..
sw:EGFR_HUMAN
sw:EGFR_MOUSE
/usr/home/newdata/myseq.pep ! unpublished EGFR-related sequence

As shown in this example, a list file can contain either database sequences or
local user sequences or both. A list file is accessed by preceding the file name with
the @ symbol. For example, to retrieve all sequences in the list file named egfr.list
to the current working directory, use the GCG Fetch command:

% fetch @egfr.list.
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In addition to making a list file, multiple sequences can be aligned and written to a
single Multiple Sequence Format (MSF) file. Several GCG programs can output files
in an MSF format. For example, the reformat program with the -MSF parameter can
be used to convert a group of sequences from a list file into an MSF formatted file.

Example: % reformat -msf @egfr.list

However, reformat does not align the input sequences. The file resulting from
reformat can be named egfr.msf, for example. This MSF file can then be used as input
for other GCG programs. One or a subset or all of the sequences in an MSF file can be
used. To specify a single sequence from an MSF file, type the MSF file name followed
by the sequence name in curly brackets, for example egfr.msf{egfr1}. To specify
multiple sequences, an asterisk wildcard character must be used. For example,
egfr.msf{egfr*} specifies sequences in the egfr.msf file with sequence names begin-
ning with egfr. Similiary, egfr.msf{*} indicates that all sequences in the MSF file will
be used. Note, plain file name specification is not sufficient to specify sequences from
MSF files. Either a sequence name or wildcard in the curly brackets must be used with
the file name.

SeqLab, the X Windows interface for GCG, can also output MSF files from a list of
sequences. GCG command-line programs that can output MSF files are listed below.
Programs that require -MSF parameter are listed accordingly.

• LineUp -MSF
• PileUp
• PrettyBox
• ProfileGap -MSF
• ProfileSegments -MSF
• Reformat -MSF

Below are two examples of how to use MSF files in a program without (PileUp)
and with (LineUp) “-MSF” option requirement.

Example:  % pileup egfr.msf{*}
   % lineup -msf egfr.msf

Graphic Files

Several GCG programs have an option to generate output in a graphic format. In
order to use the graphic feature, a graphical language and a graphic device must be
defined. The command ShowPlot displays the current graphic device while the com-
mand SetPlot changes it. After setting the graphic device, the command PlotTest can
generate a test graphic output. It is a quick and easy way to determine whether the
device is properly configured.

Graphic files require specific applications in order to be displayed correctly. They
can not be displayed from the command-line interface like plain text files. The .figure
files are generally a graphic output from many GCG programs.

Graphics can be displayed directly on the screen. If an appropriate device is selected.
For example, on an X Windows terminal, ColorX can be used. ColorX is a graphic
language and a device for the X Windows environment.

File management in GCG requires knowledge of the operating system on which
GCG runs. Most likely, it is one of many flavors of UNIX. Common sense should be
applied to maintain naming consistency and to facilitate the task of file organiza-
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tion. This is helped by the various file utilities for creating sequence files and con-
verting them into proper formats. Learning how to manage and use graphic files will
be helpful to visualize the output from many GCG programs.

Glossary and Abbreviations

EMBL Nucleotide Database  Europe’s primary collection of all publicly available
nucleotide sequences. It is maintain in collaboration with GenBank and DDBJ (Japan).

GCG  Genetics Computer Group started in 1982 within the Department of Genet-
ics at the University of Wisconsin. It went private in 1990 and was acquired by Oxford
Molecular Group in 1997. In 2000, Oxford Molecular was acquired by Pharmacopeia
resulting in a new company called Accelrys (see Website: http://www.accelrys.com)
which is currently the commercial distributor of GCG(r) Wisconsin Package™.

GenBank  An annotated collection of all publicly available nucleotide sequences.
The protein sequence collection is referred to specifically as GenPept. GenBank is
maintained by National Center of Biotechnology Information (NCBI), a unit of the US
National Institute of Health (NIH).

SWISS-PROT  An annotated protein sequence database maintained and curated
by the Swiss Institute for Bioinformatics (SIB). The database designation is often
abbreviated as SW in GCG.

Wisconsin Package  A suite of tools and programs for Bioinformatics sequence
analysis developed by GCG. It runs on various UNIX operating systems including
SUN Solaris, SGI IRIX, Compaq Tru64 UNIX, IBM AIX, and Red Hat Linux.

WWW
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Introduction

The strength of the Wisconsin Package (GCG) is that it contains a suite of pro-
grams that serve a wide range of sequence analysis needs. A selected number of these
programs are described. Each GCG program has extensive modifiers or parameters
available. Top-level online help contains a list of all programs and appendices in
alphabetical order. Lists of IUPAC standard symbols for amino acids and nucleotides,
including ambiguous symbols, can be found in Appendix 2. Program manuals orga-
nize the GCG programs into groups of related analyses or functions. The user’s guide
contains introductions and overviews that provide an excellent resource for those
who are new to GCG. Release notes provide a list of new programs and existing
programs with enhancements or bug fixes. To access top-level online help, program
manuals, the user’s guide and release notes, simply type genhelp without specifying
a program name after the command prompt % (genhelp).

 For specific help, i.e, to get help on the Map program, enter: % genhelp map.

Individual Sequence Analysis

Several programs in GCG can be used for analysis of individual DNA or protein
sequences. These programs are divided into the functional groups of DNA restriction
mapping, pattern recognition, secondary structure prediction, RNA secondary struc-
ture prediction, and other protein analysis.

DNA Restriction Mapping

Restriction digestions are routine laboratory techniques that many molecular biolo-
gists perform. There are related pattern-recognition programs in GCG that can facili-
tate the analysis or the preparation of a restriction digestion experiment. They are
Map, MapSort, and MapPlot.

Map locates restriction sites within a given sequence. It also provides an optional
protein translation along with the result. For example, upon entering the Map com-
mand, the program recognizes the sequence specification convention database:
accession number  (gb:m97796), and immediately uses the database sequence as an
input. It then asks the user to enter specific restriction sites. All sites can be selected by
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hitting return key or none by hitting the space bar, followed by the return key. Next,
the program asks the user to specify which frame is to be used for protein translation.
Select a specific frame if known. If not known, select 3 forward frames, 3 reverse
frames, or open reading frames. Otherwise, select the none option in order not to view
any protein translation. Map then generates an output text file, which can be viewed
by using the UNIX command more or by any other text viewer/editor.

All prompted parameters can also be entered in a single line of command. Follow-
ing the interactive example earlier, the map command with needed parameters can be
entered with the required parameters.

  Example: % map gb:m97796 -enzyme=* -menu=o -out=m97796.map -default

The -enzyme=* parameter means that all restriction sites (*) are chosen. With the
-menu=o, protein translation is performed for open reading frames (o) only. To save
an output into a file named m97796.map, the parameter -out=m97796.map is sup-
plied. Finally, the -default parameter tells the Map program to accept default values
for any prompted parameter not specified. In this case, the start and the end positions
of the sequence for the Map program to run are not specified. Therefore using the
-default parameter, the entire sequence is analyzed.

Like the Map program example, any GCG command along with the necessary para-
meters can be submitted in a single line. This is very useful when using a GCG com-
mand inside a UNIX shell script. Note that it is a good idea to always append the -default
option to any command in order to make sure that a default value is selected for only the
parameter that was not specified. Running GCG in a shell script enables complex possi-
bilities such as a multi-step analysis and repetitive or regularly scheduled processes.

Another related program for restriction mapping is MapSort. MapSort finds the
restriction enzyme cuts in a given DNA sequence and sorts the fragments of the result-
ing theoretical digestion by size. MapSort can be used to predict how the fragments of
a restriction enzyme reaction will separate on a gel. It is possible to concatenate a
sequence of interest with its vector before running MapSort to determine if a single
step isolation is possible. With the optional parameter -circular, the sequence will be
analyzed in its circular form, otherwise the program considers the sequence as linear
by default.

Example: % mapsort myrecomb.seq -circular

Lastly, the MapPlot program graphically displays restriction sites. In addition to a
graphic output, MapPlot can write a text file that also approximates the graph. The pro-
gram helps users visualize how the part of a DNA molecule of interest may be isolated.

Finding rare-cutter restriction enzymes in a given sequence is often a useful exer-
cise. These enzymes can then be used to quickly test whether a clone or a polymerase
chain reaction (PCR) product is likely to be correct. For example, if a EcoRI digestion
of a 600 bp PCR product is predicted to produce 2 fragments of 400 and 200 bp each, it
is prudent to digest a portion of the PCR product and examine it along side the undi-
gested material using electrophoresis. Observing all three different size species will
give confidence that the PCR product obtained is not an artifact. One optional param-
eter for mapping programs is -six. This option causes a program like Map to find only
enzymes that have six base recognition sites (rare cutters). For subcloning experiments,
it is often desirable to identify enzymes that cut only once in a sequence. Option -once
is used to this end.
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When using a mapping program, GCG provides a standard restriction enzyme site
file (enzyme.dat) from the New England Biolabs for all commercially available
enzymes. Single representatives of isoschizomers are defined in the file. However,
there is an option to create a user-customized file. For example, it may be useful to run
the Map program against a set of enzymes that are only available in the laboratory. In
addition, there may be a preference for different isoschizomers not selected in the
default enzyme.dat file. One way to create this customized file is to Fetch the
enzyme.dat file and rename it to a personalized name, e.g., labenzyme.dat.

Example: % fetch enzyme.dat
% mv enzyme.dat labenzyme.dat

Starting with a list of all availble enzymes, the file labenzyme.dat can be modified
to exclude enzymes not available in the laboratory. Inserting exclamation marks (!) in
front of these enzymes will cause the mapping program to ignore them. In addition,
preferred isoschizomers that were not selected as default can be chosen by removing
the corresponding exclamation marks. To run the map program with this local data
file, use option -data command to specify the file with:

% map gb:m97796 -data=labenzyme.dat

Pattern Recognition
Map and related programs are essentially pattern recognition programs. GCG also

has a general purpose pattern finding program called FindPatterns. FindPatterns iden-
tifies sequences that contain short patterns like CANNTG or GCAATTGC. Ambigu-
ous patterns can also be used. FindPatterns can recognize patterns with some symbols
mismatched but not with gaps. For example, the optional parameter -mis=1 allows 1
mismatch to occur in the search pattern. Patterns can be provided in a file or typed
during an interactive session. It supports the IUPAC nucleotide code.

Example: % findpatterns myseq.seq -data=pattern.dat

The GCG formatted search patterns can be provided as a local file. Alternatively,
the patterns can be individually entered from the command line. If using the command
line to enter patterns, simply hit return when the last pattern has been entered and
after the program has again prompted for the next pattern to be entered.

Output from FindPatterns is a text file that can be viewed by any text viewer/editor.
This result shows only those sequences in which a pattern was found and its location.
Use of the -show parameter will include a list of patterns not found.

FindPatterns works with either nucleotide or protein sequences. To search through
proteins for sequence motifs as defined in the PROSITE Dictionary of Proteins Sites
and Patterns, the program Motifs should be used. Motifs also displays a short literature
summary for each of the motifs it finds in a given sequence. The program can recog-
nize patterns with some of the symbols mismatched, but not with gaps.

Other pattern finding utilities can be quite useful when special analysis needs arise.
The Map program can display open reading frames for the six possible translation
frames of a DNA sequence. However, the program Frames was created specifically
to find open reading frames. The program Repeat finds direct repeats in a sequence.
A minimum repeat length (window), a stringency within the window, and a search
range are required. Repeat then finds all the repeats of at least that size and stringency
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within the search range. The Composition program determines the composition of
either DNA or protein sequences. To calculate a consensus sequence for a set of pre-
aligned nucleic acid sequences, the program Consensus can be used. Consensus tabu-
lates the percent of G, A, T, and C for each position in the alignment. FitConsensus
can then use the output table as a query to search for patterns of the derived consen-
sus in other DNA sequences.

Secondary Structure Prediction
Prediction of protein secondary structures is another suite of programs that is used

quite frequently. The PeptideStructure program makes secondary structure predic-
tions of an amino acid sequence. PeptideStructure calculates several predictions using
the following methods:

• Secondary structure according to the Chou-Fasman method
• Secondary structure according to the Garnier-Osguthorpe-Robson method
• Hydrophilicity according to either the Kyte-Doolittle or Hopp-Woods method
• Surface probability according to the Emini method
• Flexibility according to the Karplus-Schulz method
• Glycosylation sites
• Antigenic index according to the Jameson-Wolf method

The results of PeptideStructure are written into a file for graphical presentation
using a program called PlotStructure. The predicted structures can be shown with two
main options: 1) parallel panels of a graph, or 2) a two-dimensional squiggly repre-
sentation. With the first option, PlotStructure creates a one-dimensional, multi-pan-
eled plot, in which the residues are numbered on the x-axis, and the attributes are
represented as continuous curves in each of several different panels. The horizontal
line across the surface probability panel at position 1.0 on the y-axis indicates the
expected surface probability calculated for a random sequence. Values above this line
indicate an increased probability of being found on the protein surface.

The squiggly plot option generates a two-dimensional representation of predicted
secondary structures with different wave forms. Helices are shown with a sine wave,
beta-sheets with a sharp saw-tooth wave, turns with 180 degree turns, and coils with a
dull saw-tooth wave. Any of four different quantitative attributes (hydrophilicity, sur-
face probability, flexibility, or antigenic index) can be superimposed over the wave
with special symbols wherever the attribute exceeds a set threshold. The size of the
symbols is proportional to the value of the attribute. In addition, possible glycosylation
sites can be marked on the two-dimensional plot.

As with any computational prediction, users should be cautioned that they are just
predictions and should be treated as such. They are not substitutes for experimental
proof but can help to direct or focus experiments for validation.

Another program that determines peptide secondary structure is PepPlot. PepPlot
calculates and plots parallel curves of standard measures for protein secondary struc-
ture. Most of the curves are the average, sum, or product of some residue-specific
attribute within a window. In a few cases, the attribute is both specific to the residue
and dependent on its position in the window. Throughout the plot, the blue curves
represent beta-sheets and the red curves represent alpha-helices. Black indicates turns
and hydropathy.

There are 10 different panels that can be plotted in any combination and in any
order. The first part of the plot shows the sequence itself. This panel is extremely
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crowded if more than 100 residues per page are selected. When using PepPlot, consult
the online help.

Other Protein Analysis
Numerous other programs can be used to analyze proteins. Short descriptions of

each are given below. You should consult the online help for detailed descriptions and
to find optional parameters for that analysis.

• SPScan can be used to predict secretory signal peptides (SPs) in protein
sequences. For each sequence, SPScan prints a list of possible secretory signal
peptides sorted by score.

• Isoelectric calculates the isoelectric point of a protein from its amino acid com-
position. Isoelectric plots the positive and negative charges and the charge of a
protein as a function of pH.

• Hydrophobic moment is the hydrophobicity of a peptide measured for different
angles of rotation per residue. The hydrophobic moment is calculated for all
angles of rotation from 0–180 degrees.

• HelicalWheel plots a helical wheel representation of a peptide sequence. Each
residue is offset from the preceding one by 100 degrees, the typical angle of rota-
tion for an alpha-helix.

• Like Map for a nucleotide sequence, PeptideMap finds positions where known
proteolytic enzyme or reagent might cut a peptide sequence.

• PeptideSort cuts a peptide sequence with any or all of the proteolytic enzymes
and reagents listed in the public or local data file proenzall.dat. The peptides
from each digestion are sorted by position, weight, and retention time as if sub-
jected to high-performance liquid chromatography (HPLC) analysis at pH 2.1.

RNA Secondary Structure Prediction
Designing an anti-sense oligonucleotide is aided by folding predictions that would

indicate single-stranded regions. There are 2 GCG programs that can be used. First,
StemLoop searches for stems or inverted repeats in a sequence. However, StemLoop
cannot recognize a structure with gaps, i.e., bulge loops or uneven bifurcation loops.
The stems can be plotted with the DotPlot utility. Second, MFold predicts optimal and
suboptimal secondary structures for an RNA or DNA molecule using the most recent
energy minimization method of Zuker. PlotFold then displays the secondary struc-
tures predicted by Mfold.

Pairwise Analysis

Comparison of two sequences is undertaken to identify related segments. Gap and
Bestfit are two GCG programs that can be used to compare 2 sequences of the same
kind, i.e., two DNA sequences or two protein sequences. Gap creates a global align-
ment of the entire input, while Bestfit, as the name suggests, locally aligns the most
similiar regions.

Gap uses the Needleman and Wunsch algorithm to create a global alignment of two
sequences maximizing the number of matches and minimizing the number and size of
gaps. Matching residues receive scoring value assignments. In addition, a gap cre-
ation penalty and a gap extension penalty are required to limit the insertion of gaps in
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the alignment. These parameters can be adjusted for best results. For example, the gap
creation penalty and the gap extension penalty can be set low when two sequences are
known to be only related in major domains, but to differ elsewhere. In this case, a gap
between the domains is expected and therefore should not be significantly penalized.
However, too low a penalty could allow too many gaps in the alignment. Depending
on each case, several adjustments of the gap creation and gap extension penalties may
be required before the best alignment is obtained.

Bestfit finds an optimal alignment of the best segment of similarity between two
sequences using the Smith and Waterman algorithm. Optimal alignments are found by
inserting gaps to maximize the number of matches. The two sequences can be of very
different lengths and have only a small segment of similarity. If the relationship of
two sequences is unknown, Bestfit is the most powerful method in the GCG Package
for identifying the best region of similarity between sequences.

Gap and Bestfit normally produce output in plain text format. To display an align-
ment in a graphical format that shows the distribution of similarities and gaps,
GapShow can be used. The two input sequences should be aligned with either Gap
or Bestfit before they are given to GapShow for display. Gap and Bestfit can write
the aligned sequences (with gaps inserted) into new sequence files. GapShow reads
these files and plots the distribution of the differences or similarities in the align-
ment. The sequences are represented by horizontal lines. These horizontal lines have
openings at points where there are gaps in either sequence. Regions of interest, such
as coding regions, can be shown outside these lines. With appropriate options, a
large vertical line between the sequences indicates either a difference or similarity.

FrameAlign can align a protein and the coding sequence, corresponding to the
mRNA. FrameAlign creates an optimal alignment of the best segment of similarity
(local alignment) between the protein sequence and the codons in all possible reading
frames on a single strand of a nucleotide sequence. FrameAlign inserts gaps to obtain
the optimal local alignment. Because FrameAlign can align the protein to codons in
different reading frames of the nucleotide sequence, it can identify sequence similar-
ity even when the nucleotide sequence contains reading frame shifts.

In standard sequence alignment programs, gap creation and extension penalties
must be specified. In addition to these penalties, FrameAlign also has an option to
specify a separate frameshift penalty for the creation of gaps that result in reading
frame shifts in the nucleotide sequence. By default, FrameAlign creates a local align-
ment between the nucleotide and protein sequences. With the -global parameter,
FrameAlign creates a global alignment where gaps are inserted to optimize the align-
ment between the entire nucleotide sequence and the entire protein sequence.

Developing a habit of consulting the online help prior to using any of these pro-
grams is a good idea. It will enable a full utilization of the programs and all of their
options and flexibility.

Glossary and Abbreviations

Isoschizomers  Different restriction enzymes that recognize and cut the same
nucleotide sequence pattern.

PROSITE  A database of protein families and domains. It consists of biologically
significant sites, patterns and profiles that help to reliably identify to which known
protein family (if any) a new sequence.
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20Managing Sequencing Projects
in the GAP4 Environment

Rodger Staden, David P. Judge, and James K. Bonfield

Introduction

Methods for managing large scale sequencing projects are available through the use
of our GAP4 package and the applications to which it can link are described. This main
assembly and editing program, also provides a graphical user interface to the assembly
engines: CAP3, FAKII, and PHRAP. Because of the diversity of working practices in
the large number of laboratories where the package is used, these methods are very
flexible and are readily tailored to suit local needs. For example, the Sanger Centre in
the UK and the Whitehead Institute in the United States have both made major contri-
butions to the human genome project using the package in different ways. The manual
for the current (2001.0) version of the package is over 500 pages when printed, so this
chapter is a brief overview of some of its most important components. We have tried to
show a logical route through the methods in the package: pre-processing, assembly,
contig1 ordering using read-pairs, contig joining using sequence comparison, assembly
checking, automated experiment suggestions for extending contigs and solving prob-
lems, and ending with editing and consensus file generation. Before this overview, two
important aspects of the package are outlined: the file formats used, the displays and
the powerful user interface of GAP4. The package runs on UNIX and Microsoft Win-
dows platforms and is entirely free to academic users, and can be downloaded from
Website: http://www.mrc-lmb.cam.ac.uk/pubseq.

The Data and Its Accuracy

The aim of a sequencing project is to produce a final contiguous sequence that
satisfies certain accuracy criteria. During the project, the software should show which
sequence positions fail to meet the accuracy standard and enable them to be dealt with
efficiently. For us, the key to minimizing user interaction with sequence assembly
data lies in the use of consensus algorithms, which employ base accuracy estimates or
confidence values. Within GAP4 these algorithms are used when automatically locat-
ing problems that require an experimental solution and also during interactive tasks
within the Contig Editor where they are used to guide the user only to those positions

1There is currently some confusion about the usage of the word contig. In this chapter the
original meaning is used, a contig is defined to be a set of overlapping segments of DNA,
Staden, R. (1980).

WWW
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whose consensus accuracy falls below a given standard, and hence that require human
attention. The consensus is updated on the fly for each change to the data. Because the
same algorithm is used during editing and to create the final sequence, the user can
ignore all apparent conflicts in the aligned readings, other than those that fail to pro-
duce A,C,G, or T in the consensus. Moreover, if the consensus at any point is a pad-
ding character (in GAP4 denoted by “ * ”), these too can be ignored as they will be
removed from any consensus sequence file calculated by the program. The sole role of
pads is to permit alignment of readings without the need to delete the original bases.

File Formats:
SCF, ZTR, Experiment, Fasta Files, and the GAP4 Database

Suitable file formats for sequence related data can make it easier to write programs
to process the data and can save a great deal of disk space. For storing traces,
sequences and accuracy values, for data from fluorescence-based sequencing machines,
we invented the SCF format. Later we moved to SCF version 3.0, which contains the
same information as earlier versions but in a form that can be easily compressed, achiev-
ing a compression ration of around 10:1 using gzip on data converted from ABI files.
Our programs automatically uncompress these files on the fly. More recently we have
created the ZTR format, which produces even smaller files without the need for exter-
nal compression programs. Experiment files are used for passing sequence readings
and related data between processing programs. A list of some of the experiment file
record types is shown in Fig. 1. Experiment files and FASTA format files can be used
for output of the consensus sequence. The GAP4 program uses experiment files to
import reading data for assembly and stores it in its own database. In addition to storing
the items marked with asterisks (*) in Fig. 1, GAP4 records the positions of all the edits
made to individual readings, and provides methods to check their validity. The data-
base is designed so that in the event of system failure, although the most recent changes
to it may be lost, it should not get corrupted.

Pre-assembly

Prior to assembly into a GAP4 database, sequence readings produced by automated
sequencing instruments must be passed through several processes. Typically this will
include conversion to SCF/ZTR format, calculation of base calling accuracy or confi-
dence values, quality clipping, sequencing vector clipping, cloning (e.g., BAC) vector
removal, and repeat tagging. A comprehensive set of operations is shown in the flow-
chart of Fig. 2. Using our package, each of these individual steps is performed by a
separate and specific program. These routine operations, which generally require no
user intervention, are configured and controlled by the program PREGAP4, which can
pass any number of readings through each of these processes in a single run.

The input to PREGAP4 is a file containing the names of all the sequencing instru-
ment files to process. The output is generally an SCF/ZTR file and an Experiment file
for each of the input files processed, plus a new file of file names containing the
names of all the newly created Experiment files, ready to be passed to GAP4. That is,
PREGAP4 creates the initial Experiment file for each reading and then sends it, in
turn, through each of the required processing steps. PREGAP4 is modular and very
flexible, and can be tailored for compatibility with local working practices. It can be
configured to work completely automatically, or to be partially interactive.
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A screen dump from PREGAP4 is shown in Fig. 3. The program menus are at
the top and the main window is occupied by the Configure Modules page. This page
allows users to select and configure the modules they require: those selected are
marked with a tick, the others with a cross. If a module is fully configured, it is
labeled ok. Here the user is setting up the module that is used to locate and mark the
sequencing vector. When everything is ready, the Run button at the bottom can be
used to activate the processing.

Introduction to GAP4

GAP4 provides a comprehensive set of methods for: assembly; checking assem-
blies; finding joins between contigs by using read-pair data and/or poor quality data at

Fig. 1. Experiment file record types.

AC Accession number
AP Assembly Position
AQ Average Quality for bases 100..200
AV Accuracy values for externally assembled data **
BC Base Calling software
CC Comment line
CF Cloning vector sequence File
CL Cloning vector Left end
CN Clone Name
CR Cloning vector Right end
CS Cloning vector Sequence present in sequence *
CV Cloning Vector type
DR Direction of Read
DT DaTe of experiment
EN Experiment Name
EX EXperimental notes
ID IDentifier *
LE was Library Entry, but now identifies a well in a micro titre dish
LI was subclone LIbrary but now identifies a micro titre dish
LN Local format trace file Name *
LT Local format trace file Type *
MC MaChine on which experiment ran
MN Machine generated trace file Name
MT Machine generated trace file Type
ON Original base Numbers (positions) for externally assembled data **
OP OPerator
PC Position in Contig for externally assembled data **
PN Primer Name
PR PRimer type *
PS Processing Status
QL poor Quality sequence present at Left (5') end *
QR poor Quality sequence present at Right (3') end *
SC Sequencing vector Cloning site
SE SEnse (ie whether complemented) **
SF Sequencing vector sequence File
SI Sequencing vector Insertion length *
SL Sequencing vector sequence present at Left (5') end *
SP Sequencing vector Primer site (relative to cloning site)
SQ SeQuence *
SR Sequencing vector sequence present at Right (3') end *
SS Screening Sequencing
ST STrands *
SV Sequencing Vector type *
TG Gel reading Tag
TC Consensus Tag *
TN Template Name *
// End of sequence records (SQ)
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Fig. 2. A flowchart of the operations configured and carried out by PREGAP4.
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the contig ends; suggesting additional specific sequencing experiments to join contigs
or to overcome other deficiencies in the data; check the accuracy of the consensus; and
edit contigs to the required level of confidence.

Files of File Names, Lists, Tags, Masking, Visible and Hidden Data
Files of file names are files that contain the names of other files that are to be

processed as a batch. As already mentioned, PREGAP4 processes batches of files from
sequencing instruments and the various GAP4 assembly engines process batches of
experiment files. Both do this by being given the name of a file of file names. Lists are
used internally by GAP4 for recording sets of readings or contigs, and to enable them
to be processed in batches. Tags are labels that can be attached to segments of indi-
vidual readings or consensus sequences. Each tag has an associated, editable text string
and each tag type has an identifier and color. Tags can be used to record comments
about segments of a sequence, or to denote the locations of specific features, such as
primers or repeat elements. Within GAP4 tags can be displayed at all levels of resolu-
tion to provide visual clues, and can be used to mark segments of the sequence for
special treatment by certain algorithms. For example, segments covered by selected
tags can be masked during assembly. Our pre-processing programs do not actually
remove vector sequences or poor quality data from the ends of readings, rather they
add records to the experiment files to enable those segments to be treated in special
ways within other programs such as GAP4. These end segments of readings are not

Fig. 3. The main PREGAP4 window.
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normally revealed in the Contig Editor and other such places, and so they have come
to be known as hidden data and the used parts of the readings as visible.

The GAP4 Scripting Language
GAP4 is composed of algorithms written in the C language, which have been added

to the commands understood by the Tcl interpreter. Extended Tcl provides a script-
ing language for performing operations on sequence assembly data. For example, a
simple script could open a GAP4 database, make a copy of it, and then assemble a new
batch of readings listed in a file of file names. The design of GAP4 also makes it
possible for others to add their own interactive modules, complete with dialogues and
menu items.

The GAP4 User Interface

The graphical displays and user interface of GAP4 play an important role in
enabling users to deal with difficult problems, and so help to simplify and speed up
sequencing projects. The main points are summarised in the following sections.

The Main Window and Its Menus
An example of the main window of GAP4 is shown in Fig. 4. It consists of an area

for receiving textual results, the Output window, and below that an area for displaying
error messages. The output window is a searchable and has an editable text display,
the contents of which can be saved to disk files. Along the top of the window is a row
of menus: the file menu includes database opening and copying functions and consen-
sus sequence file creation routines. The Edit menu contains options to alter the con-
tents of the database such as Edit Contig, Order Contigs, Join Contigs, Break
Contig, Disassemble Readings, Complement Contig, etc. The View menu provides
functions that give different ways of examining the data that includes: Contig Selec-
tor, Results Manager, Find Internal Joins, Find Read Pairs, Find Repeats, Check
Assembly, Show Templates, Restriction Enzyme Map, Stop Codon Map, Quality
Plot, etc. The Options menu contains general configuration commands. The Experi-
ments menu contains options to analyse the contigs and to suggest experiments to
solve problems, including: Suggest Primers, Suggest Long Reads, Compressions
and Stops, and Suggest Probes. The List menu contains options for creating and
editing lists. The Assembly menu contains various assembly options including: Nor-
mal Shotgun Assembly, Directed Assembly, Screen Only, Assemble Indepen-
dently, CAP3 Assembly, FAKII Assembly, and PHRAP Assembly.

Views of the Data and the Interactions Between Displays
GAP4 has several interactive displays to enable users to view and manipulate

their data at appropriate resolutions. The graphical displays include the Contig
Selector, the Contig Comparator, the Template Display, the Quality plot, the
Restriction Enzyme Map, and the Stop Codon Map. For editing aligned readings
the Contig Editor and the Join Editor are used. From each of these the trace data
for readings can be displayed and scrolled in register with the editing cursors. The
displays in GAP4 communicate with one another and have linked cursors. For
example, if the Contig Editor is being used on a contig that is also being viewed in
a Template Display, the position of the Contig Editor’s cursor will be shown in
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the Template Display, and within the Template Display the user can use the mouse
to drag the Contig Editor’s editing cursor. Also, if the Contig Editor is display-
ing traces, they too will scroll under the control of the Template Display. Any num-
ber of displays of the same contig can be shown simultaneously, including several
displays of the same type, such as several Contig Editors. Note that the GAP4 dis-
plays make good use of color to distinguish features of the assembly.

The Contig Selector
The GAP4 Contig Selector (see Fig. 5) is used to display, select, and reorder contigs.

Within the display all the contigs are shown as colinear horizontal lines separated by
short vertical lines. The lengths of the horizontal lines are proportional to the lengths
of the contigs and their left to right order represents the current ordering of the contigs.
This contig order is stored in the GAP4 database and users can change it by dragging
the lines representing the contigs in the display. The Contig Selector can also be used
to select contigs for processing and to display tags. As the mouse cursor is moved over
a contig, it is highlighted and data about it displayed in the Information Line at the
base of the display. At the top of the display are File, View, and Results menus. Below
these are buttons for undoing zoom-in operations and toggling the crosshair display.
The four text boxes to the right show the position of the crosshair. Figure 5 shows an
example of the Contig Selector for a project currently comprising nine large contigs
and a cluster of smaller ones. The crosshair is on the largest contig and the text box to
the right of the crosshair toggle button gives its position in the contig and the next box

Fig. 4. The main GAP4 window.
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gives the position in the whole consensus. The boxes above and below the lines repre-
senting contigs show the location of tags. Those above the lines are on readings and
those below are on the consensus. As can be seen the longest contig is tagged over its
whole length.

The Contig Comparator
The Contig Selector is usually constantly in view while GAP4 is being used, but

if the user selects one of the functions that in any way compares contigs, the Contig
Selector is automatically transformed into a display known as the Contig Compara-
tor. In this form it retains its Contig Selector functionality but can plot the results of
contig comparison functions. The transformation process involves drawing an addi-
tional copy of the contig representations below and perpendicular to the original set
in the Contig Selector, so as to produce a two dimensional area in which to plot
comparative results.

An example of the Contig Comparator is shown in Fig. 6. Notice that the
crosshair has both vertical and horizontal components and that the position of the
horizontal component is reproduced as a short vertical cursor in the Contig Selector
part of the display. Results are not duplicated and are only plotted in the top right
half of the display and on its bounding diagonal. The results plotted in this example
are those from Find Internal Joins, Find Read Pairs, and Check Assembly; the
latter are shown along the main diagonal. Obviously each type of result is drawn in
a different color. Results plotted parallel to the main diagonal show relationships
between pairs of contigs that are in the same relative orientation, and those perpen-
dicular to the main diagonal are for pairs that would require one of the contigs to
be complemented before they could be joined. Find Internal Joins compares the
sequences from the ends of contigs to see if they overlap. Find Read Pairs locates
pairs of readings that are from the same template but are in separate contigs and
hence give data about the relative orientations and approximate separations of the
two contigs. Check Assembly checks the alignment of each reading with the con-
sensus it overlaps, and plots the positions of those of doubtful quality. This is of
most value if its results are displayed at the same time as those from a search for
repeats; thus, if readings with poor alignment lie on the same horizontal or vertical
projections as do repeats, it may indicate that they have been assembled into the
wrong copy of the repeat.

Fig. 5. The Contig Selector.
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Referring to Fig. 7, note the white dot, just above and to the left of the pair of
crosshairs. Its whiteness indicates that it is the result that has most recently been
touched by the crosshairs. The two contigs to which the result corresponds are also
shown in white, and the Information Line contains relevant data. It gives the identity
of the two contigs, the position and length of the overlap, and the percentage mismatch
of the corresponding alignment. Near to the white dot are two diagonals showing that
there are two templates, each with forward and reverse readings, spanning the same
pair of contigs, which according to the Find Internal Joins result to have an apparent

Fig. 6. The Contig Comparator.
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Fig. 7. Template Display of ordered contigs.

overlap. That is, there is independent evidence that these two contigs overlap and
could be joined (see Fig. 8 and Subheading “Finding Joins Between Contigs Using
Sequence Comparison”).

Note that it is an interactive display. The lines representing contigs can be dragged
to new locations or contigs can be complemented and their plotted results will move
with them and all the others are automatically rearranged accordingly. Also, if a join
is made using the Join Editor, the lines representing the contigs will be joined and
the rest reorganized. Each type of result in the display can be operated on by a
particular set of commands, and these can be invoked by moving the crosshair over
the plotted line and pressing the right mouse button to pop up a menu.

The Template Display
The Template Display provides a graphical overview of either a set of contigs or

a single contig. In our terminology, a template is the DNA insert from which a read-
ing is obtained. In many laboratories, templates will be size-selected to have a length
of around 2000 bases, and initial readings will be obtained from each of its ends to
produce a read-pair. The information that can be displayed in the Template Display
includes: readings, templates, tags, restriction enzyme sites, rulers, and consensus
quality. As the mouse cursor is moved over any item in the display, textual data
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about it will appear in the Information Line. The positions of a vertical crosshair,
under the control of the mouse, are continuously displayed in two boxes at the top of
the window. The left box shows the position in a contig and the right the position in
the overall consensus. The order of the contigs can be changed by horizontally drag-
ging the lines that represent them in the display, whereupon all their associated data
will be redrawn.

In Fig. 7 we see that above the Information Line is a horizontal scrollbar that can be
used if the plot has been magnified with the zooming mechanism. In the panel above
the scrollbar are horizontal black lines representing 5 contigs, the longer ones having
rulers marked on them. The boxes above and below these lines represent the positions
of the respective tags on the readings and on the consensus. The longest contig con-
tains a tag over its entire length. The vertical line cutting the contig to its right and
reaching the top of the next panel, is the crosshair. This main panel contains lines
representing individual templates and the readings derived from them. At the scale
shown, the extent of each reading cannot be seen, and only their forward readings and
gray-colored reverse readings arrow heads are visible. The templates are color coded:
dark blue have only forward readings; red have both forward and reverse readings, are
within the expected size range, and are in the same contig; yellow have both forward
and reverse readings, in the correct relative orientation to one another, but which are in
different contigs, and are within the expected size range; greenish yellow (see Fig. 7
on companion CD) have both forward and reverse readings, are in different contigs,
but are outside their expected size range. These contigs have been processed through
GAP4’s automatic contig ordering function (see Subheading “Ordering Contigs Using
Read-Pair Data”), and it may be possible to see that the gray scales of some of the
templates between the contig ends are lighter, and that they have readings in each of
the two contigs involved. Problem templates are separated out at the top of the display.
With this ordering of the contigs, it can be seen that two of these problem templates
would need to be many thousands of bases in length. In the panel containing the
crosshair position boxes (the empty box is used to show the separations of restriction
enzyme sites when their data are displayed), is a button for switching the crosshair
on and off and a zoom out button, which reverts to the previous level of zoom when
clicked. At the top of the display are menus that provide for closing the window, sav-
ing a changed contig order and selecting the features to be displayed.

Fig. 8. The Join Editor.
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Assembly
GAP4 can use several assembly engines including: Normal shotgun assembly,

Directed assembly, CAP3, FAKII, and PHRAP. Particularly for repetitive data, the
most reliable assembly will be achieved by global algorithms such as CAP3, FAKII,
and PHRAP as they compare every reading against every other reading prior to align-
ing them into contigs. Later in a project, when new readings have been obtained to
solve particular problems, Directed Assembly can be used (since their approximate
location in the assembly is known). Obviously this can be very helpful if the readings
have been determined to help with a difficult repeat; Directed Assembly will ensure
that they are aligned in the correct places. Even if a global algorithm is used for
assembling the initial shotgun, the Normal shotgun assembly algorithm is useful to
enter readings obtained to help finish a project.

Ordering Contigs Using Read-Pair Data
GAP4 contains an option for automatic ordering of contigs based on read-pair

data. The algorithm tries to find the most consistent orientations and left to right
order for all the contigs in the database. The task is made more difficult by errors in
the data owing to misnaming of readings and templates, which is usually caused by
lane-tracking errors when processing the original gel data. This is becoming less of
a problem with the increasing use of capiliary-based sequencing instruments. The
output from the function is a list containing records giving the left to right orderings.
When there are several records, this means that there is insufficient data to link all
the contigs. If the user double-clicks on any of these records a Template Display
showing their ordering will appear (see Fig. 7). Within this, if necessary, the order
can be altered by using the mouse to move the lines representing the contigs.

Checking the Correctness of Assemblies
Prior to ensuring that the consensus sequence reaches a given standard of reliabil-

ity it is advisable to check, at a coarser level, that readings have been correctly posi-
tioned. Within GAP4 there are several functions for checking on the reliability of an
assembly and they all display their results in the Contig Comparator described earlier.
We can ask: Is the read-pair data consistent? Do the quality clipped segments of read-
ings align well with the consensus? Do the visible parts of readings align well? If not,
do they match elsewhere?

As will be seen, the details of the read-pair data are most easily checked in the
Template Display, but if these results are displayed in the Contig Comparator they
can be viewed at the same time as other types of analysis. After the sequence is
apparently completed, we need an external experimental check of its integrity, such
as data from a restriction enzyme digest. GAP4 can produce a map of the restriction
enzyme recognition sequences contained in the consensus sequence for comparison
with experimental results.

Experiment Suggestion Functions

As a follow-up to the initial shotgun phase of a sequencing project, experiment
suggesting functions are designed to help automate the task of choosing experiments
to join contigs and to finish the sequence to the required level of accuracy. The pack-
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age contains two programs for this purpose. Having located problems, the newest,
PRE_FINISH (the details of program are outside the scope of this article), performs a
sophisticated analysis of the benefits of applying a range of experiments to help to
complete the project. It needs to be set up to fit the particular modes of operation of the
laboratory where it is installed and hence is highly configurable. However, once set
up, it is very effective.

An older and simpler set of experiment suggestion functions is available within
GAP4. Here the options include Suggest Primers, Suggest Long Gels, Suggest
Probes, and Compressions and Stops. One difference between these routines and
PRE_FINISH is that in GAP4 the user must select the experiments type, whereas
PRE_FINISH will choose the best of several types of experiments to solve the prob-
lems in each region. Figure 4 shows how the results are written to the GAP4 Output
window. All of the experiment suggestion functions start by calculating the equivalent
of a consensus sequence for the selected contigs, while at the same time encoding
which segments contain data only on one strand. This encoding is then used to suggest
suitable experiments, of the type requested by the user, to cover the single-stranded
segments and extend the contigs. In the case of Suggest Primers, the function also
adds the tag of primer, containing the template name and primer sequence, to the
relevant reading. The Contig Editor also contains a primer selection function.

Finding Joins Between Contigs Using Sequence Comparisons
No assembly engine will make all the possible joins between contigs. As already

mentioned, via the Contig Comparator GAP4 provides the user with views of the
data that can reveal the safety or otherwise of making joins. The Find Internal
Joins function compares the consensus sequences of the contigs in the database in
both orientations to detect possible overlaps. It works in two modes: quick and sen-
sitive. The quick mode is very rapid and should be applied before the sensitive mode
is used to find any remaining overlaps. During large-scale sequencing where over-
lapping BAC clones are being sequenced, it is common practice to exchange read-
ings from their GAP4 databases to help finish the projects. In this case Find Internal
Joins may be employed to join the overlap between the two sets of readings. Here
the quick mode is particularly useful, as it can find and align the overlaps between
100,000 base consensus sequences in a few seconds. The sensitive mode is slower,
but will find weak matches between the ends of contigs.

For both modes, a number of options are available. The user can select to extend the
contig consensus using segments of the hidden data near the contig ends. In conjunc-
tion with the sensitive mode this should find all possible joins. Users can also choose
to mask any tagged regions in the contigs: typically regions tagged as being ALU or
other repeat sequences. The aligments are displayed in the Output Window and the
results are plotted in the Contig Comparator (see Fig. 6). A Next button will appear
at the top of the Contig Comparator. The results are sorted in descending order of
quality, and each time the user clicks on the Next button, the next best possible join
will appear in a Join Editor window (see Fig. 8). As an alternative to the Next button,
users can click on the results plotted in the Contig Comparator to bring up the Join
Editor. The Join Editor is two Contig Editors sandwiched together with a horizontal
strip between (labeled Diffs) to indicate disagreements in the consensus sequences.
The Join Editor also has Align buttons for aligning the two consensus sequences and
a Lock button for forcing the two contigs to scroll together. The join shown in Fig. 8 is
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obviously very poor, but it is confirmed by read-pair data as was discussed in the
section on the Contig Comparator. Within the Join Editor users should align the
contigs, making any necessary edits, and checking the trace data. When they exit
the editor they can choose to make or reject the join. The Join Editor contains all the
functionality of the Contig Editor, which is described next.

Checking and Editing Contigs with the Contig Editor

The GAP4 contig editor is designed to allow rapid checking and editing of charac-
ters in assembled readings. Very large savings in time can be achieved by its sophisti-
cated problem-finding procedures, which automatically direct the user only to the
bases that require attention.

Contig Editor Search Modes
The search modes available include the following:

1. Search by problem moves the cursor to the next position in the consensus that is
not A,C,G, or T. The character in the consensus will depend on the consensus
algorithm being employed and the thresholds set.

2. Search by quality moves the cursor to the next position in the sequence where
the consensus characters, calculated separately for the two strands, disagree.

3. Search by consensus quality moves the cursor to the next position in the con-
sensus where the confidence is below a set threshold.

4. Search by discrepancies moves the cursor to the next position where two read-
ings contain aligned but disagreeing bases above a given confidence value.

5. Search by edit moves the cursor to the next position where an edit has been
made, hence allowing all previous edits to be checked.

6. Search by evidence 1 moves the cursor to the next edited position for which the
consensus base is not supported by any evidence from the original data.

7. Search by evidence 2 moves the cursor to the next edited position for which the
consensus base is only supported by evidence from the original data on one of the
two strands. Search evidence means that a base of the same type must appear at
an equivalent position in an original, unedited reading.

These searches allow rapid checking of all the edits made. The other search modes
provide more obvious operations such as: moving to a particular position, to a particu-
lar read, to the next occurrence of a given sequence, to the next tag of a given type, and
to the next tag containing a given text string. It is also possible for the search to be
controlled by a file containing commands.

The Contig Editor Window
In the Contig Editor window (see Fig. 9), reading numbers and names are on the

left, sequences to their right, status lines are at the bottom, and controls are at the top.
The buttons labeled Settings, Commands, and Edit modes reveal tear-off menus,
and their contents are described below. The Commands menu contains a Search dia-
logue from which a search method appropriate to the data and current task can be
selected. The editor display includes color coding of the base confidence values in the
readings and in the consensus using gray scales, and marking of all the edits made;
padding characters in green, changes in pink, deletions in red, and confidence value
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changes are highlighted in blue. Each time the Next search button is clicked, a search
of the selected type is performed to locate the next problem in the sequence requiring
visual inspection by the user. The Undo button will successively reverse all edits up to
the last save. The Cutoffs button toggles on and off the visibility of the hidden data
at the ends of readings. The final button along the top of the editor, Insert, toggles
between insert and replace modes. The two text boxes with < and > symbols next to
them are for altering the thresholds for the consensus algorithms. Just below these are
more buttons that can be used to scroll the edit window. Below these is a scrollbar for
viewing long reading names. The Information Line reveals data about the lengths of
readings and the names of their vectors, or tags.

Editing Modes and Settings
Different laboratories have different working practices, and some wish to allow only

particular people to perform certain types of editing operations. The Contig Editor
Edit modes menu contains the following editing operations: 1) insert in read, delete in
read, insert in consensus, delete dash (undetermined) in consensus, 2) delete any char-
acter type in consensus, 3) replace in consensus, reading shift, and 4) transposition.

Each of these may be switched on or off individually. The editor also has two pre-
configured sets of edits: Mode 1 and Mode 2, which define for example, a limited,
safe set, and a powerful set for a more senior operator. Note that during editing the
consensus is updated immediately for each edit made.

The Contig Editor Settings menu contains the following: Status Line, Trace Dis-
play, Highlight Disagreements, Compare Strands, Toggle auto-save, 3 character
amino acids, Group Readings by Templates, Show reading quality, Show consen-
sus quality, Show edits, Set Active Tags, Set Output List, and Set Default Confi-
dences. For example, the Status line can be configured to show if the contig has data
on both strands, whether edits have been made, whether to show translation to amino
acids. The Trace Display can be configured to automatically show traces relevant for
each problem as revealed by the search command, by defining the number of rows and
columns of traces to show at once.

The Contig Editor Commands menu includes commands: to operate on tags, to
save the edits, to save the contents of the Contig Editor display as a text file, to create
a consensus trace, and save it to a file; to select primers to align segments of readings,

Fig. 9. The Contig Editor.
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to line up and remove padding characters, to remove readings, to break the contig, and
to search the contig.

The Trace Display
Within the Contig Editor the Trace Display read can be invoked by double-

clicking on a base in the read. By double clicking on the consensus, the traces for all
the readings at that point will be displayed. An example of the GAP4 Trace Display
is shown in Fig. 10. Here it has been configured to show up to four rows in one
column, but it can be convenient to use more rows and multiple columns. In this
example it is being used to show a pair of traces, with a plot of their differences
below. For each reading the display can show the fluorescence amplitudes, the base
calls and, as an inverted histogram, their confidence values. When the Contig Editor
cursor is moved the traces scroll in register. Conversely, the Contig Editor can be
scrolled from within the Trace Display. As shown here, individual confidence val-
ues can be shown on the Information Line at the base of the display and textual data
about each reading can be viewed in a separate window. The traces can be zoomed in
x and y using the scrollbars at the left edge. The difference plot is invoked using the
Diff button. As can be seen in this example (bottom panel), in most positions the
signal is quite low, but in three places there are coincident peaks and troughs, indi-
cating possible mutations. Here these mutations are borne out by the base calls, but
as automated in our trace_diff program, such analysis has been very helpful in distin-
guishing mutations from sequence differences due to base calling errors.

Fig. 10. The Trace Display including a difference plot.
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Creating a Consensus Sequence

GAP4 can calculate a consensus sequence and save it to a disk file in FASTA or
Experiment file formats. FASTA is useful for programs such as BLAST. Experiment
file format is very close to that of EMBL sequence library entries and can contain the
text fields of selected tags added by the user during processing. If users follow our
recommendation of making as few changes to their data as possible, the consensus
will contain many padding characters, but users can choose to have these removed
before the consensus sequence is written to the disk.

Glossary and Abbreviations

BAC Bacterial artificial chromosome used to clone segments of DNA up to 200 kbp.
Base Caller  A computer program which interprets the fluorescence intensitites

from a sequencing instrument to determine its sequence.
Basecall Confidence Values  Numerical values assigned to each base in a sequence

reading to predict its reliability. Confidence C = –10*log10(probability of error)
Consensus Sequence  Multiple sequence alignments can be represented by a single

consensus sequence derived by analyzing the frequency and confidence of the differ-
ent character types aligned at each position.

Contig  An ordered set of overlapping segments of DNA from which a contiguous
sequence can be derived.

DNA Sequencing Traces  In DNA sequencing, the chains of nucleotides are labeled
with fluorescent dyes. The intensity of fluorescence measured as DNA fragments are
electrophoresed in a sequencing instrument known as a chromatogram, or, more com-
monly, trace. The traces are processed to produce the DNA sequence.

DNA Template  The segments of DNA inserted into a vector for sequencing. Also
known as “fragments” and “inserts.”

Experiment Files  A file format used to transfer data between sequence assembly
processing programs.

Forward Read  A DNA sequence obtained from a single sequencing experiment
using a primer for the forward strand of DNA.

Gap 4  A computer program for handling DNA sequencing projects.
PREGAP 4  A computer program for preparing DNA trace data for sequence

assembly using gap4.
Primer  A short (approx 20 bases) segment of single-stranded DNA of known

sequence. The Sanger sequencing method and the Polymerase Chain Reaction are both
initiated by a primer annealed to the DNA template.

Read-Pair  A pair of sequence readings obtained from opposite ends of a DNA
sequencing template.

Reading (Gel Reading)  A DNA sequence obtained from a single sequencing
experiment, typically around 500-800 bp.

Reverse Read  A DNA sequence obtained from a single sequencing experiment
using a primer for the reverse strand of DNA.

SCF  A widely used, non-proprietary file format for storing DNA trace data.
Sequence Assembly  The process of arranging a set of overlapping sequence read-

ings into their correct order along the genome.
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Sequencing Vectors  Vectors designed to aid DNA sequencing.
VECTOR  A DNA molecule into which foreign DNA can be inserted for intro-

duction into a new host where it will be replicated, thus producing mass quantities.
Depending on the type of vector, foreign DNA of lengths between 1 kb and 2 mb
can be inserted.

ZTR  The newest and most compact file format for storing trace data.
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21OLIGO Primer Analysis Software

John D. Offerman and Wojciech Rychlik

Introduction

Concurrent with the development of the polymerase chain reaction (PCR) in the
late 1980s as an essential technique in the molecular biology laboratory, optimal
design of PCR primers became an important part of the process. It was soon learned,
for example, that inattention to secondary structure in synthetic primers could create
primer-dimers and hairpins and could seriously reduce or eliminate the yield of the
PCR product. The presence of priming sites in the template other than the intended
target—so called false priming sites—were also found to interfere with PCR effi-
ciency, by generating unwanted PCR products and background on the gel. Further-
more, the efficient PCR experiment required the proper concentrations of salt, buffer,
and nucleic acid and the accurate determination of melting temperatures of the prim-
ers and the template. Cumbersome calculations were required to produce these val-
ues and their complexity often resulted in errors.

With limited success, PCR experimentalists trained their eyes to spot primer dimers,
hairpins, and false priming sites in their DNA sequence. Many came to believe that
they were exceptionally good at spotting these problems, when, in fact, it was the
nature of PCR to proceed, after a fashion, despite poor oligonucleotide design. But
most researchers understood early on that the development of a computer program
was needed to quickly determine accurate values of oligonucleotide melting tempera-
ture (Tm) and to check the oligonucleotide sequence for the presence of secondary
structure and PCR targets for the presence of false priming sites.

The first widely used program, OLIGO version 2, was developed by Dr. Wojciech
Rychlik while doing PCR research at the University of Kentucky, and offered free
through Nucleic Acids Research in 1989. The first commercial program, OLIGO v. 3
for the PC-DOS operating system, was released by Dr. Rychlik in 1989 and distrib-
uted through National Biosciences, Inc. (Minneapolis, MN). Version 3 provided both
secondary structure and false priming analysis functions, and also aided the researcher
in the design and selection of oligonucleotides for DNA sequencing.

Since version 3, there have been a number of competitive commercial applica-
tions offered, including several PCR/primer selection modules integrated into larger
DNA sequence-analysis programs. These have been theoretical and algorithm-driven.
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OLIGO’s selection algorithms and assumptions have always been grounded in PCR
laboratory research by the author and others, and fully referenced in the OLIGO manual.

Since OLIGO version 3, there have been three more PC as well as three more
Macintosh releases of the program. The current OLIGO products are: version 6 for Win-
dows, first released in 1999, and version 6 for Macintosh, released in 1998. New major
versions are scheduled for release every 3 years. Single-user licenses provide for use on
one to four computers under one principal investigator. Program network licenses are
also available that offer from one to any number of simultaneous users of the program.
There have been many new processes and procedures introduced to the molecular biol-
ogy laboratory in the last 15 years, including many improvements to, and permutations
of, PCR and DNA sequencing. OLIGO has, concurrently, added a range of new features
that aid the researcher in improving the performance of these new tools. The features of
OLIGO version 6, why they were needed, and how they simplify and optimize the selec-
tion and use of oligonucleotides in the laboratory, will be discussed in this chapter.

Program Organization

OLIGO 6 is organized into several major features and functions: the analysis func-
tions under the Analyze menu, the search functions under the Search menu, edit/
translation functions under the Edit menu, the oligo database functions, and the order
form. The Melting Temperature and the Internal Stability windows (see Fig. 1), are
the main analysis windows that open when a sequence file is loaded. These windows
are the organizational center of the program. The melting temperature (Tm) window
displays both DNA strands of the sequence, the translated protein sequence, and a
histogram of the melting temperatures of every theoretical oligonucleotide in the file.
Any oligo can be quickly analyzed in this window as well by selecting it as the cur-
rent oligo, clicking the mouse on the 5' terminus, and then applying the analysis
functions. The current oligo can be selected as the upper (forward) primer by clicking
the red UPPER button or lower (reverse) primer by clicking the LOWER button. Also,
when primers are selected following the automated primer/probe searches, they are
displayed as upper (or lower) primers in the melting temperature window.

The Internal Stability window displays free energy of DNA or RNA pentamers
throughout the sequence visualizing GC clamps and AT-rich low Tm areas. It also
displays the positive strand sequence and marked search-selected oligonucleotides,
if any, on the bottom. The current oligo sequence, available in the Analysis menu,
is highlighted (see Fig. 1).

PCR Primer Search and Selection

PCR has proven to be an amazingly robust laboratory procedure over the years,
and has found a prominent place in most laboratories working with nucleic acids.
However, there are a number of oligonucleotide design and other factors that can
interfere with the optimization of the PCR process. OLIGO 6 searches DNA and
RNA sequences to eliminate from consideration oligonucleotides that exhibit one or
more of these interfering factors. Specifically, the program performs as many as
nine different subsearches, eliminating oligonucleotides in each subsearch that fail
to meet the threshold set by the program or the user. Potential PCR problems due to
oligonucleotide design, and the subsearches that OLIGO uses to discard oligonucle-
otides containing these flaws, are discussed below.
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The most serious oligonucleotides design deficiency for PCR is certainly the stable
3' dimer, where the 3' end of the PCR primer binds strongly to itself or to its compan-
ion primer. If a 3' dimer is sufficiently stable so that it preferentially hybridizes to
itself or its mate, rather than to the intended target on the template, the PCR product
yield can be reduced essentially to zero.

Hairpin structures in oligonucleotides can also greatly reduce PCR yield. OLIGO
discards primers with 3' dimers or hairpins (duplexes) based on the stability of the
secondary structure, measured by the  G value, or alternatively, by the length of con-
tiguous matching nucleotides. Because PCR has been shown to be adversely affected
by 3' duplexes, OLIGO also includes a setting for the number of nucleotides on the 3'
end to be checked (so as not to eliminate otherwise suitable oligonucleotides containing
harmless 5' dimers). OLIGO performs the above checks in the Duplex-free Oligo-
nucleotides subsearch. Another subsearch specifically for hairpins is also executed;
this subsearch considers loop size while testing the entire set of oligonucleotides for
hairpins. This subsearch is important in the search for Hybridization Probes.

OLIGO then searches for and discards highly specific oligonucleotides. Research
by the author has determined that oligonucleotides that are too stable on their 3' ends
(irrespective of dimer formation), are more likely to false prime randomly on unknown
nucleic acid templates. This is because a shorter number of matching nucleotides on a
stable 3' end are required to initiate priming on a false target than are required with a
less stable 3' end. Statistically, a stable 3' end will create more false priming and
unwanted background on the PCR gel.

The early convention was to design oligonucleotides with a GC clamp on the 3'
end, in order to clamp down the oligo on its target. This practice would add stability
but compromise specificity. OLIGO selects primers that are both specific and stable.
It does this by employing subsearches that: 1) discard oligos that have excessively
stable 3' ends, and 2) discard oligonucleotides that do not have one or more stable

Fig. 1. The Melting Temperature and Internal Stability windows.
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sections (a GC clamp) at the 5' end or central segment of the oligonucleotide. So the
remaining oligonucleotides, following the Highly Specific Oligos subsearch and the
GC Clamp subsearch, are both specific to their target and will hybridize with suffi-
cient stability to permit priming.

False priming can create unwanted background, but are particularly problematic
when they occur in or near the intended PCR product. OLIGO’s false priming
subsearch compares the 3' end of each potential primer with the active sequence file
and discards any that are found to have false priming sites. Using another false prim-
ing subsearch, the researcher can also check each potential primer against other DNA
or RNA sequence files on their computer. This is the Continue False Priming Search
in Other Files subsearch. OLIGO employs a novel algorithm, developed experimen-
tally, called the priming efficiency calculation, to predict priming and false priming.
Priming efficiency (PE), determines whether an oligonucleotides will prime on a given
site under a given set of conditions. This important feature of the OLIGO program is
discussed on p. 351 (see Subheading “Priming Efficiency Measurements for Priming
and False Priming”).

The next subsearch used in OLIGO’s PCR primer search is for Oligonucleotides
within Selected Stability Limits. Oligonucleotides that have a high, but not exces-
sively high, Tm, work best in PCR reactions. This subsearch discards all oligonucle-
otides that fall outside this Tm window. Another important feature of optimal PCR
primers is the matching of Tms. False priming and unnecessarily high annealing
temperatures can result when a PCR pair is selected having an excessive Tm differ-
ence. OLIGO automatically matches Tms of primer pairs following the PCR search
and selection process by dropping nucleotides from the primer with the higher Tm
until the Tms or priming efficiencies are in close agreement.

Homooligomers (i.e., GGGGG) and sequence repeats (i.e., GCGCGC), are elimi-
nated in the Eliminate Oligomers/Sequence Repeats subsearch. Homooligomers
and sequence repeat structure in primers can cause misalignment on the target and
subsequently impair annealing kinetics or even cause synthesis of PCR products of
different size.

The final subsearch of the PCR primer selection process, Eliminate Frequent
Oligos, discards oligonucleotides that have 3' ends that occur frequently in the
GenBank nucleic acid database. OLIGO 6 includes a table of frequencies of all 4,096
or 16,384 combinations of 6 or 7 nucleotide segments, respectively. When this
subsearch is run, the 6-mer (or 7-mer) 3' ends of oligonucleotides in the active
sequence are checked against the frequency table. As with the Highly Specific
Oligos subsearch, this search further reduces the likelihood of false priming and
background when using genomic DNA for PCR analysis.

However, when the PCR template is not to be run in genomic DNA or other com-
plex substrates, the user can click off the Complex Substrate box in the search
parameters window. This turns off the Highly Specific Oligos and Frequent Oligos
subsearches, thereby saving otherwise suitable primers for use in plasmid DNA and
other simple substrates.

When the researcher loads his/her nucleic acid sequence file of interest and selects
the Search for Primers and Probes - PCR Primers: Compatible Pairs, the program
activates the above subsearches and once the search is initiated, they are sequentially
executed. When the full (composite) PCR search is complete, only those oligos that
have met or exceeded the threshold settings for each subsearch are selected.
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The upper (forward) and lower (reverse) primers are then compared for cross-
compatibility (no 3' end interaction) and all cross-compatible pairs are compiled in
the Primer Pairs table. Clicking on a given pair in the table brings up the PCR
window, which displays PCR conditions, Tms, and other data for those primers,
including a proportional schematic of the PCR product on the template. Primer pairs
in the table can be sorted by position on the template, PCR product size, GC content,
or PCR optimal annealing temperature. The functioning of each subsearch used in
the PCR primer search depends, of course, on the threshold settings of the search
parameters by which they are controlled. Because of the complexity of these param-
eters and the challenge of knowing where they should be set for any given search,
the program includes an expert system. The program also allows the user to simply
select one of 6 search stringencies ranging from very high to very low. The program
will then insert the settings for each search parameter, based on the current under-
standing of the PCR process. However, users can set their own values for one or
more of the search parameters and lock them in, overriding the expert system. In this
way the program has maximum flexibility and adaptability to the users particular
needs, while still being very easy to use.

Depending on the size and nature of nucleic acid sequences, it is hard to predict
how many optimal primer pairs can be returned from a given search. The program
includes a feature that will automatically drop the search stringency down one level
and search again, if no primer pairs are found in the first search. A complete record of
each PCR primer search is saved in the Search Results window. This includes all search
settings and the specific results of each subsearch and primer pairings.

The Oligonucleotide Database and Order Form

The modern PCR laboratory can design and synthesize hundreds of primers per
week or more. Keeping track of them all and their target templates can be a challenge,
and transferring oligo sequences to synthesis providers can be cumbersome and time-
consuming. The oligonucleotide database and order form features in OLIGO 6 can
save researchers time and minimize transposition and data-maintenance errors. When
a primers and probes search is selected in the OLIGO program, the primer database
can be downloaded in a single operation into an oligonucleotide database window,
using the Import function. Further, an entire group of primers selected in an OLIGO
search can be imported in a single operation by using the Multiplex Primers option,
as shown in Fig. 2.

When oligonucleotides are imported into a database, they are automatically dated
and named. The naming convention is useful in keeping track of important oligonucle-
otide characteristics. The name includes the sequence file (template) name or the
GenBank accession number, the position of the oligonucleotides on the template,
whether it’s an upper or lower primer, and its length.

In the database, the program also reports an oligonucleotide’s Tm, its 3' end dimer
status, its sequence, priming efficiency, and whether they are new entries in the data-
base. There is also a reference field for the researcher to record pertinent notes. This
window also allows for primer multiplexing, as discussed in the following.

Oligonucleotides in the database can be selected for export to an oligonucleotide
order form. In the order form, the researcher can set up a template that includes ship
to:/bill to: ordering information, including such specifications as synthesis scale, puri-
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fication method, and end modifications. Then, with each synthesis order, one need
only export the oligonucleotide sequences to be ordered from the database to the order
form, which can then be faxed or e-mailed to the synthesis provider.

Multiplex PCR Design

PCR researchers often wish to amplify multiple PCR products in the same tube,
in genetic test development or in other applications where operational efficiency is
needed. In multiplex primer applications, it is necessary that all primers going into a
PCR reaction be cross compatible, (dimers will not form between any 3' ends).

OLIGO 6 includes two multiplex primer selection features. One is designed for the
selection of multiplex primers from a single gene or sequence file, such as the TaqMan
probes selection. This multiplex selection feature is included under the Analyze menu.
The second, more commonly used, multiplex feature provides for the selection of
multiplex primers from two or more genes/exons (in separate sequence files). Users
load and search target sequences for optimal PCR primers and then download them
into an oligonucleotide database as described earlier. Downloading several primers
can be accomplished using the Import – Multiplex Primers menu selection.

When primer groups from each sequence have been loaded into a database, the
actual multiplex process can be initiated. The user selects a candidate primer from
gene sequence #1, and then clicks Analyze Multiplex. This checks the 3' end of this
primer against all the other primers in the database. The primers that are compatible
with the multiplexed primer are identified with a C (in the 3' dimer  G  column of
the database) and noncompatible primers with NC, along with the numeric value of
free energy (  G). The second multiplex primer is then selected from the C (compat-
ible) group, and multiplexed. Now, all remaining primers displaying a C are com-
patible with both primers #1 and #2. This process is continued until all the desired
multiplex primers (all cross-compatible in all combinations) are selected.

Fig. 2. Oligonucleotide Database window.
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Numerous working multiplex PCR primer sets have been designed using the
OLIGO 6 program. The best results in the design of large multiplexes are achieved by
downloading as many optimal primers from each gene sequence as possible. Quite
frequently, certain multiplex primer selections will prove to be incompatible with too
many of the other primers in the database. When this occurs, the experienced user will
deselect that problem primer and select another.

Priming Efficiency Measurements for Priming and False Priming

In early versions of OLIGO, and in most other programs even today, the search for
false priming sites was (and is) carried out by comparing the 3' ends of potential prim-
ers with the template sequence to identify exact complementarity of 4, 5, 6, or (n)
nucleotides. While this remains a simple search to perform, it is of limited use in
determining whether a primer will actually false prime at a given site. For example,
three complementary bases at the 3' end, followed by a mismatch, followed by 4 more
complementary bases would be missed by the program as a false priming site when, in
fact, it could false prime effectively.

The concept of priming efficiency was introduced to provide an accurate way to
predict false priming. The proprietary algorithm takes into account mismatches,
bulges, and loops and their positions relative to the 3' end of the primer. Priming effi-
ciency (PE) is simple in concept, and is represented by a single number for each primer
on a given target. A 21-mer with an average GC content of 50%, fully complementary
with its target (no mismatches), will have a priming efficiency number of approx 400.
A similar 30 mer will have a PE of approx 500. When such primers contain mis-
matches with a given target, such that they will marginally hybridize and prime, the
priming efficiency will be approx 200 (see Fig. 3).

Priming efficiency is obviously useful in accurately predicting false priming. It has
also proven valuable in the selection of consensus primers and unique primers, and it
has been effective in selecting sequencing primers from a library of previously synthe-
sized oligonucleotides. This eliminates the time and expense of a new synthesis.

Fig. 3. False Priming Sites window. The site with priming efficiency of 258 points is the experi-
mentally confirmed strongest false priming site of the universal M13 forward primer.



3 5 2 — Offerman and Rychlik

Sequencing Primer and Hybridization Probe Selection

Along with its search for PCR primers, OLIGO includes comprehensive searches
for DNA sequencing primers and hybridization probes. These searches are also initi-
ated from the Search for Primers & Probes window.

When the sequencing primer search is chosen, the same subsearch group is selected
as for PCR. The Frequent Oligos subsearch is not required for optimal sequencing
primer performance. Although the subsearches used are almost the same as those for
the PCR primer search, the threshold values are different in certain respects. First, there
are advantages to using a sequencing primer with a very high Tm, so unlike PCR, the
sequencing primer search selects high Tm oligos, including those with the highest Tms.
The rest of the parameters are set close to those used for PCR, because the hybridiza-
tion and priming requirements for both are very similar. After selecting the Sequenc-
ing Primers search, the user will set search stringency in the Parameters window as in
the PCR search. The user will also check the Complex Substrate box (usual set off for
sequencing in plasmids) and which strand (+ or – ) to select the primer.

Once the search is initiated, it proceeds as it does with the PCR search. But the
chosen (optimal) sequencing primers are displayed in a Selected Oligos window. This
window displays the oligonucleotide number, position on the template, Tm, 3' termi-
nal stability (specificity), and GC clamp stability. The user can sort by any one of
these columns of data and, thereby further refine the primer selection to his or her
liking. Sequencing primers can be exported to an oligonuclotide database and order
form as can PCR primers.

The hybridization probe search is similar to the PCR and sequencing primer
search, except that those subsearches that are designed to optimize the priming pro-
cess are turned off, and those designed to enhance hybridization are turned on (and
turned up). The probe search includes the GC Clamp, the Stability, the Homo-
oligomer/Sequence Repeats, and the Hairpin-free subsearches. Once the probe
search is complete, optimal probes are, again, listed in the Selected Oligos window.
When a particular probe is selected, it is highlighted as the upper (or lower) primer
on the OLIGO melting temperature screen. Along with standard probe selection,
OLIGO can also be used to select optimal TaqMan probes and primers for this popu-
lar application.

Mutagenesis Primer Design

Site-specific mutagenesis is a very popular technique in the molecular biology labo-
ratory. Perhaps the easiest way to insert a specific mutation into a gene is using prim-
ers containing mutagenic oligonuceotides. OLIGO 6 includes a mutagenesis feature
that simplifies the design of the mutagenesis experiment. The Mutagenesis window
displays a single line of 50–100+ bases at a time for viewing or editing, depending on
the computer resolution. The user can switch from a nucleic acid sequence to a protein
sequence in this edit mode by re-positioning the cursor. This window also displays the
most stable hairpin, codon probabilities, and several other characteristics of the
sequence displayed (see Fig. 4).

In addition to the Toolbar information, the window displays: sequence length,
active reading frame, degeneracy, Tm,  G, hairpin loop Tm, and  G, reverse trans-
lation method, codon frequency for a given organism, nucleotide sequence with posi-
tion numbers, translated protein sequence, the strongest hairpin loop of the displayed
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sequence, and the size and contents of the Clipboard; the sequence to be inserted with
the Paste command (see Fig. 4).

The various colors of residues in the amino acid sequence represent the codon fre-
quencies of each residue according to the codon table selected in the Change submenu.
The information displayed in the mutagenesis window, allow the user to efficiently
design mutagenetic primers with confidence.

Consensus Primers and Unique Primers Selection

PCR has become a universal tool used by molecular biologists, and is now being
used in a wide variety of creative ways. Among them are consensus primer PCR and
unique primer PCR. The Consensus Primers option is useful when the researcher
wishes to select and synthesize a primer pair that can be used to amplify a number of
homologous genes. Again, selecting a consensus primer pair would be difficult with-
out the priming efficiency algorithm.

To begin the consensus primer selection function in OLIGO 6, the user sets up
the standard PCR search, setting the search stringency and the minimum priming
efficiency for the consensus primers in the parameters window. The files are then
selected from which the consensus primers are to be selected, by clicking the Con-
sensus Primers button on the main search window and then adding the files using
the Select Files window. The search proceeds in the manner of the standard PCR
search. The primer pairs displayed in the primer pairs window following the comple-
tion of the search will, by definition, prime in each of the consensus sequences with
a priming efficiency at or above the threshold value set in the parameters window.

Fig. 4. Mutagenesis Edit window.
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Unique primer selection is the reverse of the consensus primer-selection process.
Here, the user wishes to selectively prime and amplify one particular gene in a PCR
reaction from a number of homologous genes. The unique primer selection search
can also be useful to differentiate between closely related bacterial or viral strains,
or any group of closely related organisms. To initiate unique primer selection, the
Continue <False Priming> Search in Other Files subsearch is selected instead of
the Consensus Primer button. Here, it is the priming efficiency threshold for false
priming (set in the parameters window) that determines whether a particular primer
is selected as a unique primer.

Peripheral and Support Functions

In addition to the core features of the OLIGO program described earlier, a num-
ber of support features are included. For example, OLIGO 6, includes a search for
restriction enzymes, with a cut table and map, a search for a sequence string (includ-
ing wobbles and termination codons), a search for palindromes and a search for
stems of hairpin loops. This specialized hairpin loop search can play a helpful role
in the design of synthetic genes. It also has a number of functions that have been
added to work with protein sequences. Protein sequences can be loaded into the
oligo program, reverse translated (four different methods of reverse translation are
provided, including degenerate and codon table methods) with oligo degeneracies
displayed, and the protein sequence searched for potential restriction sites.

Under the Analyze menu, hybridization time can be calculated and the concen-
trations and volumes of the primers, PCR product, or the entire sequence can be
quickly determined. The internal stability (free energy of pentamer subsequences)
of an oligo can also be analyzed, assisting the user in choosing the ideal internal
design of a primer-relatively unstable on the 3' end and stable elsewhere. DNA and
protein sequence files from a number of formats open easily in OLIGO, including
GenBank and PIR files, FASTA, and FASTN along with files from word processors
saved as text files.
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22Statistical Modeling
of DNA Sequences and Patterns

Gautam B. Singh

Introduction

Of fundamental importance in bioinformatics are the mathematical models designed
for modeling the biological sequence and to use that as the basis for detection of pat-
terns. Patterns at the various levels of abstractions are the drivers of genomics and
proteomics research. Starting at the fine level of granularity, the patterns are com-
prised of the splice sites, binding sites, and domains. These are subsequently utilized
for the definition of patterns at a higher level of abstraction such as introns, exons,
repetitive DNA, and locus-control regions.

DNA sequences are often modeled as probabilistic phenomena, with the patterns of
interest being defined as samples drawn from the underlying random process. For
example, the underlying DNA sequence is modeled as a Markov chain of random
variables taking on the values (A, C, T, G). Given this underlying assumption, one may
then model a splice site as a function P that assigns a sample sequence, S, of 8–10
nucleotides a value equivalent to their probability of being a splice site.

A pattern-detection algorithm would consider each substring from a DNA sequence
that could potentially be a splice site and assign a probability to each candidate. The
substrings scoring a high value may be further investigated using the appropriate wet-
bench approaches. Although this is a simple illustration, it does bring forth an important
point. The underlying models that define the DNA sequences and their accuracy are
ultimately a determinant of the accuracy with which the patterns are subsequently
detected. The modeling of the sequences and that of patterns are two complementary
objectives. Sequence models provide a basis for establishing the significance of patterns
observed, while the pattern models help us look for specific motifs that are of functional
significance. Therefore we must consider both of these issues.

Sequence Models

The two main sequence models are the Independent Identically Distributed and
Markov Chain models. Sequence models are needed to represent the background sto-
chastic processes in a manner that enables one to analytically justify the significance
of the observation. To provide an analogy, determinng the sequence model is similar
to determining the probability of obtaining a head (H) while tossing a coin. (For a fair
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coin, this probability would be 1 21 2). In general however, we may estimate this probabil-
ity by studying the strings of the heads and tail sequences that a given coin has pro-
duced in the past. Similarly, given the DNA sequence(s), we may induce the
underlying model that represents the maximally likely automaton that produced the
sequence.

Let us continue our analogy further. After the coin model has been induced, it
would be possible to predict the probability of observing coin tossing pattern such as
“three heads in a row,” etc. Similarly, after inducing a DNA sequence model, it would
be possible to deduce the expected frequency of occurrence of a DNA sequence pat-
tern. This is helpful in classifying patterns in terms of their relative abundance in a
sequence specific manner.

Independent Identically Distributed (IID)
The simplest of all the sequence models is the Independent Identically Distributed

or IID model. In this model, each of the four nucleotides is considered to occur inde-
pendent of each other. Furthermore, the probability of the occurrence of a given nucle-
otide at a given location is identical to the probability of its occurrence at another
location. Thus, for example, assume that the sequence is defined using an IID random
variable. It can take on the possible values defined by the DNA alphabet Σ = (A, C, T,
G). In this case, defining the individual probability values (pA, pC, pT, and pG) speci-
fies the complete model for the sequence. The values may in turn be computed simply
by considering the prevalence of each base in the given sequence. In statistical terms,
the maximally likely or ML estimator for probability of occurrence of a given base is
X is simply 

nx
L

 where nx is the frequency of occurrence of the base X in a sequence of
length L.

In general, the maximal likely estimator for the parameters may be used. Using
the ML estimation, the probability of each base α,  may be estimated as shown in
Equation 1:

P α =
nα L
| L |

[Eq. 1]

This simply counts the relative frequency of nucleotide α in a sequence of length L.
This estimator has the advantage of simplicity and usually works well when |L| is
large. It may not work well when |L| is small.

Given the Model MIID has been induced from the sequence data, the probability of
an occurrence of a pattern x may be computed as shown in Equation 2.

P x | M IID = Π
i=1,...,n x

P xi [Eq. 2]

where P (xi) is the probability of nucleotide xi at position i along the pattern. The
model assumes that the parameters (probability of each of the four nucleotides) are
independent of the position along the pattern.

Example 1:
Consider the following DNA Sequence of Length = 25.

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

In this case the IID model parameters are 6
25, 7

25, 7
25, 5

25 . This corresponds to the

maximally likely estimation of the occurrence of each of the four bases given the

alphabet S = (A, C, T, G). These are thus the IID parameters for the background
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sequence. The probability of finding the pattern CAAT on this sequence would be
equal to pC.pA.pA.pT or 7

25 · 6
25 · 6

25 · 7
25  = 0.0045.

Markov Chain Models

In a Markov chain the value taken by a random variable is dependent upon the
value(s) taken by the random variable in a previous state(s). The number of historical
states that influence the value of the random variable at a given location along the
sequence is also known as the degree of the Markov process. The first-degree Markov
chain model has |Σ| + |Σ|2 parameters, corresponding to the individual nucleotide fre-
quencies as well as dinucleotide frequencies. In this manner, this model permits a
position to be dependent on the previous position. However, the frequencies are mod-
eled in a position-invariant manner and thus may not be suitable for modeling signals.

This sequence model M is defined on the sample space Σ* and assigns a probability
to every sequence x of length n(x) on Σ* (see Equation 3):

P x | M = P1 x1 Π
i=2,...,n x

P2 xi|xi–1 [Eq. 3]

where P1 is a probability function on Σ that models the distribution of α’s at the first
position in the sequence and P2 is the conditional probability function on Σ × Σ that
models the distribution of β’s at position i > 1 on the alphabet symbol α at position i–1.

The parameter estimation using the Maximally Likely estimator proceeds in a man-
ner analogous to the IID model estimation. The transition probabilities are however
estimated using Bayes theorem as shown in Equation 4:

P2 β|α =
P αβ
P α [Eq. 4]

In this manner, the conditional transitional probabilities of finding a base β at posi-
tion (i) given that the base α was found at position (i–1) is computed by finding the
abundance of the dinucleotide αβ as a fraction of the abundance of the nucleotide α.

Example 2:
Consider once again the same 25-Nucleotide Sequence as shown earlier.

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

While considering the first-degree Markov chain models, the 4-parameters corre-
sponding to individual nucleotide frequencies, and the 42 parameters corresponding to
the dinucleotide frequencies need to be computed. The Σ parameters are the same as
before = 6

25, 7
25, 7

25, 5
25 .

In order to compute P2, the Σ × Σ conditional probability values, the dinucleotide
frequencies and probabilities are computed from the sequence data. The dinucleotide
frequencies and the probabilities are shown below (with the parenthesized numbers
representing the probabilities):

freq (AA) = 1 1
24 freq (AC) = 1 1

24 freq (AT) = 3 3
24 freq (AG) = 1 1

24

freq (CA) = 2 2
24 freq (CC) = 1 1

24 freq (CT) = 3 3
24 freq (CG) = 1 1

24

freq (TA) = 1 1
24 freq (TC) = 4 4

24 freq (TT) = 0 0
24 freq (TG) = 2 1

24

freq (GA) = 1 1
24 freq (GC) = 1 1

24 freq (GT) = 1 1
24 freq (GG) = 1 1

24
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The conditional probabilities are next computed using the Bayes theorem (see
Equation 4). For example, the probability of finding “C” at position (i+1) given that
an “A” has been found at position (i) is P C | A =

pAC
pA

=
1 241 24
6 256 25

= 25
144 . For large sequences

the conditional probability P(Si|Si–1) approaches

 
freq SiSi–1
freq Si–1

The conditional probabilities for the example sequence are shown in Table 1.
Using these model parameters, the probability of finding the pattern CAAT in this
sequence using the first order Markov model of the underlying sequence would be
equal to P(C)·P(A|C)·P(A|A)·P(T|A) or 7

25 · 50
168 · 25

144 · 75
144  = 0.0075. This is con-

trast to the ID sequence model probability of the pattern being 0.0045.

Example 3:
The sequence models described above were induced from a 76kb sequence from

the beta-globin gene (L22754+HUMHBB). The pattern probabilities of the following
patterns were computed for both sequence models. The patterns were carefully
selected to be of varying lengths. A PERL program (markov.pl) for inducing sequence
models and computing pattern probabilities is provided on the accompanying
CD-ROM. Table 2 depicts the patterns as well as the probabilities of their occurrence
deduced under the IID and Markov models.

Table 1
Conditional Nucleotide Probabilities for the 25-nt Example Sequence

↓ Si–1 Si  → A C T G

A 25/144 25/144 75/144 25/144

C 50/168 25/168 75/168 25/168

T 25/168 100/168 0 50/168

G 25/120 25/120 25/120 25/120

Table 2
Patterns and Probabilities Deduced Using IID and Markov Models

Probability

Pattern IID Model Markov Model

ATTTA 2.57 × 10–3 2.0 × 10–3

TGTTTTG 1.06 × 10–4 1.64 × 10–4

TTTTGGGG 1.40 × 10–5 4.153 × 10–5

CTTTTACCAAT 5.181 × 10–7 7.596 × 10–7

TCTTTATCTTTGCG 6.545 × 10–9 1.968 × 10–9

CTGAACATTGATGCA 1.238 × 10–9 3.19 × 10–9

–
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Higher-Order Markov Models

Higher-order Markov chains have been described. For example, the nth order
Markov process has a memeory of n, and thus the occurrence of a nucleotide depends
on the previous n nucloetides. The probability of observing a sequence x is defined in
Equation 5, in a manner similar to the first order Markov chains.

P x | M = P1 x1 Π
i=2,...,n x

P2 xi|xi–1,...,xi–n [Eq. 5]

An nth order Markov chain over some alphabet A is equivalent to a first order
Markov chain over the alphabet An of n-tuples. This follows from calculating the
probability of A and B, given B is the probability of A given B, i.e., P(xk|xk–1,...,xk–n)
= P(xk,xk–1,...,xk–n+1|xk–1,...,xk–n). That is, the probability of xk given the n-tuple end-
ing in xk–1 is equal to the probability of the n-tuple ending in xk given the n-tuple
ends in xk–1.

Consider the simple example of a second order Markov chain for sequences of only
two different characters “0” and “1”. A sequence is translated to a sequence of pairs,
so the sequence 011101 becomes 01-11-11-10-01. All transitions are not possible in
this model, as only two different pairs can follow a given letter. For example, the state
01 can only be followed by the states 10 and 11, and not by the state 00 or 01. The set
of possible transitions are shown in Fig. 1.

A second order model for DNA is equivalent to a first order model over the Σ2

alphabet that is comprised of the 16 dinucleotedes. A sequence of five bases, CGACG
would be treated as a chain of four states, CG-GA-AC-CG, with each symbol being
drawn from the Σ2 alphabet. Nonetheless, the framework of high order models is often
preferable for analysis of higher order stochastic sequences.

Pattern Models

 In the previous section our goal was to characterize the “sea” of data in which
these biological “nuggets” of information are hidden. In contrast, our goal in this sec-
tion is to model the nuggets themselves. Thus, this section describes the statistical
modeling procedures for DNA patterns. We now focus on modeling motifs that are
associated with certain biological functions.

Fig. 1. The set of possibe transitions in a 2nd. Order Markov chain. Note that only 8 nonzero
probabilities need to be estimated for this model, as not all of the 16 transitions are possible.
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There are a growing number of well-established patterns that we may wish to model
and search for in DNA sequences. Often these patterns of functional significance are
brought forth after an alignment of sequences belonging to a particular family. Such a
multiple sequence alignment is often interspersed with gaps of varying sizes. How-
ever, there are sections in the final alignment that are free of gaps in all of the
sequences. These fixed-size, ungapped, aligned regions represent the types of patterns
that are modeled to permit their identification in an anonymous segment of DNA. The
statistical techniques that may be employed for developing such a closed-form repre-
sentation of a set of patterns are described in the following.

Weight Matrices

A DNA sequence matrix is a set of fixed-length DNA sequence segments aligned
with respect to an experimentally determined biologically significant site. The col-
umns of a DNA sequence matrix are numbered with respect to the biological site,
usually starting with a negative number. A DNA sequence motif can be defined as a
matrix of depth 4 utilizing a cut-off value. The 4-column/mononucleotide matrix
description of a genetic signal is based on the assumptions that the motif is of fixed
length, and that each nucleotide is independently recognized by a trans-acting
mechanism. For example, the frequency matrix has been reported for the TATAA
box (see Table 3).

If a set of aligned signal sequences of length L corresponds to the functional signal
under consideration, then F = [fbi], (b ∈ Σ),(j = 1.. L) is the nucleotide frequency
matrix, where fbi is the absolute frequency of occurrence of the b-th type of the nucle-
otide out of the set Σ = (A, C, G, T) at the i-th position along the functional site.

The frequency matrix may be utilized for developing an ungapped score model
when searching for sites in a sequence. Typically a log-odds scoring scheme is uti-
lized for purpose of searching for pattern x of length L as shown in Equation 6. The
quantity ei(b) specifies the probability of observing base b at position i. It is defined
using the frequency matrix such as the one shown above. The quantity q (b) represents
the background probability for the base b.

S =
L

Σ
1=1

log
ei xi

q xi
[Eq. 6]

The elements of log
ei xi

q xi

behave like a scoring matrix similar to the PAM and BLOSUM matrices. The term
Position Specific Scoring Matrix (PSSM) is often used to define the pattern search
with matrix. A PSSM can be used to search for a match in a longer sequence by

Table 3
Weight Matrix for TATAA Box

T 6 49 1 56 6 22 6 20

C 14 6 0 0 3 0 1 2

A 8 4 58 4 51 38 53 30

G 32 1 1 0 0 0 0 8



Statistical Modeling — 363

evaluating a score Sj, for each starting point j in the sequence from position 1 to
(N–L+1) where L is the length of the PSSM.

A method for converting the frequency matrix into a weight matrix has been pro-
posed by Bucher (1990). The weights at a given position are proportional to the loga-
rithm of the observed base frequencies. These are increased by a small term that
prevents the logarithm of zero and minimizes sampling errors. The weight matrix is
computed as shown in Equation 7. The term ebi represents the expected frequency of
base b at position i, ci a column specific constant, and s, a smoothing percentage.

W b,i = ln
fbi
ebi

+ s
100 + ci [Eq. 7]

These optimized weight matrices can be used to search for functional signals in the
nucleotide sequences. Any nucleotide fragment of length L is analyzed and tested for
assignment to the proper functional signal. A matching score of

L

Σ
i=1

W bi,i

is assigned to the nucleotide position being examined along the sequence. In the search
formulation, bi is the base at position i along the oligonuclotide sequence, and W(bi,i)
represents the corresponding weight-matrix entry for base bi occurring along the ith.
position in the motif.

Profiles are similarly defined for modeling functional motifs in amino-acid
sequences. A profile is a scoring matrix M(p,a) comprised of 21 columns and N rows,
where N is the length of the motif. The first 20 scores represent the weight for each
individual amino acid, and the 21st column specifys the cost associated with an inser-
tion or deletion at that position. The value of the profile for amino acid “a” defined for
position p is

M a,p =
20

Σ
b=1

W b,p × Y b,a

where Y(b,a) is Dayhoff’s matrix and W(b,p) is the weight for the appearance of amino
acid b at position p. The position specific weight is defined by log(f [b,p]/N), or the
frequency of occurrence of the amino acid as b as a fraction of the total N sequences
utilized for construction of the profile, with a frequency of 1 being used for any amino
acid that does not appear at position p.

Position-Dependent Markov Models

Markov models have been considered as a means to define the background DNA
sequence. This model enabled us to define the probability of a nucleotide conditioned
upon the nucleotides occurring in the previous position. However the modeled depen-
dency is position-invariant. A position-dependent Markov model may be utilized for
the representation of a sequence signal or motif. This model is defined on the sample
space Σn and assigns a probability to every sequence x on Σn (see Equation 8):

P x | M = P1 x1 Π
i=2,...,n

P2,i xi|xi–1
[Eq. 8]

This model has |Σ| + (n–1)*|Σ|2 parameters. This model permits position-specific
dependencies on the previous position by allowing the association of a unique set of
transition probabilities with each position along the signal. This model assumes that
sufficient training data is available to induce position specific Markov probabilities.
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Hidden Markov Models
There are several extensions to the classical Markov chains. The Hidden Markov

models (HMM) are one such extension. The rationale for building a HMM comes
from the observation that as we search a sequence, our observations could arise from
a model characterizing a pattern, or from a model that characterizes the background.
Hidden Markov DNA sequence models are developed to characterize a model as an
island within the sea of nonisland DNA. The Markov chain characterizing the island
and nonisland need to be present within the same model, with the ability to switch
from one chain to the other. In this manner, a HMM utilizes a set of hidden states with
an emission of the symbols associated with each state.

From a symbol-generation perspective, the state sequence executed by the model is
not observed. Thus, the state sequence must be estimated from the observed symbols
generated by the model. From a mathematical perspective, the HMM is characterized
by the following parameters:

• Σ is an alphabet of symbols.
• Q is a set of states that emit symbols from the alphabet Σ.
• A = (akl) is |Q|×|Q| matrix of state transition probabilities.
• E = (ek[b]) is a |Q|×|Σ| matrix of emission probabilities.

Although a general topology of a fully connected HMM allows state transitions
from any state to any other, this structure is almost never used. This is primarily due
to the inadequacy of the available data for training a model with the large number of
parameters needed for a fully connected HMM for any practical problem. Often, the
over-generalized model produces sub-optimal results due to the lack of training data.
Consequently, more restrictive HMMs that rely on the problem characteristics to
suitably reduce the model complexity and the number of model parameters that are
needed are utilized. One such model is defined to be the profile-HMM, which is
induced from a multiple sequence alignment. The structure of a profile HMM is
shown in Fig. 2.

The parameters of a profile HMM are estimated using the sample alignments of
the sequences used for training. The transitions and the emissions of the symbols in
the alignment are used to derive the Maximally Likely (ML) estimator of the HMM
parameters. These values are assigned as shown in Equation 9. The actual transition

Fig. 2. A profile HMM utilizes the insert (diamond) and delete (circle) states. The delete states are
silent and are not associated with the emissions of any symbols. The parameters of a profile HMM are
learned from a multiple sequence alignment.
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and emission frequencies Akl and Ek(a) respectively, are used to define the transition
and emission probabilities, Akl and Ek(a). Furthermore, pseudo-counts are added to
the observed frequencies to avoid zero probabilities. The simplest pseudo-count
method is Laplace’s rule, which requires adding one to each frequency.

akl =
Akl

Σ
X

AkX
and ek a =

Ek a
Σ
Y

Ek Y [Eq. 9]

Example 4:
Consider the following multiple sequence alignment defined on amino acid residues
for five globin sequences.

HBA_HUMAN        ... VGA--HAGEY ...
HBB_HUMAN        ... V----NVDEV ...
GLB3_CHITP       ... VKG------D ...
LGB2_LUPLU       ... FNA--NIPKH ...
GLB1_GLYDI       ... IAGADNGAGV ...
Match States         ***  *****

A HMM with 8 match states may be constructed based on this alignment. The resi-
dues AD in GLB1_GLYD1 are treated as insertions, with respect to the consensus. In
match state 1, the emission probabilities are (using Laplace’s rule):

eM1 V = 4
25, eM1 F = 2

25, eM1 I = 2
25, and eM1 a = 1

25 for all others

The transition probabilities from match state 1 are as follows:

 aM1,M2 = 5
8, aM1,D2 = 2

8, aM1,I1 = 1
8 ,

corresponding to the one deletion in HBB_HUMAN, and no insertions. The emission
probabilities for the state I1 will be all equal to (1/20). The Viterbi algorithm yields the
optimal path through the HMM, as well as the log-odds score for observing a given
sequence using an HMM. It is commonly used to match a profile HMM to a sequence.
The Viterbi algorithm is a recursively defined optimization procedure that is quite
similar to the dynamic programming algorithm used for sequence alignment.

The various scores for matching a sequence to the profile HMM are defined in
Equation 10. In this formulation, Vj

M i  represents the log-odds score of the best path
matching subsequence x1...i to the submodel up to state j, ending with xi being emitted
by state Mj. Similarly Vj

I i  is the score of the best path ending in xi being emitted by Ij,

and Vj
D i  for the best path ending in state Dj.

Vj
M i = log

eM j
xi

qxi

+ max

Vj–1
M i – 1 + log aM j–1M j

Vj–1
I i – 1 + log aI j–1M j

Vj–1
D i – 1 + log aDj–1M j

Vj
I i = log

eI j
xi

qxi

+ max

Vj
M i – 1 + log aM jM j

Vj
I i – 1 + log aI jM j

Vj
D i – 1 + log aDjM j

Vj
D i = max

Vj–1
M i + log aM jDj

Vj–1
I i + log aI j–1Dj

Vj–1
D i + log aDj–1Dj

[Eq. 10]
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Generally, there is no emission score eI j xi  in the equation for Vj
I i  as it is often

assumed that the emission distribution from the insert states Ij is the same as the back-
ground distribution. Also, the D→ I and I→D transition terms may not be present,
and those transition probabilities may be very close to zero.

Mixture Models

Mixture models are defined in relation to the sample space Σn. The mixture model
M is a mixture of component models Mi,i = 1,..., k, and assigns a probability to every
sequence x on Σn defined in Equation 11.

P x | M = Π
i=1,...,k

P x | Mi P Mi
[Eq. 11]

where P(Mi) is the weight of component model Mi in the mixture. Any probability
model may be used as a component model, as the mixture model may have component
models of a different type.

A mixture model is best suited for modeling data that is comprised of subgroups. In
this manner, an observed data set may be assigned to a class if a high probability is
assigned to it by at least one component model of sufficient weight. This may be
considered to be a stochastic analog of a weighted OR function.

Consider for example a set D of short aligned sequences corresponding to some
functional site. Further assume that we have a reason to believe that the observed
sequences are characterized to belong to two categories. The goal to establish if an
observed sequence x is similar to set D, may be achived by developing a mixture
model for the set D. The mixture model is comprised of two constituent sub-models
that are represented in the set.

Goodness of Fit

As described in the previous sections, there are often several methodologies for
developing a model for a pattern. Consequently, the natural question to ask is: is there
is a systematic methodology that may be utilized to evaluate which of the possible
models is best suited for the data at hand? We may utilize the goodness of fit measure,
described below, to estimate how well a given model represents the observed dataset.
Generally, all data items d in the training, or another data set, D are considered to be
independent.

Under the independence assumption, the likelihood that dataset D may be
estimated as a product of all the probabilities of individual observations d is:

P D | M = Π
d∈D

P d | M [Eq. 12]

Rewriting Equation 11 in its log-likelihood form:

log P D | M = Π
d∈D

log P d | M [Eq. 13]

This is often desirable to prevent numeric underflows that are likely to occur when
small numbers are multiplied. In this manner, one may choose a model instance M*
that best fits the dataset D according to the maximum likelihood principle defined in
Equation 14.

M * = arg max
M

P D | M = arg max
M

P D | M [Eq. 14]
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Example Problems

The following examples and their solutions review the key concepts of this chapter.

1. Compute the background parameters for the following sequence:

ATTAG GCACG CATTA TAATG GGCAC CCGGA AATAA CCAGA GTTAC GGCCA

a. Assuming an IID model? Answer:
IID parameters

A : 17 (0.34)
B : 12 (0.24)
C : 12 (0.24)
T : 9 (0.18)

b. Assuming a 1st Order Markov model? Answer:
1-st Order Markov Probabilities Dinucleotide Frequencies

AA  4  (0.0816326530612245)
CA  5  (0.102040816326531)
AC  4  (0.0816326530612245)
CC  4  (0.0816326530612245)
GA  2  (0.0408163265306122)
TT  3  (0.0612244897959184)
AG  3  (0.0612244897959184)
GC  4  (0.0816326530612245)
CG  3  (0.0612244897959184)
GG  5  (0.102040816326531)
AT  5  (0.102040816326531)
TA  5  (0.102040816326531)
CT  0  (0)
TC  0  (0)
GT  1  (0.0204081632653061)
TG  1  (0.0204081632653061)

Prob X|Y is derived from Prob (XY)/Prob (Y)

Markov Probabilities (1-st Order)

A|C  5/12  (0.425170068027211)
C|A  4/17  (0.240096038415366)
C|C  4/12  (0.340136054421769)
A|G  2/12  (0.170068027210884)
T|T  3/9   (0.340136054421769)
G|A  3/17  (0.180072028811525)
C|G  4/12  (0.340136054421769)
G|C  3/12  (0.255102040816327)
G|G  5/12  (0.425170068027211)
A|T  5/9   (0.566893424036281)
T|A  5/17  (0.300120048019208)
C|T  0/9   (0)
T|C  0/12  (0)
T|G  1/12  (0.0850340136054422)
G|T  1/9   (0.113378684807256)
A|A  4/17  (0.240096038415366)

c. How many parameters would need to be estimated if a 2nd Order Markov
model is assumed for the background sequence? Answer:
A second order Markov Process for modeling a sequence will have
the following transitions:

AA|AA AT|AA AC|AA AG|AA
CA|CC CC|CC CT|CC CG|CC
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TA|TT TC|TT TT|TT TG|TT
GA|GG GC|GG GT|GG GG|GG
TA|AT TC|AT TT|AT TG|AT
CA|AC CC|AC CT|AC CG|AC
GA|AG GC|AG GT|AG GG|AG
....
....

64 transition probabilities will be defined, as
there are only 4 valid transitions from any of
the 16 states. (Note that we would have 16x6 = 256
possible transitions if all transitions were valid.
However, transitions such as ATICG, etc. are not valid).

2. Compute the match scores (defined in Equation 5) generated by searching the
above sequence using the weight matrix described for TATAA-box described in
Table 1. Assume IID background model.

Pattern Length = 8
zero th order Markov model for the sequence
is used for the bakground computation.

A : 17 (0.34)
C : 12 (0.24)
T : 9  (0.18)
G : 12 (0.24)
-------------------------------------------
zeros in the score matrix were changed to 1
as Eq. 5 requires taking a log (e-i(x-i)/q(x-i)).

Scores as computed using Equation (5):
Score[i] represents the score for pattern starting at position

    “i”.
Score[O] = -11.164
Score[l] =  -7.167
Score[2] = -11.868
Score[3] = -15.445
Score[4] = -12.798
Score[5] =  -5.578
Score[6] =  -8.025
Score[7] =  -5.836
Score[8] =  -5.412
Score[9] =   2.331
Score[10] =   0.462
Score[ll] =  -1.943
Score[12] =   3.863
Score[13] =  -7.968
Score[14] =  -6.633
Score[15] =  -9.617
Score[16] = -15.343
Score[17] = -11.227
Score[18] = -14.293
Score[19] = -13.711
Score[20] = -13.771
Score[21] =  -9.305
Score[22] = -13.624
Score[23] = -11.255
Score[24] =  -7.058
Score[25] =  -3.244
Score[26] =  -5.771
Score[27] =   0.400
Score[28] =  -2.515
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Score[29] =  -3.093
Score[30] = -10.722
Score[31] =  -3.992
Score[32] =  -7.183
Score[33] =  -9.399
Score[34] = -10.319
Score[35] =  -4.364
Score[36] =  -8.227
Score[37] =  -6.236
Score[38] =  -5.188
Score[39] =  -9.458
Score[40] = -10.690
Score[41] = -10.789

Maximum Score at Location 12.
Maximum Score = 3.863(12)

3. Use the HMMER program (URL provided in Subheading “Suggested Reading”)
to compute profile HMM for the following alignment.

A C G A C G A C G A C G .
. . G G G A A A G G . G A
ACG..AAATTT.A

a. Apply the Viterbi algorithm to compute the probability of observing the
sequence “AATTAATTAA” from this model.

Step 1. Sequences were represented in Stockholm alignment format.

#STOCKHOLM 1.0
seq1 ACGACGACGACG.
seq1 ..GGGAAAGG.GA
seq1 ACG..AAATTT.A

Step 2. Program hmmbuild was run. This produced the following
    alignment HMM

HMMER 2.0 [2. 2g]
NAME  prb
LENG  13
ALPH  Nucleic
RF   no
CS   no
MAP   yes
COM   hmmbuild prb.hmm prb.slx
NSEQ  3
DATE  Fri Oct 12 14:38:44 2001
CKSUM 7915
XT     -9967     -1 -1000 -1000  -9967    -1 -9967    -1
NULT     -1  -9967
NULE      0      0      0     0
HMM       A      C      G     T
        m->m   m->i  m->d  i->m   i->i  d->m  d->d  b->m  m->e
        -412      * -2011
     1  1007   -592  -592  -592     1
     -     0      0     0     0
     -   -21  -6687 -7729  -894  -1115  -701  -1378  -412     *
     2  -592   1007  -592  -592     2
     -     0      0     0     0
     -   -21  -6687 -7729  -894  -1115  -701  -1378     *     *
     3  -807   -807  1193  -807     3
     -     0      0     0     0
     -  -442  -7108 -1962  -894  -1115  -701  -1378     *     *
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     4   450   -592   387  -592     4
     -     0      0     0     0
     -   -21  -6687 -7729  -894  -1115 -1435   -666     *     *
     5  -592    450   387  -592     5
     -     0      0     0     0
     -   -21  -6687 -7729  -894  -1115  -380  -2112     *     *
     6   749   -807   234  -807     6
     -     0      0     0     0
     -   -16  -7108 -8150  -894  -1115  -701  -1378     *     *
     7  1193   -807  -807  -807     7
     -     0      0     0     0
     -   -16  -7108 -8150  -894  -1115  -701  -1378     *     *
     8   749    234  -807  -807     8
     -     0      0     0     0
     -   -16  -7108 -8150  -894  -1115  -701  -1378     *     *
     9  -807   -807   792   171     9
     -     0      0     0     0
     -   -16  -7108 -8150  -894  -1115  -701  -1378     *     *
    10   234   -807   171   171    10
     -     0      0     0     0
     -  -442  -7108 -1962  -894  -1115  -701  -1378     *     *
    11  -592    450  -592   387    11
     -     0      0     0     0
     -  -629  -6687 -1541  -894  -1115  -380  -2112     *     *
    12  -592   -592  1007  -592    12
     -     0      0     0     0
     -   -33  -6021 -7064  -894  -1115  -380  -2112     *     *
    13   986   -571  -571  -571    13
     -     *      *     *     *
     -     *      *     *     *      *     *      *     *     0
//

b. Validate your results by comparing it to probability values generated by
HMMER package.

Step 3. To evaluate tbe probability of matching a sequence to an
profile HMM, we can run the program hmmpfam. This produced
the following result for AATTAATTAA. The match score was
-15.4 (E-value of 2, with anything less than 10 being
considered significant match).

hmmpfam - search one or more sequences against HMM database
HMMER 2.2g (August 2001)
Copyright (C) 1992-2001 HHMI/Washington University School of Medi-
cine
Freely distributed under the GNU General Public License (GPL)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
HMM file: prb.hmm
Sequence file: prb.seq
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
Query sequence: Query
Accession:      [none]
Description:    Sequence

Scores for sequence family classification score includes all do-
mains):
Model    Description                        Score    E-value  N
-------  -----------                        -----    ------- ---
prb                                         -15.4          2   1
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Parsed for domains:
Model    Domain  seq-f seq-t    hmm-f hmm-t     score  E-value
-------- ------- ----- -----    ----- -----     -----  -------
prb        1/1       1    10 []     1    13 []  -15.4        2

Alignments of top-scoring domains:
prb: domain 1 of 1, from 1 to 10: score -15.4, E = 2
                   *->acgacaaagacga<-*
                      a     aa++  a
       Query     1    AAT--TAATTA-A    10

//

Glossary and Abbreviations

Alternative Hypothesis  The alternative hypothesis, H1, is the conclusion that a
statistical hypothesis test tries to establish. For example, in a new drug trial, the alter-
native hypothesis might be that the new drug has a different effect, on average, com-
pared to that of the current drug.

Bayes’ Theorem  Bayes’ Theorem allows new information to be used to update the
conditional probability of an event.

Binomial Distribution  A binomial random variable is typically used to model the
number of successes in a series of trials, for example, the number of ‘heads’ occurring
when a coin is tossed 100 times.

Conditional Probability  The process of estimating the probability given the state
of the environment. For example, the probability of an event E may be P1 under one
environment C1, written as P(E|C1) = P1. While, the probability of the same event E
may be P2 under a different environment C2, denoted as P(E|C2) = P2. In many situa-
tions, once more information becomes available, we are able to revise our estimates
for the probability of further outcomes or events happening.

Continuous Random Variable  A continuous random variable is characterized by
its ability to take on an infinite number of possible values. Continuous random vari-
ables are usually measurements.

Cumulative Distribution Function  All random variables (discrete and continu-
ous) have a cumulative distribution function. It is a function giving the probability that
the random variable X is less than or equal to x, for a given x.

Discrete Random Variable  A discrete random variable may only take on a count-
able number of distinct values such as 0,1,2,3,... If a random variable can take only a
finite number of distinct values, then it is discrete by definition. Discrete random vari-
ables are usually (but not always) counts.

Event  An event is any collection of outcomes of an experiment.
Expected Value  The expected value (or population mean) of a random variable

indicates its average or central value. It is a useful summary value (a number) of the
variable’s distribution.

Independent Events  Two events are independent if the occurrence of one of the
events gives us no information about whether or not the other event will occur; that is,
the events have no influence on each other.

Kolmogorov-Smirnov Test  A test is used to establish if the sample of data is
consistent with a specified distribution function. Alternatively, used to establish if two
samples of data come from the same distribution.
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Mutually Exclusive Events  Two events are considered mutually exclusive (or
disjoint) if it is impossible for them to occur together.

Normal Distribution  Normal distributions is a probability distribution function
of a class of continuous random variables. A normal random variable is capable of
assuming any value on the real line.

Null Hypothesis  The null hypothesis, H0, represents the default theory that is
believed to be true or is the basis for argument. For example, in clinical trials, the null
hypothesis might be that the new drug is no better, on average, than the current drug. In
this case, we would write H0: there is no difference between the two drugs on average.

Poisson Distribution  Poisson distribution is a probability distribution function
for a class of discrete random variables. The corresponding Poisson random variable
is the count of the number of events that occur in a certain time interval or spatial
area. For example, the number of patterns found in a fixed size widows along the
biological sequence.

Probability  A probability provides a quantitative estimation of how likely or
unlikely is the occurrence of a particular event. Probability is conventionally expressed
on a scale from 0 to 1.

Probability Density Function  Is defined for a continuous random variable. It
may be integrated to obtain the probability that the random variable takes a value in a
given interval.

Probability Distribution  Is defined for discrete random variable. It is a list of
probabilities associated with each of its possible outcome. It is also called the prob-
ability function or the probability mass function.

p-Value  The probability value (p-value) of a statistical hypothesis test is the prob-
ability of getting a value of the test statistic as extreme as or more extreme than that
observed by chance alone, if the null hypothesis H0, is true.

Random Variable  The outcome of an experiment need not be a number. For
example, the outcome coin-toss is ‘heads’ or ‘tails’. We often want to represent the
outcomes as numbers. A random variable is a function that associates a unique
numerical value with every outcome.

Significance Level  The significance level of a statistical hypothesis test is a fixed
probability of wrongly rejecting the null hypothesis H0, if it is in fact true.

Subjective Probability  A subjective probability of an individual’s estimation of
how likely is the occurrence of a particular event. It is not based on any precise com-
putation - simply a reasonable assessment by a knowledgeable person.

Test Statistic  A test statistic is a quantity calculated from our sample of data. Its
value is used to decide whether or not the null hypothesis should be rejected in our
hypothesis test.

Variance  The (population) variance of a random variable is a non-negative num-
ber providing an estimation of how widely spread the values of the random variable
are likely to be. The larger the value of variance, the more scattered the observations.

Suggested Readings

Hidden Markov Models
Haussler, D., Krogh, A., Mian, I. S. and Sjolander, K. Protein modeling using hidden

Markov models: analysis of globins, in: Proceedings of 26th Annual Hawaii
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Statistical Mining
of the Matrix Attachment Regions
in Genomic Sequences

Gautam B. Singh

Introduction
The functional role of a cell can be thought of as reflecting the partitioning of genes

into compartments of those that can be expressed and those that cannot be expressed.
Every cell contains the same genetic information and expresses the same subset of
genes for basic cellular function. There is a second set of genes that are uniquely
expressed in each cell type. The biological mechanism by which such differential gene
expression is achieved and mediated is brought about by the presence of simple DNA
sequence patterns that are predominantly found within the neighborhood of the gene
locus. These simple sequence patterns are embedded within the majority of nuclear
noncoding DNA (i.e., in direct contrast to the 2% of the genome that corresponds to
the protein coding regions).

Noncoding DNA is comprised of special sequences of regulatory importance such
as introns, promoters, enhancers, Matrix Association Regions (MARs), and repeti-
tive elements. Many of these regions contain patterns that represent functional con-
trol points for cell-specific or differential gene expression. Others such as repetitive
DNA sequence elements may serve as a biological clock. These and numerous other
examples indicate that the patterns embedded in the eukaryote DNA may play a criti-
cal role for viability.

MARs: Background and Data Models
The Matrix or Scaffold Attachment regions are relatively short (100–1000 bp long)

sequences that anchor the chromatin loops to the nuclear matrix. MARs are often
associated with the origins of replication (ORI). They usually possess a concentrated
area of transcription factor binding sites. Approximately 100,000 matrix attachment
sites are believed to exist in the mammalian nucleus, where ~30,000–40,000 serve as
ORIs. MARs have been observed to flank the ends of genic domains encompassing
various transcriptional units. It has also been shown that MARs bring together the
transcriptionally active regions of chromatin such that transcription is initiated in the
region of the chromosome that coincides with the surface of nuclear matrix.

There are two potentiative states, i.e., open or closed, and two classes of potenti-
ated open euchromatin, i.e., constitutive and tissue/cell-specific facultative. The con-
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stitutive class, e.g., those of the housekeeping genic domains, always maintain that
segment of the genome in a transcriptionally favorable open chromatin conforma-
tion. In contrast, the tissue/cell-specific facultative class impose the open conforma-
tion onto a segment of the genome in a tissue/cell-specific manner. The two
potentiative states, ready/open or off/closed, are correlated with the presence or
absence of multiple factors interacting with element(s) that are far distal of their
respective gene-specific promoters and enhancers at regions of locus control.

To date, three classes of elements that act as regions of locus control have been
identified. This suggests that potentiation can be achieved by multiple and/or redun-
dant means. The classes of elements are the Matrix Attachment Regions/Scaffold
Attachment Regions (MARs/SARs); Specialized Chromatin Structures (SCSs); and
Locus Control Regions (LCRs). These elements provide a dominant chromatin open-
ing function that is an absolute requisite for transcription of this segment of the
genome. In this manner phenotype is ultimately defined by gene potentiation.

MARs often flank the ends of genic domains encompassing various genic units. It
is reasonable to propose that the remaining 30,000–35,000 pairs of the 100,000 MARs
in each cell anchor the paired ends of the approx 12,000–30,000 genic domains to the
nuclear matrix. It is likely that it is not a simple coincidence that this is also the num-
ber of genes transcribed in each cell. If MARs act, or participate as regions of locus
control, then it is likely that their reiteration throughout the genome provides a means
to specifically tag genes for potentiation in that cell.

The Human Genome Project (HGP) relies upon the availability of databases and
tools that enable easy access, analysis, and comparison of genome information. Devel-
oping computational tools and algorithms that can assist in analysis, interpretation, and
discovery of knowledge contained within these databases is critical. Specifically, these
tools are expected to focus on completing the transcript map and understanding the
functional significance of the sequenced genes. It is anticipated that elements of locus
control, like MARs, will be sought during this phase given their key role in genetic
processes and their localization to functional chromatin domains. Thus, a means to
model these markers so that they could be placed on the genome sequence map would
have significant ramifications.

Data mining and knowledge discovery techniques can be applied to genomic
sequences to detect elements of locus control. MARs are one such type of locus-
control element. Our limited knowledge of MARs has hampered formulating their
detection using classical pattern recognition strategies where the existence of lower
level constituent elements is used to establish the presence of a higher level func-
tional block. However, MAR detection can be accomplished using the statistical
estimation of “interestingness” of a sample. This detection strategy is of general
utility for the detection of other classes of regulatory signals where a limited data
set is available for describing the functional elements.

MARs have been experimentally defined for several gene loci, including, the
chicken lysozyme gene, human interferon-β (IFN-β) gene, human β-globin gene,
chicken α-globin gene, p53, and the human protamine gene cluster. Several motifs
that characterize MARs have emerged, although a MAR consensus sequence is not
apparent. The motifs that are currently utilized are functionally categorized and repre-
sented as AND-OR patterns described in the following.

The following characteristics of DNA known to be associated with the presence of
Matrix Association Regions is summarized in Table 1.
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• The Origin of Replication (ORI): It has been established that replication is asso-
ciated with the nuclear matrix, and the origins of replication share the ATTA,
ATTTA, and ATTTTA motifs.

• Curved DNA: Curved DNA has been identified at or near several matrix attach-
ment sites and has been involved with DNA-protein interaction, such as recombi-
nation, replication and transcription. Optimal curvature is expected for sequences
with repeats of the motif, AAAAn7AAAn7AAAA as well as the motif TTTAAA.

• Kinked DNA: Kinked DNA is typified by the presence of copies of the dinucle-
otide TG, CA, or TA that are separated by 2-4 or 9-12 nucleotides. For example,
kinked DNA is recognized by the motif TAn3TGn3CA, with TA, TG and CA
occurring in any order.

• Topoisomerase II sites: It has been shown that Topoisomerase II binding and
cleavage sites are also present near the sites of nuclear attachment. Vertebrate
and Drosophila topoisomerase II consensus sequence motifs can be used to iden-
tify regions of matrix attachment.

• AT-Rich Sequences: Typically many MARs contain stretches of regularly spaced
AT-rich sequences in a periodic manner.

• TG-Rich Sequences: Some T-G rich spans are indicative of MARs. These
regions are abundant in the 3' UTR of a number of genes and may act as recombi-
nation signals.

• Consensus Motif: The sequence TCTTTAATTTCTAATATATTTAGAA defined
as the nuclear matrix STAB-1 binding motif.

• ATC Rule: ATC rule (a stretch of 20 or more occurrences of H, i.e., A or T or C).
The ATC rule was used in the analysis of Rice A1-Sh2 region by some research-
ers. This rule has shown to be an effective indicator of regions with marked helix
destabilization potential.

• Bipartite Signal: A bipartite sequence signature has been reported to be associ-
ated with the MARs. This is composed of two degenerate sequences
AATAAYAA and AWWRTAANNWWGNNNC within a close proximity.

• A-Box, T-Box, etc., and other motifs that have been associated with MARs.

Their sequence interdependency is not known, but in most cases multiple motifs
are utilized to create a functional MAR. Our current state of analysis makes it clear
that at least three and possibly four independent types of MARs can be detected.
These are MARs utilized as ORIs, (identified by the ORI rule), AT-rich MARs (iden-
tified by the AT-Rich rule and ATC rule) typified by lysozyme, or β-interferon
genes. MARs that are not AT-Rich as exemplified by those of the protamine locus
and the MARs that are tissue-specific.

Patterns and Rule Definitions

In the general framework discussed previously, a pattern description language must
be defined that has sufficient power to represent the variety of patterns likely to be
discovered as our understanding about DNA-protein interactions and the control of
genetic machinery reaches a higher level of maturity. One must remember, each motif
(and pattern) is represented by the probability of its random occurrence. This value
can be derived using the base composition of the sequence being analyzed.

When searching for patterns, one must strive for a balance between the specificity
and generality of patterns sought. Thus a distinction is often drawn between the tasks
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Table 1
Table of Sequence Level Motifs a

Motif Motif name DNA Signature

m1 ORI Signal ATTA
m2 ORI Signal ATTTA
m3 ORI Signal ATTTTA
m4 TG-Rich Signal TGTTTTG
m5 TG-Rich Signal TGTTTTTTG
m6 TG-Rich Signal TTTTGGGG
m7 Curved DNA Signal AAAANNNNNNNAAAANNNNNNNAAAA
m8 Curved DNA Signal TTTTNNNNNNNTTTTNNNNNNNTTTT
m9 Curved DNA Signal TTTAAA
m10 Curved DNA Signal AAA
m11 Curved DNA Signal AAAA
m12 Kinked DNA Signal TANNNTGNNNCA
m13 Kinked DNA Signal TANNNCANNNTG
m14 Kinked DNA Signal TGNNNTANNNCA
m15 Kinked DNA Signal TGNNNCANNNTA
m16 Kinked DNA Signal CANNNTANNNTG
m17 Kinked DNA Signal CANNNTGNNNTA
m18 mtopo-II Signal RNYNNCNNGYNGKTNYNY
m19 dtopo-II Signal GTNWAYATTNATNNR
m20 topo-II Vert. Signal NCNNCYNGKTNYNY
m21 AT-Cluster Signal WWWWWW
m22 AT-Cluster signal AATATTTTT
m23 AT-Cluster Signal AATAAAYAAA
m24 AT-Cluster Signal ATATTT
m25 ACBP-TF Signal WTTTAYRTTTW
m26 ARBP-TF Signal ATTTCASTTGTAAAA
m27 SAR-TF Signal WWCAAWG
m28 ARS 3’Consensus Signal CTTTTAGCWWW
m29 CEN Signal TGTTTATGNTTTCCGAAANNNAAAA
m30 HomProtcore Signal TAATTA
m31 YR-Richness Signal YR
m32 F/G Signal AYCYRTRCAYYW
m33 Bipartite AR Signal AATAAYAA
m34 Bipartite SAR Signal AWWRTAANNWWGNNNC
m35 MAMORI Signal WAWTTDDWWWDHWGWHMAWTT
m36 SAR Signal WADAWAYAWW
m37 SAR Signal WWDAWAYAWW
m38 SAR Signal TWWTDTTWWW
m39 T Box Signal TTWTWTTWTT

a The set of motifs characterizing MARs constitute DNA-sequence signals or predicates upon which rules
defining higher level patterns are constructed. Note that the IUPAC characters R, Y, W, and k are defined as:
R = A or G, Y = T or C, W = A or T, and k = G or T.
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of finding patterns and that of finding models or rules. The distinction between these
two terms is rather arbitrary. Generally, a model is a global representation of a struc-
ture that summarizes components underlying the data that explain how the data may
have arisen. In contrast, a pattern is a local structure, perhaps relating to a handful of
variables and a few cases.

It is possible to employ a general set of DNA patterns using the AND-OR methodol-
ogy. In such an AND-OR pattern specification methodology a disjunction (OR) of the
conjunctions (AND) of the motifs detected in the sequence is used as the definition of
the pattern being sought. The sequence level motifs serve as the lowest level predi-
cates used to detect the presence of a higher level pattern. In general the following
operations may be applied to the lower level motifs:

• Motif consensus sequence, m, represented as a regular expression of profile, or
• The logical OR of two motifs mi and mj , represented as mi ∨ m j , or
• The augmented logical AND of two motifs mi and mj , represented as a mi ∧

a

b
m j

or
• The logical negation of a motif, m, represented as m, specifying the absence of a

given motif.

The pattern specification methodology must consider motif variability in its repre-
sentation. Such variability may be captured using the AND-OR rules. As an example,
consider the rule to define the Origin of Replication (OR) of DNA. This can be based
on the OR operator applied to the three motifs m1 =ATTA, m2 = ATTTA, and m3 =
ATTTTA. The motif detectors bypass the AND layer in this case.

R1 = m1 ∨ m2 ∨ m3 [Eq. 1]

Similarly, the requirement for multiple motif occurrences can be specified using the
AND operator. An additional parameter is incorporated when using the AND rule to con-
strain the allowable gap between the two co-occurring motifs. For example, the
AT-Richness rule can be formulated as the occurrence of two hexanucleotide strings, m4

= WWWWWW, that are separated by distance of 8–12 nt, using the augmented AND

operator using ∧ high

low
 define the acceptable distance between the two motifs:

R2 = m4 Λ 8
12 m4

[Eq. 2]

The significance of the occurrence of a pattern in a DNA sequence is inversely
related to the probability that the pattern will occur purely by chance. The probabili-
ties of random occurrences of the underlying predicates are mathematically combined
to evaluate the probability of the random occurrence of a pattern specified by a given
rule. As an illustrative example, the random occurrence probabilities for the given
patterns described by the above two rules can be computed. This value for the set of
acceptable patterns described by rule R2 is based on the occurrence of at least one
motif within an acceptable distance from the reference motif. These probabilities are
computed as shown in Tables 1 and 2.

In similar manner, the random occurrence probability rules are constructed on
underlying predicates that are defined as profiles, can be computed using generating
functions. As described, the rule probabilities are employed to estimate the statisti-
cal significance of matching the set of patterns that are detected in a given region of
the DNA sequence.
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Data Mining the MARs

There are two different data-mining methodologies. They are classified according
to whether they seek to build models or find patterns. The methods aimed at building
global models fall within the category of statistical exploratory analysis, which, for
example, led to the rejection of conventional wisdom that long-term mortgage cus-
tomers constitute a good portfolio. In a global sense, these customers constitute the
group that were not able to find offers elsewhere and in fact may be the “not-so-good-
customers.” The second class of data-mining methods seeks to find patterns by sifting
through the data seeking co-occurrences of specific values of specific variables. It is
this class of strategies that has led to the notion of data-mining as seeking nuggets of
information among the mass of data. The problem of detecting MARs from anony-
mous DNA sequence data falls within this category.

Data mining is the method employed to search for interesting patterns in data.
Such a search often takes place in large data sets where the likelihood of finding
such patterns is greater than expected. As described, the data-mining efforts aim at
detecting statistically significant patterns, which are useful because they are not
redundant, novel in regards to user’s previous knowledge, simple for the user to
understand, and sufficiently general to the referred population.

When searching for patterns, one must strive for a balance between the specific-
ity and generality of the patterns sought. Thus, a distinction is often drawn between
the tasks of finding patterns and that of finding models. The distinction between
these two terms is rather arbitrary. Generally, a model is a global representation of
a structure that summarizes components underlying the data that explain how the
data may have arisen. In contrast, a pattern is a local structure, perhaps relating to a
handful of variables and a few cases. Such local patterns are often sought in the

Table 2
The Set of Biological Rules Defining Patterns That Were Used for Detecting Structural MARs.a

Rule Name Definition Probability

R1 ORI Rule m1 ∨ m2 ∨ m3 p1 = Σ i = 1
3 Pr mi

R2 TG-Richness Rule m4 ∨ m5 ∨ m6 p2 = Σ i = 4
6 Pr mi

R3 Curved DNA Rule m7 ∨ m8 ∨ m9 p3 = Σ i = 7
9 Pr mi

R4 Kinked DNA Rule m12 ∨ m13 ∨ m14 p4 = Σ i = 12
17 Pr mi

m15 ∨ m16 ∨ m17

R5 Topoisomerase Rule m18 ∨ m19 ∨ m20 p5 = Σ i = 18
20 Pr mi

R6 AT-Richness Rule m21 ∧
12
8  m21 p6 = Pr m21 · 1 – exp – 5 · Pr m21

R7 MAR TF-Rule m25 ∨ m26 ∨ m27 p7 = Σ i = 25
27 Pr mi

R8 AT Cluster Rule m21 ∨ m22 ∨ m23 ∨ m24 p8 = Σ i = 21
24 Pr mi

R9 Bipartite Rule m33 ∧
+ 200
– 200  m34 p9 = Pr m33 · 1 – exp – 400 · Pr m34

R10 SAR Rule m36 ∨ m37 ∨ m38 p10 = Σ i = 36
38 Pr mi

aThe table also specifies the relationship between the DNA-motif probabilities, P(mi), and the rule prob-
abilities, pj. These higher level statistical association forms the basis for mining MARs from DNA sequences.
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time-series data analysis. One application of time series data analysis is the analysis
of stock market data to detect interesting patterns that are novel, useful, and simple
enough for the investors to understand.

There is a difference between the pattern-detection methods and the conventional
diagnostic methods. One significant difference is that conventional diagnostic meth-
ods need a model to compare the data, while unsupervised pattern-detection does not
require such a model. Another difference is the requirement in the pattern-detection
context to search through very large collections of data and explore a large number of
pattern shapes.

The search for MARs results from defining a group of patterns that are bonded
together in order to form a biologically functional unit that is classified by similar
function. After grouping, a search for the patterns from a given group in the query
DNA sequence can be performed. If a large subset of members of a functionally
related group of patterns is found in a specific region of the uncharacterized DNA
sequence, one can begin to learn about its function. This process is called a Functional
Pattern Search and is typified by the MAR-Wiz system that performs a search for the
group of patterns that are associated with Matrix Attachment Regions (MARS).

It is quite intuitive to consider pattern-cluster density as a property defined along
the span of a sequence. A sliding window algorithm can be applied for measuring
this value, where the measurements are characterized by the two parameters, W and
δ. The cluster-density is measured in a window of size W centered at location x
along that sequence. Successive window measurements are carried out by sliding
this window in the increments of δ nucleotides. If δ is small, linear interpolation can
be used to join the individual window estimates that are gathered at x, x + δ, ...., x +
kδ. In this manner, a continuous distribution of the cluster-density is obtained as a
function of x.

The task of estimating the density of pattern clusters in each window can be statis-
tically defined as a functional inverse of the probability of rejecting the null hypoth-
esis, that states that the frequency of the patterns observed in a given window is not
significantly different from the expected frequencies from a random W nucleotide
sequence of the same composition as the sequence being analyzed. The inverse func-
tion chosen as, ρ = –log(α), where the parameter α is the probability of erroneously
rejecting H0. In other words, α represents the probability that the set of patterns
observed in a window occurred purely by chance. The value of ρ is computed for both
the forward and the reverse DNA strands because we do not know which strand or if
both strands will be bound, the average of the two values is considered to be the den-
sity estimate at a given location.

In order to compute ρ, assume that we are searching for k distinct types of pat-
terns within a given window of the sequence. In general, these patterns are defined
as rules R1, R2,..., Rk.The probability of random occurrence of the various k patterns
is calculated using the AND-OR relationships between the individual motifs.
Assume that these probabilities for k patterns are p1, p2,...,pk. Next, a random vector
of pattern frequencies, F, is constructed. F is a k-dimensional vector with compo-
nents, F = {x1, x2,...,xk}, where each component xi is a random variable representing
the frequency of the pattern Ri in the W base-pair window. The component random
variables xi are assumed to be independently distributed Poisson processes, each
with the parameter λi = pi · W. Thus, the joint probability of observing a frequency
vector Fobs = {f1, f2, ....,fk} purely by chance is given by:
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P Fobs = Π
i = 1

k
e– λ iλ fi

fi!
    where   λ i = pi · W  [Eq. 3]

The steps required for computation of α, the cumulative probability that pattern
frequencies equal to or greater than the vector Fobs occurs purely by chance is given by
Equation 4 below. This corresponds to the one-sided integral of the multivariate Pois-
son distribution and represents the probability that the H0 is erroneously rejected.

α = Pr x1 ≥ f1,x2 ≥ f2,..., xk ≥ fk
= Pr x1 ≥ f1 · Pr x2 ≥ f2 .... Pr xk ≥ fk

= Σ
x1 = f1

∞ exp–λ1λ1
x1

x1!
· Σ

x2 = f2

∞ exp–λ2λ2
x2

x2!

• • • • • • • Σ
xK = fK

∞ exp–λKλk
xK

xk!

[Eq. 4]

The p-value, α, in Equation 4 is utilized to compute the value of ρ or the cluster-
density as specified in Equation 5 below:

ρ = ln 1.0
α = – ln α = Σ

i = 1

k
λ i + Σ

i = 1

k
ln fi ! – Σ

i = 1

k
fi ln λ i

– Σ
i = 1

k
ln 1 +

λ i

fi + 1
+

λ i
2

fi + 1 fi + 2
+ .... +

λ i
t

fi + 1 fi + 2 ..... fi + t

[Eq. 5]

The infinite summation term in Equation 5 quickly converges and thus can be
adaptively calculated to the precision desired. For small values of λi, the series may be
truncated such that the last term is smaller than an arbitrarily small constant, ε.

Using MAR-Wiz

Figure 1, presents the output from the analysis of the human β-globin gene
sequence. In Fig. 1A Rules 1 through 6, or the core rules, were utilized for the detec-
tion of MARs in this sequence. All Rules 1 through 10 were utilzed for detection of
MARs shown in Fig. 1B. This statistical inference algorithm based on the association
of patterns found within the close proximity of a DNA sequence region has been
incorporated in the MAR-Wiz tool. A java-enabled version of the tool is available for
public access (see Website: http://www.futuresoft.org/MARWiz).

We observe that the results in Fig. 1A and B are in agreement. Fig. 1B appears noisy.
A possible explaination for this is an interdependence between the some of the new
rules, i.e., Rules 7 through 10, on the core rules. Thus, when a core rule is
detected in the sequence, an associated new rule is also present. However, the MAR-
potential assumed this event to be significant as independence of MAR rules is assumed.
Consequently, the MAR-potential and noise increase. The interdependence of the MAR
rules needs to be clarified.

MAR-Wiz was originally conceived to examine sequences from cosmid sized
(~ 40 kb) sequencing projects, the initial backbone of human genome project. The
program default values of window length (1000), step size (100), and run length (3),
i.e., number of concurrent steps were implemented accordingly. For cosmid sized or
larger sequences, step size should be maintained at 100 bp, to minimize noise while
permitting sufficient discrimination.

WWW
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In the case of shorter sequences ranging in size from 1,000–10,000 bp, a window
size of 100 with a step of 10 usually yields optimum results. This is best illustrated
below in the analysis of the IFN-β gene shown in Fig. 2. The predicted locations of
regions of matrix attachment correspond well with those experimentally determined
and the predictions by SIDD (Stress Induced DNA Destabilization) program.

Several generalizations regarding the utility and interpretation of the data analysis
by MAR-Wiz have become apparent over the course its development and use as an
analytical tool. As discussed earlier, one of the significant contributions from these
analyses has been the classification of candidate MARs as a function of the distribu-
tion of MAR sequence motifs they possess. This is best exemplified by AT-rich MARs
and ORI MARs. Both are examples of MARs with different biological functions act-
ing as either boundary elements or as origins of replication respectively. This has led
to the strategy of initially scanning the query sequence with all available rules as a
means to establish the potential class of MARs contained within the sequence selected
for analysis. The distribution of identified elements and their local concentration can
then be used to guide their initial classification and subsequent assessment of biologi-
cal function. Experience has shown that the initial classification scan is most effi-
ciently carried out in three phases. First, sequences are examined with all the core
(default setting) rules selected to establish the overall distribution of motifs. This is
subsequently followed by scanning with the ORI and AT-rich rules deselected in the
presence and absence of the ATC rule. The relative contribution of each rule to the

Fig. 1. The analysis of human beta-globin gene cluster using the MAR-Wiz tool. Default analysis
parameters were used for generating the plot in (A). Similar results are obtained when Rules R7 through
R10 were also included. These are shown in (B). The results with all rules included tended to be more
noisy, thereby indicating that the occurrence of the new rules was dependent on the old rules.
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Fig. 3. The results of analyzing the human protamine gene cluster using the MAR-Wiz algorithm.
(A) shows the potential with all core rules selected. (B) shows the analysis results with all default core
rules selected, minus the ORI and AT-Richness rule.

Fig. 2. For shorter sequences, such as the Human-interferon gene shown above, the window size
of 100 and step size of 10 is optimal. In this case as well, the augmented Rule set in (A) does not
indicate any additional regions with higher MAR potential. An increase in the strength of the first
peak in (B) in fact relatively lowers the significance of the remaining peaks.
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detection of that motif within the query sequence can then be assessed. Having, used
the rule parameter selection to initially categorize the MAR, one then examines the
distribution of probabilities using a low-threshold of detection. While this strategy
may yield a high false-positive rate, it ensures the detection of most MARs even when
the individual MAR is at the limits of statistical detection (possess an expected value
is at least e–8).

As shown in Fig. 3, this strategy  was effectively utilized to identify and classify
the MARs of the PRM1 → PRM2 → TNP2 locus to the sperm-specific class. It must
be emphasized that the predictions of MAR-Wiz can only provide a guide to bio-
logical verification.

As shown in Fig. 4A, a clustering of motifs with a low likelihood of occurrence by
chance within any given region results in a single small region of very high MAR

Fig. 4. The results of analyzing the human T-cell receptor gene with MAR-Wiz. In (A), the large
peak (with the absolute potential value of 120) overshadows the lower, albeit significant, peaks. This
peak is clipped to a value of 30 and the other peaks normalized accordingly. This enables us to
visualize the locations of other candidate MARs in the two ends of this locus, as shown in (B) and (C).
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potential. As is the case with the T-cell receptor gene locus, the one peak visible has
an absolute potential value of 120. This corresponds to a chance occurrence of the
observed motifs of approx 10–40. During the normalization process, the other seg-
ments containing statistically significant candidate MARs are visually suppressed and
upon initial inspection appear insignificant. This MAR-Wiz tool can effectively com-
pensate for this artifact by adjusting the saturation value of the display, i.e., the peak
height to which all values are clipped and result the saturation (i.e., 100%) of data
values. The data is then scaled to 100% of this value and visualization of the previ-
ously masked segments is then apparent. This correction was performed for the two
ends of the T-Cell receptor gene and is shown in Figs. 4B and Fig. 4C. In both of these
cases, the potential values were clipped to 30, i.e., all values of MAR-Potential higher
than 30 were saturated to this value. The remaining values were then normalized using
this potential. The location of potential MARs has thus become apparent.

Fig. 5. Analysis of chromosome 19 using the MAR-Wiz software. The results have been aligned
with the SNP, GC, Repeat, and data about the known genes available at ENSEMBL (see Website:
www.ensembl.org). The examples in the chapter present applications of MAR-Wiz to classes of
sequences where excellent correspondence when compared to the results obtained by wet-bench
analysis was observed. However, there are cases where improvement is required.
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Figure 5 presents the MAR-Wiz results of analyzing the chromosome 19. These
results have been overlaid with the existing information available on chromosome 19
at ENSMBL (see Chapter 25; Website: http://www.ensembl.org).

To illustrate how Mar-Wiz can be applied, we will consider an example problem
and its solution. Consider hprt gene known to be responsible for Lesch-Nyhan syn-
drome, a devastating self-mutilating disease. Analyze this gene sequence using MAR-
Wiz at Website: http:///www.futuresoft.org/MARWiz. Correlate the existence of
MARs with the known human mutations causing this disease (see Fig. 6).

In this case a MAR has been biologically defined to be contained within the first
intron (positions 5534-6107), and has shown great promise when incorporated as an
integral component of a gene therapy. However, this MAR region was not identified
by the software. This may reflect the fact that this MAR functions as an ARS (Autono-
mously Replicating Sequence), which is yet another type of MAR.

Irrespective, other candidate MAR sequences have been identified by MAR-Wiz. It
is interesting to note that most of these candidates are coincident with known
human mutations causing this disease. This would suggest that their biological
assessment is warranted.

Glossary and Abbreviations

CDNA  Complementary DNA. Reverse transcriptase may be used to synthesize
DNA that is complementary to RNA (e.g., an isolated mRNA).

Chromatin  Stainable material of interphase nucleus consisting of nucleic acid and
associated histone protein packed into nucleosomes.

Fig. 6. The analysis of the Lesch-Nyhan syndrome HPRT gene shows that additional research is
required to identify MARs such as those embedded in introns (positions 5534-6107). Interestingly,
most peaks are coincident with known mutations in this human gene (see Website: http://
www.uwcm.ac.uk/uwcm/mg/search/119317.html).

WWW

WWW
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Circular DNA  DNA arranged as a closed circle. This causes serious topological
problems for replication that are resolved by DNA topoisomerase.

DNA  Deoxyribonucleic acid. The genetic material of all cells and many viruses.
A polymer of nucleotides. The monomer consists of phosphorylated 2-deoxyribose
N-glycosidically linked to one of four bases : adenine, cytosine, guanine or thymine.
The sequence of bases encodes genetic information.

DNA Binding Proteins  Proteins that interact with DNA, typically to pack or
modify the DNA (e.g., Histones), or to regulate gene expression (e.g., transcription
factors).

DNA Replication  The process whereby a copy of a DNA molecule is made, and
thus the genetic information it contains is duplicated.

DNA Topoisomerase  An enzyme capable of altering the degree of supercoiling of
double-stranded DNA molecules. Various topoisomerases increase or relax supercoil-
ing, convert single-stranded rings to double-stranded rings, tie and untie knots, cat-
enate and decatenate rings.

DNA Transfection  This term is a hybrid of transformation and infection and gen-
erally denotes the introduction of other kinds of genes or gene fragments into cells as
DNA. For example, introduction of activated oncogenes from tumours into tissue cul-
ture cells.

DNAse  Deoxyribonuclease. An endonuclease with preference for DNA. In chro-
matin, the sensitivity of DNA to digestion by DNAase I depends on its state of organi-
zation, transcriptionally active genes being much more sensitive than inactive genes.

Enhancer  A DNA control element frequently found 5' to the start site of a gene,
which when bound by a specific transcription factor, enhances the levels of expres-
sion of the gene, but is not sufficient alone to cause expression.

Euchromatin  The chromosomal regions that are diffuse during interphase and
condensed at the time of nuclear division.

Facultative Heterochromatin That heterochromatin which is condensed in some
cells and not in others, possibly representing differences in the activity of genes in
different cells.

Gene  Originally defined as the physical unit of heredity. Best defined as the unit
of inheritance that occupies a specific locus on a chromosome. Given the occurrence
of split genes, it might be re-defined as the set of DNA sequences (exons) that are
required to produce a single polypeptide.

Gene Expression  The full use of the information encoded in a gene via transcrip-
tion and translation leading to production of a protein leading to the appearance of the
phenotype determined by that gene. Gene expression is controlled at various points in
this process. This control is thought to be the major determinant of cellular differen-
tiation in eukaryotes.

Gene Locus  The position of a gene in a linkage map or on a chromosome.
Gene Therapy Treatment of a disease caused by malfunction of a gene, by stable

transfection of the cells of the organism with the normal gene.
Heterochromatin  The chromosomal regions that are condensed during interphase

and at the time of nuclear division.
Junk DNA  Genomic DNA that serves, as yet, no known function.
Nuclear Envelope  A membrane surrounding the nucleus of eukaryotic cells. Con-

sists of inner and outer membranes separated by perinuclear space and perforated by
nuclear pores.
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Nuclear Lamina  A fibrous protein-network lining the inner surface of the nuclear
envelope. Proteins of the lamina are lamins A, B and C, which have sequence homol-
ogy to proteins of intermediate filaments.

Nuclear Matrix  Protein latticework filling the nucleus that anchors required for
DNA replication and transcription complexes.

Promoter  A region on the DNA that RNA polymerase binds to before initiating
the transcription of DNA into mRNA. The nucleotide at which transcription starts is
designated +1. Nucleotides positions with negative numbers indicate upstream nucle-
otides and with positive numbers indicate downstream nucleotides. Most factors that
regulate gene transcription do so by binding at or near the promoter and affecting the
initiation of transcription. RNA polymerase II, that transcribes all genes that code for
polypeptides, recognizes many thousands of promoters. Most have the Goldberg-
Hogness or TATA box centered around position –25 and has the consensus sequence
5'-TATAAAA-3'. Several promoters have a CAAT box around position –90 with the
consensus sequence 5'-GGCCAATCT-3'. There is increasing evidence that all pro-
moters for genes for housekeeping proteins contain multiple copies of a GC-rich ele-
ment that includes the sequence 5'-GGGCGG-3'. Transcription by polymerase II is
also affected by more distant elements known as enhancers.

Repetitive DNA  Nucleotide sequences in DNA present in the genome in numer-
ous copies. These sequences are not thought to code for polypeptides. One class of
repetitive DNA, termed highly repetitive DNA, is found as short sequences (5–100
nucleotides in length) repeated thousands of times in a single long stretch. It typi-
cally comprises 3–10% of the genomic DNA and predominantly constitutes the sat-
ellite DNA. Another class, which comprises 25–40% of the DNA and termed
moderately repetitive DNA, usually consists of sequences about 150–300 nucle-
otides in length that are dispersed evenly throughout the genome. This includes the
Alu sequence and transposons.

Transcription  mRNA synthesis mediated by RNA-Polymerases utilizing the DNA
as a template.

Transcription Factor  Protein required for recognition by RNA polymerases of
specific stimulatory sequences in eukaryotic genes. Several are known that activate
transcription by RNA polymerase II when bound to upstream promoters.
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24Analyzing Sequences Using
the Staden Package and EMBOSS

Rodger Staden, David P. Judge, and James K. Bonfield

Introduction

Since the beginning of big genome sequencing, initiated by the work on the nematode
Caenhorhabditis elegans, the Staden group has concentrated on developing methods to
increase the efficiency of these large-scale projects. In the course of this, we have
designed and implemented a sophisticated and intuitive graphical user interface for
use in our programs GAP4 and PREGAP4. This interface has also been used in our
sequence analysis program SPIN, but as it has not been the main focus of our efforts,
SPIN is still limited in the number and variety of the functions it contains. The EMBOSS
project was initiated to provide a comprehensive set of sequence analysis tools that would
be available free to all and has made rapid progress  towards this goal. However, it did
not have a graphical user interface and this limited its usefulness. It was felt that the
combination of SPIN and EMBOSS would provide a powerful package.

To make it possible to have a single uniform graphical user interface to the pro-
grams in the EMBOSS package, we first combined our two sequence analysis pro-
grams NIP4 and SIP4. One dealt with analyzing individual nucleic acid sequences
and the other comparing pairs of nucleic acid or protein sequences. Next we devel-
oped ways to launch EMBOSS programs and handle their output. Two features in
the design of EMBOSS facilitated our work: 1) its flexibility in output formats and
2) its use of a language (ACD) for specifying the inputs to its programs. The first
technical challenge was to parse the ACD to automatically produce suitable dia-
logue boxes for each EMBOSS program and to prepare SPIN to load the results into
memory. The second problem was to parse these varying results files to display the
results and allow users to interact with them as though they had been produced by
internal SPIN functions.

SPIN is available free to academic sites for UNIX and for Microsoft operating
systems (see Website: http://www.mrc-lmb.cam.ac.uk/pubseq/). EMBOSS is avail-
able for UNIX operating systems (see Website: http://www.hgmp.mrc.ac.uk/Soft-
ware/EMBOSS/).

Introduction to SPIN
SPIN is an interactive and graphical program for analyzing nucleotide sequences.

It contains functions to search for restriction sites, consensus sequences/motifs and

WWW
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protein coding regions. In addition, it can analyze the composition of the sequence
and perform translations. It also has a good set of sequence comparison functions
for both nucleic acid and proteins. Most functions produce both textual and graphi-
cal results.

Introduction to EMBOSS
EMBOSS is a free Open Source software analysis package specially developed for

the needs of the molecular biology-user community. The software uses data in a vari-
ety of formats and even allows transparent retrieval of sequence data from the web. As
extensive libraries are provided with the package, it is a platform that allows other
scientists to develop and release software in true open source spirit. EMBOSS also
integrates a range of currently available packages and tools for sequence analysis into
a seamless whole. At the time of writing EMBOSS contained over 100 programs for:
1) sequence alignment; 2) rapid database searching with sequence patterns; 3) protein
motif identification (including domain analysis); 4) nucleotide sequence pattern analy-
sis, (for example to identify CpG islands or repeats); 5) codon usage analysis for small
genomes; 6) rapid identification of sequence patterns in large scale sequence sets; and
7) presentation tools for publication.

Setting up EMBOSS for SPIN
Both SPIN and EMBOSS can be downloaded from their respective ftp sites and

installed as independent packages. In order to use SPIN as an interface to EMBOSS, it
is necessary to create dialogues for all EMBOSS programs. This is performed by the
single command create_emboss_files, which is included with SPIN. The EMBOSS
menu will then appear in SPIN and its programs will be available.

SPIN User Interface
Spin has a graphical user interface with four main displays. The first is a window

from which all the main options are selected and which receives textual results.
Most analytical functions add their graphical results either to a Sequence Plot win-
dow that is associated with the sequence being analysed, or for cases where two
sequences are being compared, to a Sequence Comparison Plot window. (An excep-
tion is the restriction enzyme search that produces its own separate window.) Each
of these graphical windows has an associated Sequence Display window for view-
ing the sequences. The main window contains an Output Window for textual results,
an Error window for error messages and a series of menus arranged along the top.
Figure 1 shows an example of the main window in which the Output Window con-
tains a result from the tRNA gene search. The contents of the two text windows can
be searched, edited and saved. Each set of results is preceded by a header containing
the time and date when it was generated.

SPIN Sequence Plot
Figure 2 shows several graphical results displayed in a Sequence Plot overlaid

with a Sequence Display window and a pop-up menu. The top four panels show
results from protein gene prediction methods and below that are matches from a
motif search. The first coding prediction method produces results for each of the
three reading frames, which include short vertical lines showing the positions of
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stop codons in each frame and a continuous line representing the likelihood of cod-
ing based on codon usage. Below is a coding prediction result that only has a single
value for each position along the sequence. The bottom panel contains short vertical
lines showing the positions and scores for a motif search. Each Sequence Plot has a
cross-hair and scrollbars for zooming and moving the results in the x and y direc-
tions. The position of the cross-hair is shown in the boxes above the plot. The x
position is shown in sequence base numbers in the left-hand box above the plot, and
the y coordinate, expressed using the score values of the gene search, is shown in the
right hand box. At the right hand side of each panel is a set of square boxes with the
same colors as the lines drawn in the adjacent plot. These icon-like objects represent
individual results and allow the user to operate on them via pop-up menus. As a
minimum, these menus contain the commands: Information, List results, Config-
ure, Hide and Remove, but as will be seen later, some sets of results have additional
options. These icons can also be used to drag and drop the results to a new location.

As shown in Fig. 2, each Sequence Plot window also has an associated Sequence
Display window which can be invoked by double clicking on the plot. The Sequence
Plot contains a cursor that denotes the position of the cursor in the Sequence Display.
The user can move the cursor and this will move the cursor in the Sequence Display
and all other displayed cursors that relate to the sequence.

Fig. 1.The SPIN main window including the results from a tRNA gene search.
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SPIN Sequence Display
From the Sequence Display (see Fig. 2), the user can view the sequence in textual

form. For DNA, one or both strands can be shown as well as the encoded amino acids.
Restriction enzyme sites can also be shown and simple text string searches performed
to scroll the sequence. The position of the sequence display cursor is shown in the
Sequence Plot, from where it can be driven using the mouse.

Fig. 2. The SPIN Sequence Plot including two protein gene search results, a motif search and a
Sequence Display.
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SPIN Sequence Comparison Plot
The Sequence Comparison Plot shows the results of comparison algorithms, includ-

ing local and global alignments. Each match is represented as either a single dot or a
line, depending on the analysis performed. As for the Sequence Plot, sets of matches
from a single invocation of a comparison command are termed a result. Each result is
plotted using a single color, which can be configured via the Results Manager (see
Subheading “Spin Results Manager” ).

Vertical and horizontal rulers are plotted around the edge of the display and cross-
hairs can be used to find the location of any position. It is possible within SPIN to
compare many different sequences so there may be more than one horizontal or
vertical sequence shown in the Sequence Comparison Plot. All the points are scaled
to the largest sequence in each direction. As for the Sequence Plot, results can be
dragged and dropped between plots. Each set of results has an associated Sequence
Comparison Display, the cursors of which can be seen and controlled from within
the Sequence Comparison Plot. An example Sequence Comparison Plot plus an over-
laid Sequence Comparison Display is shown in Fig. 3. This contains the result of
applying the Find matching spans algorithm and the Align Sequences Globally
function to EMBL sequence library entries mysa_drome and mysa_human. This first
algorithm finds and plots (as dots) similar segments of the two sequences and the
second finds the best alignment between them and plots its path (as line segments).
The results show that they are closely related. The figure also includes cross-hairs
and the cursors from the Sequence Comparison Display.

SPIN Sequence Comparison Display
Figure 3 shows the Sequence Comparison Display superimposed on the Sequence

Comparison Plot. The two sequences are shown one above the other with similari-
ties marked in the intervening strip. The sequences can either be scrolled indepen-
dently, or in register (by selecting the Lock button). As the display is associated
with a particular set of results, the Nearest match and Nearest dot buttons can be
used to jump the cursor to neighboring matches. This can make it much easier to
examine the detail of individual aligned segments in the Sequence Comparison Plot.
Nearest match means the match whose x,y coordinate in sequence character posi-
tions is closest, whereas Nearest dot means the match that appears closest in screen
coordinates. (If the scaling is the same in both directions the Nearest dot and Near-
est match will be equivalent.) The display can also be scrolled by dragging the cur-
sor in the Sequence Comparison Plot.

SPIN Restriction Enzyme Map
The SPIN restriction enzyme map function finds and displays restriction sites found

within a specified region of a sequence. As shown in Fig. 4, the results are plotted in a
Restriction Enzyme Map. This window has some different capabilities from the other
SPIN displays. Each record in the plot corresponds to a particular enzyme: their names
are written to the left and their cut sites marked opposite as short vertical lines. The
results can be scrolled vertically (and horizontally if the plot is zoomed in). A ruler is
shown along the base and the current cursor (the vertical black line) position is shown
in the left-hand box near the top right of the display. If the user clicks, in turn, on two
restriction sites, their separation in base pairs will appear in the top right-hand box.
Information about the last site touched is shown in the information line at the bottom
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of the display. The order of the records can be changed using drag and drop. As for the
Sequence Plot, the Restriction Enzyme Map has an associated Sequence Display
whose cursor can be seen and controlled in its display. From the View menu of the
Restriction Enzyme map, the results can be written to the SPIN Output window.

SPIN Sequence Manager
SPIN manages sequences at two levels. First it provides for access to read sequences

into the program, and second, it contains a range of facilities for deriving new sequences
from them. For example, it can produce the complement of a DNA sequence, rotate it
about any position, translate it, or scramble it. Each of these types of internal operations
produces a new sequence that can be analyzed using the SPIN functions, or that can be
saved to disk. SPIN is limited to reading sequences in plain text, EMBL, GenBank, PIR,

Fig. 3. The SPIN Sequence Comparison Plot including results for similar segments, an alignment
path, and a Sequence Comparison Display.
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and FASTA formats. Through its interface to EMBOSS, it can also read sequences from
remote sequence libraries. Once loaded, the sequences are selected and manipulated
using the Sequence Manager, which is available from the SPIN Sequences menu.

SPIN Results Manager
Most SPIN functions produce results. The Result Manager, which can be accessed

from the main menu or the individual plots, provides a mechanism to interrogate and
manipulate these results. Each result can be listed showing the time it was created, the
name of the function that created the result, and a unique identifier. A pop-up menu can
be used to obtain further information, list the results in the Output window, configure its
plot (change its color, line width), hide or reveal its plot, or remove the result altogether.

SPIN Analytical Functions

SPIN’s analytical functions are accessed through the following menus: 1) Statis-
tics, 2) Translation, 3) Search, and 4) Comparison. The EMBOSS functions have their
own separate menu.

Fig. 4. The SPIN Restriction Enzyme Map including a Sequence Display.
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SPIN Statistics Menu
This menu contains simple functions to write the base and dinucleotide composi-

tion of nucleic acid sequences to the Output Window and to plot their base compo-
sition to a Sequence Plot.

SPIN Translation Menu
This menu contains functions to set the genetic code, translate to protein sequences,

to find open reading frames and to calculate and write codon tables to disk files.

SPIN Set Genetic Code Function
This function allows the user to change the genetic code used in all the options. The

codes are defined in a set of codon table files distributed with the package, but calcu-
lated from those maintained by the National Center for Biological Information, USA.
The user simply selects the list of code names from a dialogue box. The selection can
be made for the current run of SPIN or made a permanent setting for future runs.

SPIN Translation Function
In addition to the translation that can be shown in the Sequence Display, SPIN can

write a translation to the Output Window. This translation can either be for all six
frames, or using an EMBL style feature table, limited to defined segments. The con-
tents of the feature tables are displayed in a dialog box and the user can select which
CDS records to translate. The translation is written to the Output Window in FASTA
format, from where it can be saved to a file.

SPIN Find Open Reading Frames Function
Using the current genetic code, this function will find open reading frames greater

than a specified length. As shown in Fig. 5 the results can be output in two ways,
either in feature table format or FASTA format. The user can select the start and end
points to do the search, which strand to search (either the forward, reverse, or both)
and the minimum length of the open reading frame in codons. If the output is being
written in the FASTA format, the name of a file is also required.

SPIN Codon Usage Function
Codon usage tables can be calculated and written to the Output window and

written to disk. If required, the values found can be added to the counts in a pre-
existing codon table, or when written out to disk they can be concatenated with an
existing codon table file. In the first case the existing file will be read and added to
the values calculated for the region defined by the user. In the latter, the values
calculated for the region defined by the user will be written immediately after those
from the existing table, hence producing a pair of tables joined end to end. The
protein gene searches: Codon Usage Method and Author Search use single or
double codon tables. The values in the table can be expressed as observed counts or
as percentages of usage for the cognate amino acid.

SPIN Search Menu
The SPIN Search menu contains simple functions like the restriction enzyme, stop

codon, start codon, and subsequence searches, plus some more complex functions for
finding genes and motifs. It should be noted that these gene-finding methods, although
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pioneering when invented, have since received little attention, and more recent meth-
ods may be more effective and better tested.

SPIN Restriction Enzyme Search
Files of restriction enzyme names, recognition sequences, and their cut sites are stored

in disk files supplied with the package, but users can edit them to produce their own.
Three default files, plus a browser for loading user files are made available from the
function’s dialogue box. Once loaded, the enzyme names are presented in a scrollable
dialogue. The results are presented as shown in Fig. 4. A similar dialogue is used to
configure the restriction enzymes shown in the Sequence Display. The results can be
shown in textual form in the Output Window, from where they can be saved to disk.

SPIN Subsequence Search
Two subsequence or string searches are available in SPIN. The first is selected

from the Search menu on the Output window, producing both graphical and textual
output. The second is selected from the Search button in the Sequence display, it
moves the cursor to the position of the next match. For DNA sequences, the user can
define a subsequence using the IUPAC codes, set the percentage match required and
which strand to search. The search can be made literal but is never case-sensitive. The
results are plotted in a Sequence Plot and written to the Output Window.

SPIN Stop and Start Codon Search
A stop codons search can be carried out on either (or both) strands of the sequence.

The stop codons are displayed graphically, with a different color used for each reading
frame, and their positions can also be listed in the Output window. If any of the three
phase gene search methods (described in the following) are currently being displayed,
the stop codons will automatically be plotted on top of the corresponding frame. A
similar function locates and plots the positions of start codons. These searches use the
current set of genetic code tables.

SPIN Motif Search
Through the IUPAC symbols, the subsequence search described earlier allowed the

use of special characters to encode permitted sets of sequence characters at each position
in the search string. The SPIN Motif Search is more flexible in that it allows different

FT                   CDS 512..736
FT                   CDS 525..965
FT                   CDS 740..952

>512                 512..736
CLTLSLKESFIRHAAYLEGSRSEKRDVCVARESKRCSEASARSVTGGDSKWIAVQPQRPL
LGRLCNKRGPGSLSA*
>525                 525..965
ALKKVLYDTRHTSKGAGVKNVMSVSLVSRNVARKLLLVQLLVVIASGLLFSLKDPFWGVS
AISGGLAVFLPNVLFMIFAWRHQAHTPAKGRVAWTFAFGEAFKVLAMLVLLVVALAVLKA
VFLPLIVTWVLVLVVQILAPAVINNKG*
>740                 740..952
RFVYDICLASPGAYTSERPGGLDIRIWRSFQSSGDVGVTGGGVGGFKGGILAADRYVGFG
AGGSDTGTGCN*

Fig. 5. The SPIN Open Reading Frame Results in Feature Table and FASTA formats.
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scores to be assigned to each character type at each position along a subsequence or
motif. These scores are stored in the form of weight matrices. These must be created
beforehand from sets of aligned sequences that are known to contain the motif. This is
usually done using the program make_weights, which is supplied with the package.

An example weight matrix file is shown in Fig. 6. It consists of a title record—a
record defining the motif size, an offset and the score range—two records that need to
be present but that are ignored; and four records (for DNA) defining the base counts
calculated from trusted examples. These counts are converted into weights that are
used during the searches. Any position in a sequence that scores at least as high as the
minimum score is reported as a match, and if the results are plotted they are scaled to
fit the range defined by the minimum and maximum scores. A typical plot is shown at
the base of Fig. 2.

SPIN Splice Site Search
The SPIN splice junction search uses a pair of weight matrices to search for splice

junctions. It differs from the Motif Search described above only in the way the results
are plotted. The results are displayed in three colors, one color for each reading frame.
The donors are plotted upwards from the base of the panel and the acceptors are plotted
downwards from the top of the panel. The donors and acceptors with the same color are
compatible; e.g., the same colored donors are compatible with the same colored accep-
tors. Of course it is the combination of reading frame and splice sites that really mat-
ters, so donors and acceptors drawn in different colors can be compatible if the reading
frame changes. By default all the sites are drawn in the same plot (see Fig. 7). They can
be separated by reading frame using the program’s ability to reorganize the graphical
results. This layout of the donors and acceptors is designed to add to the protein gene
search methods and stop codon plots. The results are plotted as log-odds.

SPIN Codon Usage Gene Search
Although the codon usage gene search method contains some improvements over

those of the original publication, this gene finding method is essentially that previ-
ously described by Staden (1984). For all protein gene-finding methods we are try-
ing to decide if each segment of the sequence is coding or noncoding. Usually, each
possibility is represented by a table of expected codon usage and the calculation
finds the odds that each segment of the sequence fits either the coding or noncoding
table and the results are presented as log odds in a Sequence Plot. At each position
along the sequence the program also plots a single dot for the reading frame with the
highest score. These dots appear at the midpoints of the three panels and will form a
continuous line if one reading frame is consistently the highest scoring. An example
is shown in Fig. 2.

Mount acceptors
     18    15   0.0   10.0
 P -14 -13 -12 -11 -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3
 N 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113
 T  58  50  57  59  67  56  58  49  47  66  64  31  34   0   0  11  41  31
 C  21  28  34  25  29  33  35  32  42  40  33  25  74   0   0  23  28  41
 A  17  11  11  18   7  17  12  23  15   3  10  29   5 113   0  24  21  21
 G  17  24  11  11  10   7   8   9   9   4   6  28   0   0 113  55  23  20

Fig. 6. A SPIN DNA Weight Matrix
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The user supplies the name of a file containing two concatenated codon usage
tables, the first being from coding sequence and the second from noncoding sequence.
This double codon table can be calculated by SPIN using the Codon Usage function
described earlier. If the user gives the name of a file that contains only a single codon
table the algorithm will assume that it is from coding sequence and will generate a
noncoding table that consists of the frequencies that would be expected if the
sequence being analyzed was random but had the same base composition as the sup-
plied codon table.

If no table is specified the program will generate a codon usage table corresponding
to an average amino acid composition and then derive a noncoding table from its base
composition. In addition the user can select to set the amino acid composition of the
coding table to have an average amino acid composition, and/or to have no codon
preference (i.e., for each amino acid the codon counts are equal, e.g., for the standard
genetic code [TTT = TTC]; [TTA = TTG = CTT = CTC = CTA = CTG];...; [GGT =
GGC = GGA = GGG]). In the latter case the search uses amino acid composition only.

SPIN Author Test Gene Search
This Codon Usage method uses a different mathematical treatment based on meth-

ods used to decide authorship of text, i.e., is the usage of words (codons) more like that
of author A (coding) or that of author B (noncoding)? Again the main input is a pair of
concatenated codon tables and the results are plotted in the same manner. However,
the algorithm calculates the optimal weighting to give each codon to obtain the best
discrimination between coding and noncoding sequence. The user sets the expected
error rate as a percentage and the algorithm will choose the corresponding window
length to use for the analysis.

SPIN Base Bias Gene Search
This method for finding protein genes, unlike the methods already described, does

not attempt to say either which strand or frame is likely to be coding, only which
regions of the sequence. The method analyzes the frequencies of each of the four base
types in each of the three positions in long stretches of codons. Ficket (1982) showed
that the bias in these measures can be used to indicate possible protein coding regions.
The level of bias is plotted on a scale that shows the probability that the sequence is
coding. An example is shown in the bottom panel in Fig. 2.

Fig. 7. The SPIN Splice Junction Search Plot.
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SPIN tRNA Gene Search
This method is used to find segments of a sequence that might code for tRNAs. It

looks for potential cloverleaf forming structures and then for the presence of the
expected conserved bases. It presents results in a graphic Sequence Plot in an iden-
tical manner to those for a motif search, and draws out the cloverleaf structures in
the Output Window (see Fig. 1).

SPIN Comparison Menu
SPIN contains three functions for finding local segments of similarity between

pairs of sequences (Find Similar Spans, Find Matching Words, and Local Align-
ment), plus a global alignment algorithm. It can also compare a nucleic acid sequence
to a protein by automatically calculating a three-frame translation and can compare
DNA against DNA at the protein level. In both cases the results are superimposed
using a different color for each phase, hence avoiding the possibility of reading frame
shifts obscuring any similarity. All of these functions produce results that are plotted
in the Sequence Comparison Plot described earlier. Alignments and matching seg-
ments can be examined at the sequence level using the Sequence Comparison Dis-
play. The score matrices and other associated values can be configured in the SPIN
Options menu. The combination of algorithms and graphical user interface make this
one of the stronger features of SPIN. A further strength is that the program contains
algorithms for calculating the probabilities of observing the hits found by two of its
comparison functions.

Comparison Function Probabilities
For the Find Similar Spans and Find Matching Words functions, the program

enables users to compare observed and expected hits to help assess the significance
of their results. These probability calculations are also used to set the default scores
for these methods. The probability depends on the composition of the two sequences,
the cut-off score and for the Find Similar Spans algorithm, the score matrix. The
probability calculated is the chance of finding the given score in infinitely long ran-
dom sequences of the same composition as those that are being compared. The
expected number of matches for any score is calculated by multiplying its probability
value by the product of the lengths of the two sequences. The matches found for these
two algorithms can be assessed by selecting the Tabulate Scores option from the
pop-up menu in the Sequence Comparison Plot, which will write a list of observed
and expected results in the Output Window (see Fig. 8). As shown in Fig. 8, there are
clearly many more matches at each score level than would be expected by chance.

Find Similar Spans
This method calculates a score for each position in the plot by summing points found

when looking forwards and backwards along a diagonal line of a given (window) length.
The algorithm uses a score matrix that contains scores for every possible pair of char-
acter types. At each point that the score is above a minimum score, a match is plotted.

score   9 probability 1.73e-04 expected  365 observed 1772
score  10 probability 1.17e-05 expected   25 observed  601
score  11 probability 3.60e-07 expected    1 observed  149

Fig. 8. A SPIN Tabulate Scores Result
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If one of the sequences is DNA and the other protein, the program will automatically
calculate a 3-frame translation of the DNA and plot the results for each translation in a
different color. The dialogue allows the user to set the window length and cut-off score.
From the result icon pop-up menu available in the Sequence Comparison Plot the user
can request: Information, List results, Tabulate scores, and Rescan matches; in addition
to the standard Display sequences, Configure, Hide, and Remove. Information gives a
brief description of the sequences used, the input parameters and the number of matches
found. List results writes every segment of alignment in the Output Window. Rescan
matches revisits each matching span and plots a dot for each residue pair whose score is
above a given threshold. An example is shown in Fig. 3.

Find Matching Words
The Find Matching Words function finds regions of identical characters shared by

the two sequences. Its main value is speed, being very much faster than the Find Simi-
lar Spans function. It is not very sensitive but is useful for long DNA sequences. Users
set only the minimum word length. The pop-up from the Sequence Comparison Plot is
the same as that for Find Matching Spans.

Align Sequences Locally
The SPIN local alignment routine is based on the program SIM by Huang and

Miller. SIM finds the best nonintersecting alignments between two sequences or within
a single sequence using dynamic programming. The algorithm requires space propor-
tional to the sum of the input sequence lengths and the output alignment lengths. The
user can either specify the number of alignments to find or that all alignments above a
given score should be reported. Gap open and gap extend values are also required. The
alignments are displayed in the Output Window and also on the Sequence Comparison
Plot as a series of lines showing its path.

Align Sequences Globally
The SPIN global dynamic programming alignment algorithm is based on an algo-

rithm of Huang, which is a linear space method. Users can supply gap open and gap
extend penalties. The alignment is written to the Output Window and its path drawn in
the Sequence Comparison Plot. An example is shown in Fig. 3.

EMBOSS Functions

EMBOSS contains a comprehensive set of programs for sequence analysis. In this
section we give two illustrations of the SPIN interface and a shortened list of the
EMBOSS applications. Using the EMBOSS programs through SPIN provides a uniform
graphical interface through which applications can be selected, configured via appropri-
ate dialogue boxes, and from which the results can be viewed and manipulated intu-
itively. The EMBOSS applications are selected from the SPIN EMBOSS menu.

An Example of SPIN EMBOSS Dialogue
Figure 9 shows the SPIN dialogue for the EMBOSS application cpgplot. It

includes a browser for using the Sequence Manager (described earlier) to select the
sequence to analyze, and boxes for setting its start and end points. Below are boxes
for setting various parameters and output choices. The Graphics output format is
selected using a pop-up menu by clicking on the arrow. The default value data will
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produce results that will be automatically loaded into SPIN, but other
EMBOSS formats can be selected, for example, postscript output can be produced.
Clicking the OK button will run cpgplot and the results will appear in a SPIN
Sequence Plot.

An Example of SPIN EMBOSS Result
Figure 10 shows a SPIN Sequence Plot for two EMBOSS protein hydrophobicity

analysis programs octanol and pepwindow applied to the SWISSPROT entry
5H1E_HUMAN, which is a member of family 1 of the G-protein coupled receptors.
Here both programs have been applied twice and the results combined into a single
Sequence Plot. The bottom two plots, partially obscured by the Sequence Display,
are the individual results, and the top plot shows the two results superimposed. This
superposition is achieved using SPIN’s drag and drop functionality, that enables the
user to compare the two analysis, a task which would be less straightforward with-
out a graphical user interface.

A Summary of the Current EMBOSS Applications
Although many applications could be included in several categories, below we

have divided the EMBOSS applications into separate lists: 1) Nucleic acid specific, 2)
Protein specific, 3) Codons/Translation, 4) Alignment/Searching, and 5) Restriction
Enzymes. Programs dealing with databases and those covering areas unrelated to
sequences are not included.

Fig. 9.The SPIN dialogue for the EMBOSS cpgplot program.
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EMBOSS Nucleic Acid Specific Programs
Find the linguistic complexity in nucleotide sequences.
Count words of a specified size in a DNA sequence.
Calculate the fractional GC content of nucleic acid sequences.
Plot/report CpG rich areas.
Plot isochores in large DNA sequences.
Plot melting temperatures for DNA.
Create a chaos plot for a sequence.
Look for inverted/tandem repeats in a nucleotide sequence.
Nucleic acid pattern search.
Regular expression search of a nucleotide sequence.

Fig. 10. A SPIN Sequence Plot for EMBOSS programs octanol and pepwindow.
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Scan DNA sequences for transcription factors.
Find MAR/SAR sites in nucleic sequences.
Find nucleic acid binding domains.
Plot bending and curvature in B-DNA.
Calculate the twisting in a B-DNA sequence.
Do wobble base plot.

EMBOSS Protein Specific Programs
Protein charge plot.
Protein proteolytic enzyme or reagent cleavage digest.
Protein identification by mass spectrometry.
Protein pattern search.
Predict protein secondary structure.
Display protein hydropathy.
Hydrophobic moment calculation.
Match a PROSITE motif against a Protein Sequence Database.
Compare a protein sequence to the PROSITE motif database.
Predict transmembrane proteins.
Predict coiled coil regions.
Predict signal peptide cleavage sites.
Plot simple amino acid properties in parallel.
Protein helical net plot.
Show protein sequences as helices.
Regular expression search of a protein sequence.
Calculate the isoelectric point of a protein.
Find antigenic sites in proteins.
Find protein sequence regions with a biased composition.
Back translate a protein sequence.

EMBOSS Codons/Translation Programs
ORF property statistics.
Codon usage statistics.
Create a codon usage table.
Codon usage table comparison.
Extract CDS, mRNA and translations from feature tables.
Find and extract open reading frames.
Do synonymous codon usage Gribskov statistic plot.

EMBOSS Alignment/Searching Programs
DNA Sequence Comparison Plot.
Local/global alignment of two sequences.
Plot the quality of conservation of a sequence alignment.
Display aligned sequences, with coloring and boxing.
Create a consensus from multiple alignments.
Find differences (SNPs) between nearly identical sequences.
Display a non-overlapping wordmatch dotplot of two sequences.
Align EST and genomic DNA sequences.
Do an all-against-all comparison of a set of sequences.
Display a multiple sequence alignment.
Find all exact matches of a given size between 2 sequences.
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Scan a sequence or database with a matrix or profile.
Gapped alignment for profiles.
Select primers for PCR and DNA amplification.
Search DNA sequences for matches with primer pairs.

EMBOSS Restriction Enzyme Analysis Programs
Display a sequence with e.g., restriction enzyme cut sites, translation.
Find Restriction Enzyme Cleavage Sites.
Silent mutation restriction enzyme scan.
Find and remove restriction sites but maintain the same translation.
Find restriction enzymes that produce a specific overhang.
Draw circular maps of DNA constructs.
Draw linear maps of DNA constructs.

Concluding Remarks

At the time of writing (July, 2001) both SPIN and EMBOSS are quite new, and the
interface between them even newer. By the time this book appears we expect them to
have matured into a cohesive, comprehensive and easy to use combination.

Glossary and Abbreviations

CREATE_EMBOSS_FILES  A computer program for creating a weight matrix
from a set of sequence alignments.

Emboss  A suite of programs for comparing and analyzing sequences.
Global Alignment  A full-length alignment between a pair of sequences.
Local Alignment  An alignment between segments of two sequences.
Score Matrix  A table of values assigning a score for aligning each possible pair of

bases or amino acids.
SPIN  A computer program for comparing and analyzing DNA sequences.
Weight Matrix  A table of values assigning a score for each character type at each

position in a DNA or protein motif.
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25Ensembl
An Open-Source Software Tool
for Large-Scale Genome Analysis

James W. Stalker and Anthony V. Cox

Introduction

The completion of the human genome project (HGP) by the Human Genome Con-
sortium provides research and computational biologists with the first working draft
sequence of the human genome. The sequence consists of approximately three billion
base-pairs of DNA sequence information, the sheer scale of which presents immense
computational problems.

Biological sequence analysis is recognized as presenting computational challenges
as great as those faced in existing big science projects such as particle physics and
space exploration. Conventional methods of genome data curation and annotation
cannot keep up with the rate at which data are accumulating. The gap will continue to
widen. Ensembl was designed to meet the need for an automated annotation system
capable of handling large volumes of finished and unfinished sequence data.

Ensembl, a joint project of the Sanger Center and the European Bioinformatics
Institute, provides researchers with access to state-of-the-art automated annotation of
genomic data. By its nature, this annotation is complete and consistent across the
genome. Ensembl will be a foundation for the next generation of sequence databases
that provide a curated, distributed, and nonredundant view of model organism
genomes. Initial Ensembl development was concentrated on human genomic data,
however the model is now applied to other organisms, including mouse, fly and worm.

Ensembl: An Open-Source Tool
One of the major successes of the HGP was to make the human genome sequence

freely available to all. However, the computational resources necessary to analyze the
data are not widely available outside of large private companies. This could have had
the effect of confining the usefulness of the raw genome data to a small number
of well-funded groups. Ensembl has aimed to bring these data to the widest possible
audience.

A central tenet of the Ensembl philosophy is openness: all data, software, and
associated information is freely available to all and without restriction. The project
has enthusiastically embraced the open-source ethic, with all code released under an
open-source licence, and contributors around the globe supplying expertise and time
free of charge.
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The Ensembl Analysis System
Ensembl consists of two main parts: 1) the analysis pipeline, which adds new data

and analyses to the core database, and 2) the API (application programming inter-
face), which gives structured access to these data. The website (see Website: http://
www.ensembl.org) is simply one implementation of a graphical interface to the core
database through the API. Other implementations, such as java clients, stand-alone
applications, and so forth, are certainly possible and indeed encouraged.

The Analysis Pipeline
The Ensembl analysis pipeline is fed raw sequence data and subjects it to a bat-

tery of analysis programs. As the data passes through the pipeline these analyses
produce supporting evidence for the gene predictions. At first all annotations are
merely in silico predictions, with subsequent steps sorting predictions into the two
groups of known genes and novel predictions. The result is a database containing
DNA sequence, predicted features on that sequence and a complete body of evi-
dence supporting these predictions. The database contains only the results of the
pipeline analysis as no features are imported from external databases. Ensembl
known genes therefore are simply those predicted genes that have high similarity to
genes confirmed by experimental evidence.

The API
The Ensembl API provides a representation of the data in an Ensembl database in

terms of model biological objects (genes, clones, contigs, etc.). This abstraction shields
programmers from the underlying complexity of the data, making it easier to retrieve
information in a meaningful form. This makes the API an extremely powerful tool for
biologists. It is simple, for example, to extract a specific clone object from the data-
base and query it for such biological properties as contigs, length, sequence, and any
features added by the analysis pipeline such as genes, repeats, and CpG islands.

The API allows for the attachment of external databases to the Ensembl core
data. In this way, a wide range of additional information, such as maps, gene expres-
sion data, and sequence features, can be superimposed onto the Ensembl predic-
tions. The initial implementation of the API is in Perl, built upon a layer of Bio-Perl
objects. Other implementations and language bindings such as Java and Python are
under development.

Ensembl Data Concepts
The Ensembl data model revolves around two central ideas: a golden path and

virtual contigs. Genomic sequence data is accumulated as a set of overlapping clones,
each containing one or more sequence fragments called contigs. In unfinished data,
the order and orientation of these contigs is often unknown. Finished data has been
fully assembled, such that each clone comprises only a single contig, i.e., the clone
has been fully sequenced. The clone overlap information, combined with data from
genetic maps, can be used to assemble the clones into a continuous pathway along a
chromosome. This pathway through the data, containing the nonredundant sequence,
is often referred to as the golden path.

It is often desirable to be able to work with regions of an assembly that do not
map exactly to a single clone or contig, for example, one might wish to examine the
first megabase of a chromosome. The Ensembl API allows this manipulation of

WWW
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arbitrary regions by providing an abstraction of the underlying golden path assem-
bly, called a virtual contig. A virtual contig behaves as if it was a real contig, but
may actually be constructed behind-the-scenes from multiple real (or raw) contigs
and fragments of contigs.

Virtual contigs smooth over the underlying complexity of the fragmentary, redun-
dant nature of the assembly, and allow you to treat the data as one continuous
sequence. Much of the power and flexibility of the Ensembl API comes from being
able to manipulate virtual contigs. For example, virtual contigs provide a handle for
accessing features, such as genes, that span contig or clone boundaries.

Ensembl Website

The Ensembl website (see Website: http://www.ensembl.org), is an interactive
graphical interface to the Ensembl database, using Perl scripts that use the API (see
Subheading “Using the Ensembl API”). In keeping with the Ensembl philosophy of
openness, all source codes for the website can be freely downloaded, so you can install
your own local copy, or just look at how it works.

The website offers a hierarchical interface to the human genome, so that a user can
drill down into the data by selecting successively more detailed views. For example,
clicking on a chromosome in MapView takes you to a high-level display of the
region in ContigView, and from there to detailed displays of individual clones, genes,
transcripts, proteins, and other sequence features. As well as drilling into the data,
you can search for particular identifiers, or find data using alignment methods such as
BLAST and SSAHA. The website also provides extensive facilities for exporting
data in a variety of forms, including FASTA, EMBL, tab-delimited lists, and several
image formats.

DAS (Distributed Annotation System)
With the rapid proliferation of databases of genome data from many research institu-

tions around the world, it is becoming a Sisyphean task to keep up to date with the flood
of data. Rather than each institution trying to maintain local copies of all data, with all
the attendant issues of synchronisation and duplication, it makes sense for institutions
to concentrate on their own areas of expertise and then share this with everyone else.
This is the foundation of the Distributed Annotation System (DAS). DAS provides a
distributed network of genome sequence servers that provide a consistent reference
backbone upon which anyone can layer their own annotation data. This annotation data
can, in turn, be served up via DAS to client applications worldwide.

The Ensembl website allows the users to extend the site by dynamically adding
information provided via remote DAS servers. For example, a ContigView display
served from the Ensembl site in the UK can easily be configured to display additional
annotation information provided by a DAS server in the US. This enables users to
mix-and-match their displays to suit their research needs.

In return, the Ensembl golden path data is served as a reference sequence via DAS
(see Website: http://das.ensembl.org).

Website Tour
As a quick introduction to the Ensembl website we will investigate the BRCA2

gene. We will find the gene, look at its details, examine the region it occupies in the

WWW
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genome, and then export some reference data. These are all tasks you can do in a
script, of course, but the website puts an easy-to-use interface on top of all the code as
shown in Fig. 1.

Searching for a Feature

The website uses the AltaVista search engine to provide a full index of the data-
bases, enabling very fast and comprehensive searches. We will use this to find the
BRCA2 gene by name.

Enter BRCA2 into the search box on the home page. You can change the Search
Type to limit the search to a particular type of feature, in this case gene, but we will
leave it set to All to see everything that the database holds about the BRCA2 identifier.

Fig. 1. The Ensembl Website home page.
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You should see more than one match for BRCA2, as Fig. 2. shows. The search
currently matches the gene BRCA2, an InterPro protein domain, diseases associated
with the gene, and also finds BRCA2 in some external annotation documentation. For
now we are only interested in the gene, so click on the link from the match to the gene
index. This will take us to a detailed view of the gene in GeneView.

GeneView

The GeneView page contains much detail and information about BRCA2 including
its Ensembl identifier, description, DBLinks, and InterPro protein domain matches.
This is shown in Fig. 3. Further down the page is the sequence of the corresponding
transcripts, exons, and splice sites.

Fig. 2. Results of the search for BRCA2.
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For each transcript, GeneView has diagrams showing the exon structure. These can
be seen for a transcript of BRCA2 in Fig. 4. If we want to investigate the genomic
location of the gene in more detail, there is a section in the gene summary called
Genome Location. This specifies the clone, chromosome and base-pair coordinates
where the gene is located. This information is linked into the detailed genome browser
page using ContigView.

ContigView

ContigView is the main genome browser display for the Ensembl website. It
allows the user to walk freely up and down any chromosome, and displays all the
sequence features appropriate to the current region. There are a variety of navigation

Fig. 3. The gene summary section of GeneView for BRCA2.
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tools provided to let the user move to any location, zoom in and out, and focus on a
specific area.

The ContigView display is customizable. The user can toggle the display of any
feature type, change how they are drawn, and even change their color. ContigView
displays also show any DAS sources that the user has added. The page therefore can
be customized precisely to show only the data needed for the task the user is work-
ing on.

Selecting any of the features by moving the mouse over the object on ContigView
will display a drop-down menu. These menus contain more feature information, and
links that jump to a detailed view of the specific feature.

As you can see from Fig. 5, ContigView shows a hierarchy of views. The topmost
view shows the chromosome that we are looking at. A box surrounds the region that
is represented in the next image: the overview display. The overview shows, by
default, one megabase of DNA, and is a high-level view of the region. For this rea-
son, the overview only shows landmark features such as markers and genes. Known
genes, novel genes, curated EMBL genes, and pseudogenes are distinctively col-
ored. Clicking anywhere on the overview will focus the detailed view on that point
and this region of focus is displayed again.

The bottom view is the detailed display. It shows a relatively short region of the
genome, but can display all the features present in that area. Only a few feature sets are
turned on in Fig. 5, but you can see the large dark BRCA2 transcript in the center, and
see that this prediction is supported by both EMBL and Genscan transcripts.
SpTrEMBL protein homology matches are shown above these.

Fig. 4. Exon structure and transcript locale diagrams from GeneView.
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The thick bar along the middle of the detailed display is a representation of the
contigs in the golden path at that point. Features above the contigs are on the forward
strand of the DNA at that point (as is our transcript), while those below are on the
reverse strand.

The menus at the top of the detailed display provide additional customization
options. The Features menu has checkboxes for the user to toggle the display of the
different feature types. Decorations gives the same control over items on the dis-
play such as the length bar or a %GC plot. DAS sources is for toggling configured
DAS sources, and also contains links for adding and removing sources. The Jump
to menu lets you visit the equivalent region in the UCSC genome browser. Finally,
the Export menu, as shown in Fig. 6, gives access to ExportView.

Fig. 5. ContigView centered around the BRCA2 gene.
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Fig. 6. The Export menu on the ContigView detailed display.

ExportView

ExportView is a tool for exporting data from a feature or region in a variety of
formats. The page shows a tabbed dialog, with a different tab for each export format.
At the time of writing, these were, as illustrated in Fig. 7, Flat File, FASTA, Image,
Gene List, and Traces.

The Flat File, FASTA, Gene List, and Traces tabs all allow export of data as text
(useful for cut and paste of data), HTML (the same data as text, but with links back
into the website), or as a zipped text file for download. The Flat File tab allows you to
export a feature or region in EMBL or GenBank format and the FASTA tab provides
FASTA format.

Image exporting enables you to create a detailed image, similar to that shown at
the bottom of ContigView, of any region of the genome. Images can be exported in
GIF/PNG, PostScript, Scaleable Vector Graphics (SVG), and Windows MetaFile
(WMF) formats. The Trace tab gives access to raw sequence traces that have been
matched to the human genome, for example mouse traces.

The Gene List tab is extremely useful. It exports tab-delimited data that can be
easily imported into other applications (such as spreadsheets) for further analysis.
For example, if we click on the Gene List tab after coming from our BRCA2 region
in contigview, the base-pair location fields will be filled in with the appropriate
coordinates. The rest of the tab contains a large list of features we can include in or
exclude from the export. As an example, check the Ensembl gene id, known gene
external id, chromosome start, chromosome end, and chromosome name boxes.
Click export, and the results should look like:

# gene_name external_id chrom_start chrom_end chrom_band

ENSG00000073926 BRCA2 30961645 31045834 q13.2

ENSG00000102832 Q9UQP6 31047843 31062857 q13.2

ENSG00000120702 Q9UHZ6 31052055 31053944 q13.2

This is a quick and powerful way to extract a lot of useful information from the
Ensembl database.
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Fig. 7. ExportView.

Using the Ensembl API

Installation
Before using the Ensembl API, you must first obtain and install the Ensembl soft-

ware modules. The components you will require for a basic installation are:

• Bioperl: Provides the foundation objects for Ensembl.
• Ensembl: The core functionality and database objects.

These components and instructions for retrieving and installing them, can be found
on the Ensembl website. You will also need an Ensembl database to run your code.
Again, the website provides instructions on obtaining and installing a freely available
copy of the databases. If you do not have or do not want to install a local Ensembl
database, you can direct your software to a publicly available copy at the Sanger Cen-
ter. This is the database we will be using for these examples.

Finally, you will need a local installation of the Perl programming language, which
is free to download (see Website: http://www.perl.com).WWW
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Set Up of the Ensembl Software Environment
Once you have installed Ensembl and Bioperl you need to configure your environ-

ment so that your Perl script will know where the modules are. The easiest way to do
this is to add the location of the modules to the PERL5LIB environment variable.

For example, if you installed Ensembl and Bioperl into a directory called /home/
bob, then set the environment as follows:

In UNIX:
csh: setenv PERL5LIB /home/bob/ensembl/modules:/home/bob/bioperl
bash: export PERL5LIB = /home/bob/ensembl/modules:/home/bob/bioperl

On Windows:
   set PERL5LIB c:\home\bob\ensembl\modules;c\home\bob\bioperl

Worked Examples
The following examples are intended to provide a brief introduction to using the

Ensembl API for manipulating data in an Ensembl database. The code used here only
scratches the surface; the API has many powerful features. Additional details are avail-
able at the website, which always contains the latest API documentation (see Website:
http://www.ensembl.org).

Working with Clones and Contigs
As previously discussed (see Subheading “Ensembl Data Concepts”), we learned

that a clone is a fundamental unit of a sequenced genome and is made up of one or
more contigs. We are going to use the Ensembl API to retrieve a clone from the data-
base, extract the contigs that make up that clone, and then look at their sequences.

CONNECTING TO THE DATABASE

We will assume that you do not have a local Ensembl database installed and instead
connect to a publicly available copy of the Ensembl databases on kaka.sanger.ac.uk. Of
course, this is far slower than accessing a local copy, which is a must for any serious use.

We use a DBAdaptor module from the API to connect to the database:
use Bio::EnsEMBL::DBSQL::DBAdaptor;

To make the connection, we need to specify the host machine that is serving the
database (kaka.sanger.ac.uk), the name of the database to connect to (the current data-
base at time of writing is ensembl110), and the username to connect as (kaka accepts
the user anonymous).

The code to make the connection is:
my $database = Bio::EnsEMBL::DBSQL::DBAdaptor->new( -host  =>‘kaka.sanger.ac.uk’,

             -user => ‘anonymous’,
             -dbname => ‘ensembl110’ );

If the connection fails, you will get an error message. Otherwise, you are free to
start working with the data in the database.

FETCHING A CLONE FROM THE DATABASE

It is very simple to retrieve a clone by its accession number by typing:
my $clone = $database->get_Clone(‘AP000869’);

The variable $clone now contains an Ensembl clone object.
You can check it is the clone that you asked for by printing its identifier:

print “Clone id is “. $clone->id . “\n”;

WWW
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GETTING THE CONTIGS FROM A CLONE

Now that we have a clone object, we can get the contigs that make up that clone:
my @contigs = $clone->get_all_Contigs;

@contigs is now an array that holds a list of all the contigs in the clone. We can loop
over these contigs and print out some information about them:
foreach my $contig (@contigs) {
      print “Contig “. $contig->id . “ is “. $contig->length .” base-pairs long\n”;
}

GETTING THE SEQUENCE FROM A CONTIG

The method call primary_seq retrieves a sequence object from a contig. To get the
DNA sequence from the contig, you ask the sequence object for its sequence string:

my $seqobj = $contig->primary_seq;
print $seqobj->seq . “\n”;

This will print the correct sequence, but it is not exactly pretty output. Something
like FASTA format would be much more useful. We could of course do this ourselves
manually, but Bioperl already provides a way to do this via the SeqIO object.

use Bio::SeqIO;
my $seqio = Bio::SeqIO->new(-format => ‘fasta’);
$seqio->write_seq($seqobj);

FINISHED EXAMPLE

Our completed script looks like this:

#!/usr/local/bin/perl

use strict;
use Bio::EnsEMBL::DBSQL::DBAdaptor;
use Bio::SeqIO;

my $database = Bio::EnsEMBL::DBSQL::DBAdaptor->new( -host => ‘kaka.sanger.ac.uk’,
-user=> ‘anonymous’,
-dbname=>’ensembl110');

my $clone = $database->get_Clone(‘AP000869’);
print “Clone id is “. $clone->id . “\n”;

my @contigs = $clone->get_all_Contigs;

foreach my $contig (@contigs){
    print “Contig “. $contig->id . “ is “. $contig->length .” base-pairs long\n”;
}

foreach my $contig (@contigs){
    my $seqio = Bio::SeqIO->new (-format => ‘fasta’);
    my $seqobj = $contig->primary_seq;
    $seqio->write_seq($seqobj);
}
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To recap: this script connects to an Ensembl database, retrieves a clone object
from the database by its identifier, collects all the contigs in that clone and prints
their sequences in FASTA format.

The output should look something like this:

Clone id is AP000869
Contig AP000869.2.154917.155980 is 1064 base-pairs long
Contig AP000869.2.27859.38788 is 10930 base-pairs long
Contig AP000869.2.38889.50392 is 11504 base-pairs long
Contig AP000869.2.158624.159840 is 1217 base-pairs long
.
.
etc

Followed by the FASTA sequence of the contigs:

>AP000869.2.154917.155980
AGGGAAAAAAAAGTGATGGAGAAATGAGAACTTTCACCAACCCACCCAAATTGAGAGAAT
CTGTAGACCTGTCTTGCCAGAAGTATTTAAAAAAAAAACTTCTTCAGAGAAAAGAAAGAT
GATATAAGTTAGAAACTTTGAACTACATAAACAAGGGAAGAGCTTTAGAGAAGGAATAAG
.
.
etc

Working with a Virtual Contig
A virtual contig acts like the raw contigs that we have just been using. The calls

we made on a contig will also work just as well on a virtual contig. Because genes are
built on virtual contigs in the analysis pipeline, and because many genes span more
than one contig, it is preferable (and often essential) to use virtual contigs to access
them. In this example, we will build a virtual contig and look at the genes it contains.

CONNECTING TO THE DATABASE

We connect to the database in exactly the same way as in the previous example,
i.e., via a DBAdaptor. However, we are working with virtual rather than raw contigs
and need access to the golden path (remember that a virtual contig is just a chunk
of this continuous assembly). We access the golden path through another adaptor
object — the static golden path adaptor. It is called static because the golden path
has been pregenerated and stored in the database, rather than being generated
dynamically when required (this is quite possible, but rather slow). The golden path
we use in Ensembl is currently provided by UCSC. Ensembl has the capacity to
store and use multiple different golden paths; first, the type of golden path is relayed
to the DBAdaptor by typing:

$database->static_golden_path_type(‘UCSC’);

and then get the static golden path adaptor:

my $sa = $database->get_StaticGoldenPathAdaptor;

We can now use the static golden path adaptor to assemble virtual contigs, much as
we used the DBAdaptor to retrieve the raw contigs. In fact, we could get the same
region as before, using the call:

my $vcontig = $sa->fetch_VirtualContig_of_clone(‘AP000869’);
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BUILDING A VIRTUAL CONTIG

There are several calls on the static golden path adaptor that retrieve virtual contigs.
This can be queried by clone, contig, gene, and transcript identifiers. Probably the
most interesting is to use the contiguous nature of the golden path to fetch an arbitrary
region of sequence that might span multiple clones:

My $vcontig = $sa->fetch_VirtualContig_by_chr_start_end(‘chrX’,1,500000);

$vcontig now contains a virtual contig built from the first half megabase of chromo-
some X. Even though it is constructed of many underlying contigs stitched together, it
acts as though it were a single Ensembl contig, for example, we can extract the DNA
sequence using the same method we used for a raw contig:

print $vcontig->primary_seq->seq;

With just this small snippet of code, we are already able to access the DNA
sequence of any arbitrary region of a chromosome, as much or as little as is required.

VIRTUAL CONTIG PROPERTIES

Because a virtual contig is created from a chromosomal assembly, it contains infor-
mation about its absolute position in that chromosome. For example:
print “This virtual contig is from chromosome “. $vcontig->_chr_name. “\n”;

print “Base-pairs “.$vcontig->_global_start. “ to “. $vcontig->_global_end. “\n”;

This information may not appear very useful when implemented on a virtual contig
constructed by chromosomal position, but the clone identifier could use this to locate
that clone within the golden path.

We can also examine the underlying structure of the virtual contig, by retrieving
the contigs that comprise the contig. The call to do this is each_MapContig, and it
gives us a list of contig objects, in a similar way in the previous example that the
get_all_Contigs call on the clone did:
my @contigs = $vcontig->_vmap->each_MapContig;

print “Virtual Contig “.$vcontig->id. “ is made up of the following contigs: \n”;

foreach my $mapcontig (@contigs){

    print $mapcontig->contig->id.”\n”;

}

RETRIEVING GENES

We can access all the genes on a virtual (or raw) contig with:

my @genes = $vcontig->get_all_Genes;

As you should be coming to expect, this presents an array of gene objects. We can
print their Ensembl identifiers with:

foreach my $gene (@genes){
       print “Gene “. $gene->id . “\n”;
}

Ensembl identifiers do not yield a bounty of information about a gene. They are
automated predictions of genes from the analysis pipeline, not experimentally con-
firmed genes. However, we can tell if an Ensembl gene has been matched to a known
gene by checking the is_known property of the gene. If the gene is known, then we
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can look at the list of matches for that gene, and perhaps retrieve a more familiar
name. The list is actually a list of matches against databases of known genes, and these
connections between predictions and known genes are called DBLinks. In addition to
the DBLink information, we can retrieve a description of known genes from the rel-
evant SwissProt or RefSeq entry. For example:

if ($gene->is_known){

    print “Gene “. $gene->id. “ : “. $gene->description.”\n”;

    foreach my $link ($gene->each_DBLink){

    print “ Links:”. $link->display_id. “ from “. $link->database. “\n”;

    }

}

else {

    print “Gene “. $gene->id. “ is a novel prediction.\n”;

}

TRANSCRIPTS FROM GENES

Just as gene objects are retrieved from contig objects, transcript objects are
retrieved from genes. A gene has one or more transcripts; one for each alternatively
spliced mRNA. You can view the transcripts from a gene as follows:

my @transcripts = $gene->each_Transcript;

As you would expect, you can call the id method of a transcript object to retrieve its
Ensembl identifier. Like Ensembl gene identifiers, these do not mean very much in
themselves. Transcripts are most interesting for their structure and what they encode.

EXONS FROM TRANSCRIPTS

Like stacking Russian dolls, we can again extract more objects from the objects we
already have. Transcripts are made up of exons, which can be pulled out with the
familiar syntax:

my @exons = $transcript->each_Exon; }

We can query exons for their sequence and coordinates as:

foreach my $exon (@exons){
       print $exon->id. “ : “. $exon->start .” - “. $exon->end. “\n”;
       print $exon->seq->seq .”\n”;
}

Notice again that the first call on the exon for that sequence retrieves a sequence
object, this can be followed by a DNA string by asking for the sequence from the object.

TRANSCRIPT TRANSLATIONS

The final manipulation of transcripts yields the peptide sequence from the trans-
lated transcript. The Bio::SeqIO module is used since it yields a nicely formatted out-
put. We can retrieve the peptide object from the transcript by asking for its translation:

my $seqio = Bio::SeqIO->new (-format => ‘fasta’);
my $peptide = $transcript->translate;
$seqio->write_seq($peptide);
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FINISHED EXAMPLE

Our completed script looks like this:

#!/usr/local/bin/perl

use strict;
use Bio::EnsEMBL::DBSQL::DBAdaptor;
use Bio::SeqIO;

my $database = Bio::EnsEMBL::DBSQL::DBAdaptor->new(-host => ‘kaka.sanger.ac.uk’,
-user=> ‘anonymous’,
-dbname=>’ensembl110');

$database->static_golden_path_type(‘UCSC’);
my $sa = $database->get_StaticGoldenPathAdaptor;

my $vcontig = $sa->fetch_VirtualContig_by_chr_start_end(‘chrX’,1,500000);

print “Virtual contig: “. $vcontig->_chr_name. “ base-pairs “;
print $vcontig->_global_start. “ to “. $vcontig->_global_end. “\n”;

print “is built from: \n”;
foreach my $mapcontig ($vcontig->_vmap->each_MapContig){

print “Raw contig: “.$mapcontig->contig->id.”\n”;
}

print “\n and contains the following genes: \n”;
my @genes = $vcontig->get_all_Genes;

foreach my $gene(@genes){
    if ($gene->is_known){

print “Gene “. $gene->id. “ : “. $gene->description.”\n”;
foreach my $link ($gene->each_DBLink){

print “ Links:”. $link->display_id. “ from “. $link->database.”\n”;
}
print “\n”;

    }
    else {

print “Gene “. $gene->id. “ is a novel prediction.\n”;
    }
}
print “\n”;

foreach my $gene(@genes){
print “Gene: “. $gene->id.”\n”;
foreach my $transcript ($gene->each_Transcript){

print “Transcript: “.$transcript->id.”\n”;
print “Exons: \n”;
foreach my $exon ($transcript->each_Exon){

print “\t”.$exon->id. “ : “. $exon->start. “ - “. $exon->end. “\n”;
}
print “Peptide:\n”;
my $seqio = Bio::SeqIO->new(-format => ‘fasta’);
my $peptide = $transcript->translate;
$seqio->write_seq($peptide);
print “\n”;

}
}

This script connects to an ensembl database, retrieves a static golden path adaptor,
and uses that to build a virtual contig of an arbitrary region of chromosome X. It then
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retrieves all the genes from the virtual contig, all the transcripts from the genes, and all
the exons from the transcripts. Finally we print out the peptide translations of the
transcripts in FASTA format are printed. As shown previously, the Ensembl API
enables you to extract and manipulate biologically meaningful objects from the
Ensembl database with a surprisingly small amount of code.

Future Developments

Ensembl is under active development. The already rich API is growing constantly
to provide convenient access to a wider range of genome data resources. Each release
of the database sees the inclusion of additional data of ever-increasing quality. The
website is also being adapted to represent these underlying improvements in the API
and data, and to meet the increasingly complex demands of the research community.
Future developments currently being considered include:

• Extended support for DAS
• Cross-species data linking and comparison
• Multiple language bindings for the API, including Java & Python
• Remote object services via CORBA and SOAP

Contact List

The Ensembl project has a very active development mailing list called ensembl-
dev. All of the Ensembl team participate in the list, so if you have a question or com-
ment about Ensembl you can be sure it will be answered there. There is also a low
traffic mailing list, ensembl-announce, which is used to announce major updates or a
new release. To subscribe to these lists, send an email to: majordomo@ebi.ac.uk with
either subscribe ensembl-announce or subscribe ensembl-dev in the body of the mail.
These mailing lists are archived on the Ensembl website.

Ensembl also maintains a helpdesk facility that will answer any questions pertain-
ing to the project. Either send an email to: helpdesk@ensembl.org, or use the form on
the website.

The Ensembl web team is always interested in any feedback you might have on the
site. Comments and suggestions are all carefully considered, and often make their way
into the next version of the site. The web team can be contacted through the Ensembl
helpdesk, or via webmaster@ensembl.org.

Suggested Readings
Ensembl: An Open-Source Tool
Raymond, E. S. (1999) The Cathedral and the Bazaar.
see Websites: http://www.ensembl.org/Download/ and http://www.ftp.ensembl.org

http://www.bioperl.org/
http://www.open-bio.org/

Ensembl Website
see Websites: http://www.sanger.ac.uk/Software/analysis/SSAHA/

http://www.biodas.org/
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26The PIR for Functional
Genomics and Proteomics

Cathy H. Wu

Introduction

The human genome project has revolutionized the practice of biology and the
future potential of medicine. Complete genomes continue to be sequenced en masse.
Meanwhile, there is growing recognition that proteomic studies bring the researcher
closer to the actual biology than studies of gene sequence or gene expression alone.
High-throughput studies are being conducted and rapid advances being made in areas
such as protein expression, protein structure and function, and protein-protein inter-
actions. Given the enormous increase in genomic, proteomic, and molecular data,
computational approaches, in combination with empirical methods, are expected to
become essential for deriving and evaluating hypotheses. To fully explore these valu-
able data, advanced bioinformatics infrastructures must be developed for biological
knowledge management. One major challenge lies in the volume, complexity, and
dynamic nature of the data, which are being collected and maintained in heteroge-
neous and distributed sources. New approaches need to be devised for data collec-
tion, maintenance, dissemination, query, and analysis. The Protein Information
Resource (PIR) aims to serve as an integrated public resource of functional annota-
tion of proteins to support genomic/proteomic research and scientific discovery.

The PIR was established in 1984 as a resource to assist researchers in the identifica-
tion and interpretation of protein sequence information. The PIR, along with the
Munich Information Center for Protein Sequences (MIPS) and the Japan International
Protein Information Database (JIPID), continues to enhance and distribute the PIR-
International Protein Sequence Database. The database evolved from the first compre-
hensive collection of macromolecular sequences in the Atlas of Protein Sequence and
Structure published from 1965–1978 under the editorship of Margaret O. Dayhoff,
who pioneered molecular evolution research.

PIR provides many protein databases and data analysis tools employing a family
classification approach to facilitate protein annotation and data integration. The PIR-
International Protein Sequence Database (PSD) is the major annotated protein data-
base in the public domain, containing about 283,000 sequences covering the entire
taxonomic range. The PIR superfamily organization allows complete and nonover-
lapping clustering of all proteins. Comprehensive protein information is available from
iProClass, which includes family classification at the superfamily, domain, and motif
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levels; structural and functional features of proteins; as well as cross-references to
over 50 databases of protein families, structures, functions, genes, genomes, litera-
ture, and taxonomy. The nonredundant reference protein database, PIR-NREF, pro-
vides timely and comprehensive data collected from PIR-PSD, Swiss-Prot, TrEMBL,
GenPept, RefSeq, and PDB, with composite protein names and literature information
for about 1,000,000 proteins. To promote database interoperability and improve anno-
tation quality, we have adopted controlled vocabulary, standard nomenclature, and
common ontologies, and distinguish experimentally determined from predicted pro-
tein features. We also provide open and modular database architecture and XML data
distribution to assist data integration in a distributed networking environment. The
PIR databases are implemented in the object-relational database system and are freely
accessible from our web site (see Website: http://pir.georgetown.edu/). The site fea-
tures data mining and sequence analysis tools for information retrieval and functional
identification of proteins based on both sequence and annotation information. It sup-
ports the exploration of proteins and comparative studies of various family relation-
ships. Such knowledge is crucial to our understanding of protein evolution, structure
and function, and is important for functional genomic and proteomic research.

PIR-International Protein Sequence Database

The PIR-International Protein Sequence Database (PSD) is a nonredundant,
expertly annotated, fully classified, and extensively cross-referenced protein sequence
database in the public domain. Release 73.0, July 2002, contained about 283,000
protein sequences with comprehensive coverage across the entire taxonomic range,
including sequences from publicly available complete genomes.

Superfamily Classification

A unique characteristic of the PIR-PSD is the superfamily classification that pro-
vides complete and nonoverlapping clustering of proteins based on global (end-to-
end) sequence similarity. Sequences in the same superfamily share common domain
architecture (i.e., have the same number, order and types of domains), and do not
differ excessively in overall length unless they are fragments or result from alter-
nate splicing or initiators. The automated classification system places new members
into existing superfamilies and defines new superfamily clusters using parameters
including the percentage of sequence identity, overlap length ratio, distance to neigh-
boring superfamily clusters, and overall domain arrangement. Currently, over 99%
of the sequences are classified into families of closely related sequences (at least
45% identical) and over two thirds of sequences are classified into >36,200 super-
families. The automated classification is being augmented by manual curation of
superfamilies, starting with those containing at least one definable domain, to pro-
vide superfamily names, brief descriptions, bibliography, list of representative and
seed members, as well as domain and motif architecture characteristic of the super-
family. Sequences in PIR-PSD are also classified with homology domains and
sequence motifs. Homology domains, which are shared by more than one superfam-
ily, may constitute evolutionary building blocks, while sequence motifs represent
functional sites or conserved regions.

The classification allows the systematic detection of genome annotation errors
based on comprehensive superfamily and domain classification. Several annotation

WWW
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errors originated from different genome centers have lead to the transitive catastro-
phe. Figure 1 illustrates an example where several members of three related super-
families were originally misannotated because only local domain (not global
superfamily) relationships were considered.

The classification also provides the basis for rule-based procedures that are used
to propagate information-rich annotations among similar sequences and to perform
integrity checks. These scripts use the superfamily/family classification system,
sequence patterns and profiles to produce highly specific annotations. False-posi-
tives are avoided by applying automated annotations only to classified members of
the families and superfamilies for which the annotation has been validated. Integrity
checks are based on PIR controlled vocabulary, standard nomenclature (such as
IUBMB Enzyme Nomenclature) and a thesaurus of synonyms or alternate names.

Evidence Attribution and Bibliography Submission

Attribution of protein annotations to validated experimental sources provides an
effective means to avoid propagating errors that may have resulted from large-scale
genome annotation. To distinguish experimentally verified from computationally pre-
dicted data, PIR-PSD entries are labeled with status tags such as validated or similar-
ity in protein Title, Function and Complex annotations, as well as tags such as
experimental, predicted, absent, or atypical in Feature annotations. The validated
Function or Complex annotation includes hypertext-linked PubMed unique identifiers
for the articles in which the experimental determination are reported.

Linking protein data to more literature data that describes or characterizes the pro-
teins is crucial to increasing the amount of experimental information and improving
the quality of protein annotation. We have developed a bibliography submission sys-
tem for the scientific community to submit, categorize, and retrieve literature informa-
tion for PSD protein entries. The submission interface guides users through steps in
mapping the paper citation to given protein entries, entering the literature data, and
summarizing the literature data using categories such as genetics, tissue/cellular local-
ization, molecular complex or interaction, function, regulation, and disease. Also
included is a literature information page that provides literature data mining and dis-
plays both references cited in PIR and submitted by users.

Integrated Protein Classification Database

The iProClass (Integrated Protein Classification) database (see Fig. 2), is designed
to provide comprehensive descriptions of all proteins and to serve as a framework for
data integration in a distributed networking environment. The protein information
includes family relationships at both global (superfamily/family) and local (domain,
motif, site) levels, as well as structural and functional classifications and features of
proteins. A modular architecture organizes the information into multiple database
components for Sequence, Superfamily, Domain, Motif, Structure, and Function.

The current version (Release 2.4, August 2002) consists of about 810,000
nonredundant PIR-PSD, Swiss-Prot, and TrEMBL proteins organized with more than
36,200 PIR superfamilies; 145,340 families; 3840 PIR homology and Pfam domains;
1300 ProClass/ProSite motifs; 280 PIR post-translational modification sites; and
links to over 50 databases of protein families, structures, functions, genes, genomes,
literature, and taxonomy. The Sequence report (see Fig. 3) provides detailed protein
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Fig. 1. Genome sequence annotation: transitive catastrophe. (A) Misannotation of three imported sequence entries is later corrected based on
superfamily classification. (B) Transitive identification error, illustrated in entry G64337, often involves multi-domain proteins.
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summary information in four sections: General Information, Cross-References, Fam-
ily Classification, and Feature Display, with extensive hypertext links for further
exploration and graphical display of domain and motif regions. The Superfamily
report provides summaries including membership information with length, tax-
onomy, and keyword statistics; complete member listing separated by major king-
doms, family relationships, and structure and function cross-references.

Directly linked to the iProClass sequence report are two additional PIR databases,
Annotation and Similarity DataBase (ASDB) and post-translational modification data-
base (RESID). PIR-ASDB lists pre-computed, biweekly-updated FASTA sequence
similarity researched neighbors of all PSD sequences with annotation information and
graphical displays of sequence similarity matches. PIR-RESID documents over 280
post-translational modifications and links to PSD entries containing either experimen-
tally determined or computationally predicted modifications with evidence tags.

To be implemented are the Domain-Motif components that represent domain and
motif-centric views with direct mapping to superfamilies, the Function component
that describes functional properties of enzymes and other activities and relation-
ships such as families, pathways, and processes, as well as the Structure component
that describes structural properties and relate structural classes to evolution and func-

Fig. 2. iProClass database for data integration: modular database components and extensive links
to molecular biology databases.
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Fig. 3. iProClass protein sequence entry report (for a retrievable example see Website: http://
pir.georgetown.edu/cgi-bin/iproclass/iproclass?choice=entry&id=A28153).
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tion. Such data integration is important in revealing protein functional associations
beyond sequence homology, as illustrated in the following example. As shown in
Fig. 4A, the ASK domain (EC 2.7.1.25) appears in four different superfamilies, all
having different overall domain arrangements. Except for SF000544, the other three
superfamilies are bi-functional, all containing sulfate adenylyltrans-ferase (SAT)
(EC 2.7.7.4). However, the same SAT enzymatic activity is found in two distinct
sequence types, the SAT domain and CYSN homology. Furthermore, both EC
2.7.1.25 and EC 2.7.7.4 are in adjacent steps of the same metabolic pathway (see
Fig. 4B). This example demonstrates that protein function may be revealed based on
domain and/or pathway association, even without obvious sequence homology. The
iProClass database design presents complex superfamily-domain-function relation-
ships to assist functional identification or characterization of proteins.

PIR-Nonredundant Reference (PIR-NREF) Protein Database

As a major resource of protein information, one of our primary aims is to provide
a timely and comprehensive collection of all protein sequence data that keeps pace
with the genome sequencing projects and contains source attribution and minimal
redundancy. The PIR-NREF protein database includes all sequences from PIR-PSD,

Fig. 4. Superfamily-domain-function relationship to reveal protein functional association beyond
sequence homology. (A) Association of ASK (EC 2.7.1.25) and SAT/CYSN (EC2.7.7.4) in multi-
domain proteins. (B) Association of ASK and SAT/CYSN in a metabolic pathway.
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Fig. 5. PIR-NREF nonredundant reference protein database for timely and comprehensive collection of protein data with source attribution.

26/W
u/431-442/10.15

12/17/02, 1:45 P
M

438



PIR for Functional Genomics/Proteomics — 439

Swiss-Prot, TrEMBL, RefSeq, GenPept, PDB, and other protein databases. The
NREF entries, each representing an identical amino acid sequence from the same
source organism redundantly represented in one or more underlying protein data-
bases, can serve as the basic unit for protein annotation. The National Center for
Biotechnology Information (NCBI) taxonomy is used as the ontology for matching
source organism names at the species or strain (if known) levels. The NREF report
(see Fig. 5) provides source attribution (containing protein IDs, accession numbers,
and protein names from underlying databases), in addition to taxonomy, amino acid
sequence, and composite literature data. The composite protein names, including
synonyms, alternate names and even misspellings, can be used to assist ontology
development of protein names and the identification of misannotated proteins. Related
sequences, including identical sequences from different organisms and closely related
sequences within the same organism are also listed. The database presently consists of
about 800,000 entries and is updated biweekly. Future versions of iProClass and PIR-
ASDB will be based on the PIR-NREF database.

PIR System Distribution
PIR Web Site

The PIR web site (see Website: http://pir.georgetown.edu) connects data mining
and sequence analysis tools to underlying databases for exploration of protein infor-
mation and discovery of new knowledge. The site has been redesigned to include a
user-friendly navigation system and more graphical interfaces and analysis tools. The
PIR-PSD, iProClass, and NREF pages represent primary entry points in the PIR web
site. A list of the major PIR pages is shown in Table 1.

The PIR-PSD interface provides entry retrieval, batch retrieval, basic or advanced
text searches, and various sequence searches. The iProClass interface also includes
both sequence and text searches. The BLAST search returns best-matched proteins
and superfamilies, each displayed with a one-line summary linking to complete
reports. Peptide match allows protein identification based on peptide sequences. Text
search supports direct search of the underlying Oracle tables using unique identifiers

Table 1
Major PIR Web Pages for Data Mining and Sequence Analysis

Description Web Page URL

PIR Home http://pir.georgetown.edu
PIR-PSD ~/pirwww/search/textpsd.shtml
iProClass ~/iproclass
PIR-NREF ~/pirwww/search/prinref.shtml
PIR-ASDB ~/cgi-bin/asdblist.pl?id=CCHU
Bibliography submission ~/pirwww/literature.html
List of PIR databases ~/pirwww/dbinfo/dbinfo.html
List of PIR search tools ~/pirwww/search/searchseq.html
FTP site ftp://nbrfa.georgetown.edu/pir_databases

~ = http://pir.georgetown.edu
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or combinations of text strings, based on a Java program running JDBC. The NREF
database is searchable for BLAST searching, peptide matching, and direct report
retrieval based on the NREF ID or the entry identifiers of the source databases. Other
sequence searches supported on the PIR web site include FASTA, pattern matching,
hidden Markov model (HMM) domain and motif search, Smith-Waterman pair-wise
alignment, ClustalW multiple alignment, and GeneFIND family identification.

PIR FTP Site
The PIR anonymous FTP site (see Website: ftp://nbrfa.georgetown.edu/pir_

databases) provides direct file transfer. Files distributed include the PIR-PSD (quar-
terly release and interim updates), PIR-NREF, other auxiliary databases, other docu-
ments, files, and software programs. The PIR-PSD is distributed as flat files in NBRF
and CODATA formats, with corresponding sequences in FASTA format. Both PIR-
PSD and PIR-NREF are also distributed in XML format with the associated Docu-
ment Type Definition (DTD) file.

The PIR-PSD, iProClass, and PIR-NREF databases have been implemented in
Oracle 8i object-relational database system on our Unix server. To enable open source
distribution, the databases have been mapped to MySQL and ported to Linux. To
establish reciprocal links to PIR databases, to host a PIR mirror web site, or to request
PIR database schema, please contact Website: pirmail@nbrf.georgetown.edu.

The PIR serves as a primary resource for exploration of proteins, allowing users to
answer complex biological questions that may typically involve querying multiple
sources. In particular, interesting relationships between database objects, such as rela-
tionships among protein sequences, families, structures and functions, can be revealed.
Functional annotation of proteins requires the association of proteins based on proper-
ties beyond sequence homology—proteins sharing common domains connected via
related multi-domain proteins (grouped by superfamilies); proteins in the same path-
ways, networks or complexes; proteins correlated in their expression patterns and pro-
teins correlated in their phylogenetic profiles (with similar evolutionary patterns). The
PIR, with its integrated databases and analysis tools constitutes a fundamental
bioinformatics resource for biologists who contemplate using bioinformatics as an
integral approach to their genomic/proteomic research and scientific inquiries.
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Glossary

Domain  An independently folded unit within a protein or a discrete portion of a
protein with a unique function. Most proteins are multi-domain. The overall function
of a protein is determined by the combination of its domains.

Motif  A short conserved region in a protein sequence. Motifs are frequently highly
conserved parts of domains.

Protein family classification  Classification of proteins into groups with similar
structure and/or function based upon comparisons of motifs, domains or family mem-
bership rather than pair-wise sequence comparisons.
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Protein superfamily or family  A set of proteins which share a common evolu-
tionary ancestor as defined by sequence homology. Protein families can be arranged in
a hierarchy, in which closely related proteins with a recent common ancestor comprise
subfamilies, and larger groups of distant homologs comprise superfamilies.
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27Sequence Similarity
and Database Searching

David S. Wishart

Introduction

Database searching is perhaps the fastest, cheapest, and most powerful experiment a
biologist can perform. No other 10-s test allows a biologist to reveal so much about the
function, structure, location or origin of a gene, protein, organelle, or organism. A data-
base search does not consume any reagents or require any specific wet-bench labora-
tory skills; just about anyone can do it, but the key is to do it correctly. The power of
database searching comes from not only the size of today’s sequence databases (now
containing more than 700,000 annotated gene and protein sequences), but from the
ingenuity of certain key algorithms that have been developed to facilitate this very
special kind of searching. Given the importance of database searching it is crucial that
today’s life scientists try to become as familiar as possible with the details of the pro-
cess. Indeed, the intent of this chapter to provide the reader with some insight and
historical background to the methods and algorithms that form the foundation of a few
of the most common database searching techniques. There are many strengths, miscon-
ceptions and weaknesses to these simple but incredibly useful computer experiments.

Similarity Versus Homology

Considerable confusion still exists over the proper use of the terms, similarity and
homology. Therefore, before we can begin any in-depth discussion on sequence simi-
larity and databasae searching, it is important that we make a clear distinction between
sequence similarity and sequence homology. Here are two definitions that should help:

• Similarity: In sequence analysis, this refers to the likeness or percent identity
between any two sequences. Sequences are similar if they share a statistically
significant number of amino acids or nucleotides in approximately the same posi-
tions. Similarity does not infer homology, it is only a descriptive term that carries
no suggestion of shared ancestry or origin. Similarity is often enumerated by per-
cent identity or an expect (E) value.

• Homology: In sequence analysis, this refers to a shared ancestry. Two sequences
are homologous if they are derived from a common ancestral sequence or if one
of the two sequences has diverged (through evolution) to be different in its amino
acid or nucleotide sequence from its parent. Homology almost always implies



4 4 4 — Wishart

similarity, but similarity does not always imply homology. Homology is a quali-
tative assertion or hypothesis.

As these two definitions suggest, similarity can be quantified while homology has
to be justified. Typically, to claim that two sequences are homologous, one usually
needs more solid (i.e., experimental) evidence than just a sequence alignment and a
high level of shared sequence identity. It is also important to remember that one can-
not say two sequences are X percent homologous or Y percent similar. In fact, the only
time a percentage can be given is when one speaks in terms of sequence identity, e.g.,
these two sequences are Z percent identical. It is OK, however, to say an alignment
has a similarity score of X, just as long as one indicates what scoring matrix or scoring
protocol was used.

DNA Versus Protein

Prior to performing any database search, a critical decision must be made: Should
my query sequence be DNA or protein? The answer to this is clear, but may be sur-
prising to many. Mathematicians have determined that sequence comparison is best
carried out when the sequences exhibit complexity, meaning that they are composed
of a large number of different characters. In this regard, protein sequences with their
20 letter alphabet are far more complex or informationally richer than DNA sequences,
which only have a 4-letter alphabet. Consequently, database searches using DNA
sequences are more likely to yield ambiguous results or potentially false alignments
than database searches conducted against protein sequences. It is for this reason that
most experienced bioinformaticians insist that DNA sequences be translated to pro-
tein sequences before they are submitted for database comparisons. Indeed, the only
reasons why one would not want to translate a DNA sequence into the corresponding
protein sequence are if the query sequence quality is low (as with ESTs), if the DNA
does not code for any protein product (e.g., a DNA regulatory element) or if it corre-
sponds to a tRNA or rRNA gene. So always translate those DNA sequences!

Dynamic Programming and Sequence Similarity

Dynamic programming lies at the heart of almost all sequence alignment and data-
base searching routines. Strictly speaking dynamic programming is an efficient math-
ematical technique that can be used to find optimal paths or routes to multiple
destinations or in locating paths that could be combined to score some maximum. The
application of dynamic programming to sequence alignment was first demonstrated
more than 30 years ago by Needleman and Wunsch (1970). The great strength of
dynamic programming is that it actually permits a quantitative assessment of similar-
ity, while at the same time showing how two sequences can be globally aligned. The
great weakness of dynamic programming is that it is incredibly slow and extraordinar-
ily memory intensive. Strictly speaking, dynamic programming is an N × M algo-
rithm, meaning that the time it takes to execute and the amount of computer memory
(RAM) required is dependent on both the length of the query sequence (N) and the
cumulative length of the database sequence(s) (M). Given that databases today have
an effective length of nearly 250 million amino acids or 4 billion bases, this obviously
makes dynamic programming a rather slow approach to database searching. While the
dynamic programming algorithm is inherently slow, it is still the most mathematically
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rigorous method for determining a pairwise sequence alignment. No other technique
(not FASTA, nor BLAST) can offer a guaranteed mathematically optimal alignment.
While this is a very strong statement, one must always remember that what is math-
ematically correct may not be biologically correct. In other words, one should always
use common sense and a bit of biological intuition when evaluating any given
sequence alignment.

Dynamic Programming: The Algorithm
In dynamic programming, pairwise alignments are calculated in two stages. The

first stage is called the scoring stage. It involves putting the two sequences of interest
(e.g., sequence A and sequence B) on the two axes of a table and then progressively
filling that table from the upper left to the lower right with integer scores related to the
pairwise similarity of each base or amino acid in the two sequences. These scores are
initially obtained by comparing each letter in sequence A to each letter in sequence B
using a scoring matrix such as the BLOSUM62 matrix. These similarity scores are
then further modified using a special recursive scoring function shown in Equation 1.

Sij = sij + Max
si–l, j–l

Max si–x, j–l + wx–l (2 < x < i)
Max si–l, j–y + wy–l (y < 2 < i)

[Eq. 1]

Where Si–j is the net score for the alignment ending at i in sequence A and j
in sequence B, sij is the score for matching i with j, wx is the score for making a x
long gap in sequence A, and wy is the score for making a y long gap in sequence B.
Figure 1 illustrates how this table can be filled out using a simple scoring procedure
where identical amino acids are given a score (sij) of 1 for a match, 0 for a mismatch
and no gap penalty. In this figure we are attempting to align the sequence GENES
(sequence A) with the sequence GEMS (sequence B).

Once this table is filled out, the second (traceback) stage is undertaken wherein
one scans through the matrix in a diagonal fashion from the lower right to upper left
to look for the highest scores entered in the matrix. The path that is chosen is actu-
ally a series of maximum numbers. When all the scores in this optimal path are added
together, it gives a quantitative measure of the pairwise sequence similarity while at
the same time defining which letters in sequence A should be matched with the
letters in sequence B. The traceback route(s) along with the two possible alignments
for the GENES vs GEMS example are shown in the lower part of Fig. 1. In this case
the similarity score for both alignments was 3 + 2 + 2 + 1 = 8.

The original Needleman-Wunsch (NW) algorithm was specifically developed to
perform global pairwise sequence alignments. In other words, the scoring function
and traceback procedure implicitly assumes that the optimal alignment will be found
by going from the lower right corner to the upper left corner of the matrix. A simple
modification to the NW algorithm introduced by Smith and Waterman (1981) showed
that dynamic programming could actually be adapted to perform local alignments. In
other words, the path for the traceback procedure did not have to start and end at the
edges of the search matrix, but it could start and end internally (i.e., within the search
matrix). Such an alignment, once found, would be locally optimal. The advantage of
identifying a locally optimal alignment, particularly for proteins, is that it may be
possible to pull out small functionally related domains that would normally be missed

or
or
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by a global alignment algorithm. Because of their potential advantage in identifying
remote or frequently missed sequence similarities, local alignment techniques have
been the subject of considerable interest development over the past 15 years. Two fast
local alignment methods in particular, namely FASTA and BLAST, arose from this
work. These heuristic database search approaches will be discussed in more detail
later on in this chapter.

Scoring Matrices

The scoring system illustrated in Fig. 1 used a simple match/mismatch scoring
function. Such a scoring system can be described by a simple table where we place all
4 bases or all 20 amino acids on both the X and Y axes and indicate with a 1 or a 0
(inside the table) whether any two bases or any two amino acids match or do not
match. This type of scoring table is commonly referred to as an identity or unitary
scoring matrix and it is still the most commonly used scoring system for aligning or
matching nucleic acid sequences. Scoring matrices are key to the success of dynamic
programming. They are also its Achilles heel. Simply stated, scoring matrices try to
capture billions of years of evolutionary information and tens of thousands of com-
plex molecular interactions and reduce it all to a table of 200 integers. Perhaps this is
scientific reductionism at its most extreme. Nevertheless, it seems to work (most of
the time). Over the past 25 years more than a dozen amino acid scoring matrices have
been described in the literature, however there are only two types of scoring matrices
that seem to have survived the test of time: 1) PAM scoring matrices; and 2) BLOSUM
scoring matrices. These scoring schemes are described in the following.

The Dayhoff (PAM) Scoring Matrices
Until recently the most common scoring matrices for protein sequence compari-

sons were based on the mutation data matrix (MDM78) developed by Margaret Dayhoff
and coworkers in 1978. These were derived using the Point Accepted Mutation (PAM)
model of evolution originally proposed by Dayhoff. Using a set of proteins that were
>85% identical, Dayhoff and her colleagues manually aligned these proteins, taking
great pains to ensure the alignments were completely unambiguous. From these groups
of alignments, an amino acid similarity ratio (Rij) was calculated for each pair of amino
acids as shown in Equation 2:

Rij = qij / pi pj [Eq. 2]

Where qij is the observed frequency that residues i and j replaced each other in the
set of aligned proteins and pi and pj are the observed frequencies of amino acids i and
j in the complete set of proteins. Therefore, for conservative replacements (such as Y
for F), Rij would be expected to be greater than 1, while for unfavorable replacements,
Rij would be less than 1.

The initial PAM scoring matrix was calculated such that the probabilities in the
scoring table would represent the average mutational change when one residue in
100 mutates (1% point accepted mutations or 1 PAM). This particular matrix was
called the PAM-1 matrix. By assuming that the mutations that occur in a protein
sequence are essentially  not correlated with previous mutations, it is possible to use
the mathematics of Hidden Markov Models to calculate a mutational probability
matrix that has undergone N percent PAM’s. To do so, the PAM-1 matrix is
multipled by itself N times.
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Using this simplified model of evolution Dayhoff created an entire family of scor-
ing matrices, with the most useful being the PAM-120 and PAM-250 matrices. These
matrices were created by multiplying the PAM-1 matrix by itself 120 and 250 times,
respectively. As a general rule, to align sequences that are highly divergent, the best
results are obtained with matrices having higher PAM values. PAM-120 and PAM-
250 can be viewed as being the typical scoring matrices of proteins that have been
separated by 120 million (PAM-120) and 250 million (PAM-250) years of evolu-
tion. Dayhoff also converted the PAM-120 and PAM-250 matrices into log-odds
matrices. To do so, the natural log of these Rij ratios were determined and the new
numbers (Sij) were substituted into the scoring matrix. The log-odds form of the
PAM-250 matrix is called MDM78 and this is the one that Dayhoff recommended for
use in general sequence comparisons. The MDM78 or PAM-250 matrix is shown in
Fig. 2. As can be seen in this matrix, large positive values indicate a high level of
conservation or chemical similarity between a pair of amino acids. Large negative
values indicate very little chemical similarity and represent nonconservative muta-
tions. In principle the sum of these log-odds scores over the length of any pair of
aligned sequences is equal to the natural log of the probability that the two sequences
are related.

Fig. 1. A simple illustration of how dynamic programming is performed in the alignment of two
short peptide sequences (sequence A = GEMS; sequence B = GENES). The upper tables illustrate the
progressive filling of the scoring matrix using the recursion relationship in Eq. 1 and the following
rules: a match =1, a mismatch = 0, and a gap insertion = 0 (i.e., w = 0). The lower right table illustrates
the traceback procedure. The two possible alignments between GEMS and GENES, determined via
dynamic programming, are shown at the bottom.
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Fig. 3. The BLOSUM62 scoring matrix for amino acid substitutions.

Fig. 2. The PAM-250 (or MDM78) scoring matrix for amino acid substitutions.
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The BLOSUM Scoring Matrices
A more recent addition and increasingly popular set of scoring matrices are the

Block Substitution Matrix (BLOSUM) scoring matrices. A key difference between
the BLOSUM and PAM matrices is that the BLOSUM matrices were constructed
without an explicit model of evolution. In particular, the substitution probabilities or
target frequencies were estimated from the BLOCKS database, which is a database
of local (contiguous) multiple alignments for various distantly related sequence
blocks or domains found in proteins. As with the PAM matrices there is a numbered
series of BLOSUM matrices, such as BLOSUM30, BLOSUM62, and BLOSUM90,
however the numbering scheme is essentially in reverse order relative to the PAM
matrices. Specifically, the BLOSUM numbers refer to the maximum level of
pairwise sequence identity in the selected sequence BLOCKS used to prepare the
scoring matrix. The substitution frequencies for the BLOSUM62 matrix are influ-
enced primarily by those sequences sharing less than 62% sequence identity. In gen-
eral one would use the BLOSUM90 matrix to compare very similar sequences and
the BLOSUM30 matrix to compare very different sequences or to detect more
remote sequence similarities. The BLOSUM62 scoring matrix, which is the default
scoring matrix used in BLAST, is shown in Fig. 3.

Gap and Gap Extension Penalties
In addition to scoring matrices, the use of gap and gap extension penalties can also

increase the sensitivity of a sequence search and the utility of the resulting alignment.
Gaps and gap extensions must often be introduced in alignments to accommodate
deletions or insertions that may have occurred during the evolutionary divergence of
one sequence from another.

Dynamic programming algorithms can be easily modified during the traceback step
to include gap penalties and gap extension penalties. Most commonly, a fixed deduc-
tion is applied to the alignment score when a gap is first introduced then an extra
deduction is added which is proportional to the length of the gap. Typically the gap
opening penalty is called G and the gap extension penalty is called L. Therefore the
total deduction for a gap of length n would be G + Ln. The selection of gap parameters
is very empirical and this represents one of the greatest weaknesses in dynamic pro-
gramming and in sequence alignment in general. For the BLOSUM62 matrix, it is
usually recommended that a high gap penalty (G) of 10 to 15 be used along with a low
value for L (1 or 2). As a rule of thumb, the gap penalty G should be approximately
equal to the difference between the highest and the lowest number in the chosen scor-
ing matrix.

Fast Local Alignment Methods

Dynamic programming is a superb method for comparing two sequences and
obtaining a global (i.e., entire) sequence alignment. However, if one wishes to per-
form 700,000+ comparisons using this approach—typical of a database search—it
could easily take several hours on a very fast computer. Given that most of us do not
want to wait that long for an answer, there has been a great deal of effort over the
past 15 years directed at developing methods to improve search speeds so that data-
base searches could be done more quickly. However, improvements in speed usually
come with a sacrifice in accuracy or sensitivity. Nevertheless, the advent of such
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fast, sensitive heuristic search algorithms such as FASTA and BLAST has revolu-
tionized the process and frequency of sequence comparison and database searching.
Their tremendous speed advantages seem to far outweigh their potential shortcom-
ings in sensitivity.

Most fast local alignment algorithms are based on breaking the query sequence
down into small overlapping subsequences, i.e., words or k-tuples (a k-tuple is a
word or character string that is k letters long), and placing their relative sequence
locations into what are called hash tables. Hash tables are lists of locations or
addresses that allow computers to wade through and compare data more efficiently.
Once this hash table is built, it is possible to compare other database sequences to the
query sequence very quickly. In fact, it turns out that these hash-based methods scale
linearly with the size of the database (i.e., they are M-type algorithms as opposed to
N × M algorithms). This kind of algorithmic scaling makes them excellent choices to
scan very large (and rapidly growing) databases with little cost in time. Figure 4
illustrates how a query sequence could be broken down into a hash table and how
each k-tuple could be assigned to a group of similar k-tuples. This is typically the
first step performed in a BLAST search.

BLAST
Basic Local Alignment Search Tool (BLAST) is the most commonly used sequence

database search tool in the world. Since its introduction as a web-based service in
1995, BLAST has become the standard for sequence alignment and database search-
ing. Key to BLAST’s success, both as an algorithm and as a program, has been its use
of statistical methods to simultaneously accelerate its search speed and to increase its

Fig. 4. An example of a hash table (left) and a similarity table (right) prepared for a short peptide
sequence (top). The numbering associated with each triplet (a word of length 3) is based on the
position of the first residue. The sets of similar triplets were identified using similarity scores derived
from the BLOSUM62 matrix. The cutoff score was 13.
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search sensitivity. In the late 1980s and early 1990s, Altschul and Karlin (two statisti-
cians at Stanford) showed that the significance of pair wise sequence alignments could
be rapidly determined or in essence, predicted using what is called an Extreme Value
distribution (see Equation 3).

P (x) = e–xe–e–x [Eq. 3]

Where P(x) is the probability of some event getting a score of x. This particular
distribution appears reasonable at modeling the distribution of scores or events that
are quite rare and which are slightly dependent (as opposed to independent) of each
other. Consequently, the Extreme Value distribution differs from a Normal or Gaussian
distribution by having a long tail (called a right-handed skewness) as shown in Fig. 5.
This means that an alignment that scores high and is considered significant for a

Fig. 5. A comparison between the shapes of an Extreme Value Distribution (A) and a Normal or
Gaussian distribution (B). The mean (µ) for both distributions is 13.
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Gaussian distribution would likely be considered insignificant in an Extreme Value
distribution. By using this special kind of statistical distribution and the probabilities
that could be calculated from it, Altschul and coworkers demonstrated that it was
possible to rapidly identify, assess, and extend locally similar sequence blocks more
quickly and more accurately than other competing alignment programs.

Simply stated, BLAST takes a query sequence and searches a given sequence
database for high scoring k-tuples (words) or high scoring segment pairs (HSPs)
that exceed a certain scoring threshold (T). This process is illustrated schematically
in Fig. 6. Note that unlike earlier database searching algorithms, BLAST does not
require HSPs to match exactly. Instead it refers to a precalculated look-up table of
highly similar HSPs. This allows BLAST to use a longer word length (3 letters for
proteins, 11 letters for DNA) without compromising sensitivity. After the HSPs are
identified, BLAST attempts to identify locally dense regions of HSPs and then tries
to extend them in either direction until the cumulative alignment score starts drop-
ping (see Fig. 7). During the HSP identification and extension phases, BLAST uses
rigorous statistical measures to assess significance. This improves on sensitivity and
saves on time because the HSP search algorithm does not need to evaluate and extend
false leads. In addition to these statistical speed-ups BLAST also takes advantage of
several advanced programming techniques such as preloading the sequence database
into RAM, incorporating finite state transition methods, and exploiting the large word
size in modern computers to read and process data more quickly.

Historically, one of the key limitations of BLAST (version 1.4 and earlier) was the
fact that its sequence alignments had to be broken down into collections of ungapped
local alignments or sequence blocks. Thus the term Local Alignment Search was born.
The difficulty in converting local alignments to more global alignments (which one
typically gets with dynamic programming methods or FASTA searches) was over-
come with the introduction of Gapped BLAST in 1997. This is now the default BLAST
service offered by the NCBI and its mirror sites.

Gapped BLAST offers two key improvements over earlier versions of BLAST. First,
an improvement in search speed was attained by requiring that at least two words had to
occur in a given window length (A = 40 residues) in order for a given subsegment to be
considered significant. This allows the program to ignore many other random HSP hits
and to concentrate on the ones most likely to lead to an extended HSP. The second and
most important improvement, however, lies in the fact that BLAST now handles gaps
explicitly. The strategy adopted in gapped BLAST is to initially identify a HSP in the
middle of the highest scoring window of 11 residues. Using this maximal segment pair,
BLAST uses the Smith-Waterman algorithm to extend this alignment in both directions
until it falls below a fixed percentage of the previous top score. This process is analo-
gous to the way ungapped BLAST assembles HSPs. Another recent improvement in
BLAST has been the introduction of composition statistics. This permits the E (expect)
values to account for the differing amino acid or base composition of the query
sequences and database hits. This little innovation effectively allows one to apply a
custom scoring procedure for each sequence in the database. The net result is that the
inclusion of composition statistics improves the sensitivity and specificity of the data-
base search by reducing the number of false positives.

BLAST is under constant development and improvements to both the algorithm
and its associated databases are continuing. A periodic check of the NCBI website
will allow any user to stay current with the latest news on BLAST.
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Fig. 7. During the HSP extension phase, a cumulative score is kept between the query and data-
base sequence as the HSP is lengthened. If the HSP is of high quality the score will rapidly climb.
Eventually the cumulative HSP score will reach a maximum as the similarity weakens at one end of
the sequence or the other. BLAST stops the HSP extension once the cumulative HSP score drops by
more than X (a drop-off parameter defined in BLAST).

Fig. 6. A schematic illustration of how BLAST identifies and extends HSPs. The HSP in this case is
centered around the triplet GDE. The Threshold (T) cutoff score in this case is 13, so only those
triplets in the database set (right) with scores > 12 will be identified as HSPs. In the lower panel a
sequence (sequence 5) has been chosen for further analysis and the initial HSP has been extended in
both directions, producing the alignment seen here.
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Running BLAST (The Web Version)
BLAST can be freely and easily accessed from any number of websites from around

the world. Some of these include the NCBI (see Website: http://www.ncbi.nlm.nih.gov/
BLAST), the EBI (see Website: http://www.ebi.ad.uk/blastall/), or the Canadian
Bioinformatics Resource (see Website: http://www.cbr.nrc.ca/blast). BLAST can also
be downloaded and run locally or it can be accessed through a variety of commercial
programs (most of which have customized front-ends to access the NCBI or EBI sites).
For the purposes of this chapter, we will focus on the version of BLAST offered through
the NCBI website.

Different Flavors of BLAST
When first logging onto the NCBI site, you will notice a rather large number

of BLAST options. These represent the different flavors or variations of BLAST
that have been developed to accommodate the different needs of users and the differ-
ent settings required for different types of searches. Currently the NCBI offers at least
eight different types of BLAST database searches:
1. BLASTP: Searches user-selected protein databases with protein sequence queries.
2. BLASTN: Searches user-selected nucleic acid databases with DNA/RNA queries.
3. BLASTX: Searches 6-frame translated DNA databases with protein queries.
4. TBLASTN: Searches protein databases with 6-frame translated DNA queries.
5. TBLASTX: Searches translated DNA databases with translated DNA queries.
6. PSI-BLAST: Searches user-selected protein databases with protein sequence

profiles.
7. PHI-BLAST: Searches user-selected protein databases for protein sequence patterns.
8. MEGABLAST: Searches entire genome against user-selected nucleic acid databases.

BLASTP is useful for looking for moderate-to-distant relationships among pro-
tein sequences. BLASTN is primarily for identifying relatively strong matches
between long DNA sequences. BLASTX is most commonly used for analyzing new
DNA sequences and EST’s (expressed sequence tags). TBLASTN is useful for find-
ing undetected or unexpected protein coding regions (genes) in newly sequenced
DNA. TBLASTX is often used in EST analysis. PSI-BLAST is particularly useful
for identifying extremely distant or difficult-to-identify relationships between pro-
tein sequences. Indeed, with the introduction of PSI-BLAST, BLASTP has largely
become obsolete. PHI-BLAST is used to look for user-specified protein sequence
patterns. MEGABLAST is best used for whole genome comparisons at the nucle-
otide level. It is optimized for aligning sequences that differ only slightly and is up to
10 times faster than BLASTN.

BLAST Input
Once you have chosen your desired flavor of BLAST you are ready to submit your

sequence request(s). The standard BLAST input window is illustrated in Fig. 8. In
most cases you only need to paste in your sequence, choose your database and press
the Submit button. A request ID (RID) number will be immediately assigned to you
and a few seconds later you can press the Format button to obtain your search results.
BLAST has been carefully designed so that its default values will generally provide a
pleasing first-pass result. However, to properly use BLAST and to properly interpret
its output, it is important to understand something about its input options. Here is a
brief description of some of the key terms or parameters.

WWW
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The Sequence Window
This box allows users to type or paste a query sequence for searching. The

sequence should be in FASTA format, which means that a > character must appear on
one line (the sequence name is optional) and the sequence should appear on the other
lines. Users may also type in a gene index (GI) or Genbank accession number, instead
of a sequence. This latter option can save quite a bit of time.

Database Selection
NCBI and its mirror sites offer a wide range of both general and specialized data-

bases of widely varying scope and quality. There are 8 different protein databases and
14 different DNA databases, both of which include several organism-specific data-
bases (E. coli, yeast, drosophila), a patented sequence database (pat), and monthly
updates (month). Outside of interchanging BLASTN with BLASTP, the most com-
mon error committed by BLAST users is in (inadvertently) choosing the wrong data-
base. The NR (Nonredundant) database contains the most sequence data and is the
default, however, it is not necessarily nonredundant and it certainly does not offer the
most complete annotation (especially for proteins). In this regard, the SWISS-PROT
database, which is a secondary or curated database, is the most fully annotated and
perhaps the least redundant protein sequence database. The GenBank nr database is
still the best database for genomic data although it, too, has its share of errors or omis-

Fig. 8. A screen shot of the NCBI BLAST server. A description of the options and functions is given
in the text.
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sions. The Sequence Tagged Site (STS), Expressed Sequence Tagged (EST), High
Throughput Genomic Sequence (HTGS), and Genomic Survey Sequence (GSS) data-
bases are notorious for their high frequency of sequence errors.

CD Search
The Conserved Domain (CD) search is a relatively new option that is particularly

helpful for protein sequence searches. The CD search scans the Conserved Domain
Database, which is a collection of preidentified functional or structural domains
derived from the Pfam and Smart databases. It uses Reverse Position Specific BLAST
to enhance the sensitivity of the search. When turned on, the CD search option can
reveal many hidden domains and offer colorful structural insights through the Cn3D
molecular viewer (see Chapter 32).

Filters
 One can still encounter problems with sequence complexity, regardless of whether

one chooses to work exclusively with proteins or not. This occurs when either the
query sequence or the database sequence contains regions of biased sequence compo-
sition or low complexity regions (LCRs). Examples of LCRs are repeated stretches of
the same amino acid or the same base (homopolymeric runs), short period repeats
(such as CA repeats in DNA), and large repetitive elements (such as Alu repeats,
LINEs and MERs). Wooton and Federhen (1996) have developed several approaches
to identify these LCRs and to screen them out from database searches. The SEG pro-
gram specifically looks at proteins and screens out their LCRs by replacing the amino
acids in the suspect region with a series of Xs. The DUST program does the same for
nucleic acids. In proteins, LCRs most likely exist as nonglobular regions and likely
arise from errors in DNA replication (polymerase slippage) or unequal crossing over.
The NCBI BLAST server and most of its mirror sites offer LCR screening as a default
option. This option should always be kept on unless one is dealing with a special
situation or an unusual query sequence.

Expect
This refers to the expected number of chance HSP alignments with scores equal to

or greater than S (see following section “S - Alignment Score”). A very small value of
E (something close to 0, say 2.1e-73) is characteristic of a highly significant match. A
high E value (say greater than 1) is characteristic of an insignificant match. The
default Expect value in BLAST is 10. For most sequences one should never trust an
alignment that has an E value of more than 0.01

Word size
This is the length of the word or k-tuple that is scanned. Larger values for W

(11–12) are typical for DNA searches. Smaller values (3–4) are typical for protein
searches. The longer the word size, the faster the search. However, longer word sizes
also reduce the sensitivity.

S - Alignment Score (Cutoff)
This is the score determined through comparing sequence matches of High Scoring

Segment Pairs (HSPs) to the scoring matrix. S is also called the HSP cutoff score. For
an alignment to be reported by BLAST it has to have an HSP with a score greater than
or equal to S.
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T - Threshold
This is the threshold score that a short word (HSP) or k-tuple must have in order for

BLAST to consider it significant. T is a function of the scoring matrix used in the
program. This is now automatically determined when the user selects their preferred
scoring matrix.

Matrix and Gap Costs
These were detailed in the previous sections of this chapter.

BLAST Output and Assessing Sequence Similarity
An example of the alignment output of a typical BLAST run is shown in Fig. 9.

BLAST also provides alignment lists and image-mapped domain graphs to facilitate
querying or analyzing the results (not shown here). In addition to the name, accession
number, and length of the protein, the alignment produced by BLAST includes data on
the alignment score, the Expect value and other measures. The Bit Score (the first
number) is a normalized score (S) derived from the raw score (given in parentheses).
The raw score refers to the summed HSP scores (see S above) and is of course depen-
dent on the scoring matrix used. The bit score is independent of the scoring matrix
chosen, so one may use the bit score as a means of consistently comparing alignments
obtained with different scoring matrices (e.g., BLOSUM62 vs BLOSUM30). While
the bit score is generally quite useful, the key parameter to evaluating any BLAST
output is the Expect value. This refers to the expected number of chance HSP align-
ments with scores equal to or greater than the bit score based on the size of the data-
base, the length of the query sequence, and the scoring matrix used. Ideally this should
be less than 1; otherwise this suggests that the alignment you have found could be just
a spurious match. As a rule, one should not trust alignments with an Expect value

Fig. 9. BLASTP output from a database search using Human Fragile Histidine Triad Protein
(P49789) as the query sequence.
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greater than 0.01. However, as with anything in sequence alignment, one should
assess the alignment by taking into consideration the type and location of matching
residues, the number of gaps and the biological or functional relationship between the
query and matching sequence before making a decision.

In addition to the bit scores and Expect values, BLAST provides information on the
number and percentage of matching residues (Identities) as well as the number and
percentage of similar residues (Positives) and Gaps. These are very useful and can be
critical to assessing the presumed relationship between two sequences. As a general
rule, if two sequences are longer than 100 residues and are more than 25% identical
after suitable gapping, it is very likely that they are related. If two sequences are
15–25% identical they may be related but it is usually necessary to perform further
tests to confirm their putative relationship. If two sequences are less than 15% identi-
cal, they are probably not related. These rules (courtesy of R.F. Doolittle) are summa-
rized in a graph shown in Fig. 10.

Most BLAST searches result in at least one or more significant matches. The
determination of whether a match is significant is dependent not only on the num-
bers (Expect, bit score, %ID) that you obtain, but also on the type of relationship
you are trying to identify. For example, if one is interested in finding out whether a
query protein is structurally similar to something already in the database, then a
match with very low sequence identity (<20%) or a modest Expect value (0.5) could
very well exhibit a similar three-dimensional fold. However if one is trying to ascer-
tain whether two proteins have the same function, one typically requires a much
higher level of sequence identity (e.g., >50%) or a much lower Expect value. This
simply reflects the fact that structure is generally more conserved than either func-
tion or sequence. With the rapid growth in whole genome sequence data, there is an
unfortunate trend to use large-scale sequence alignments to ascertain the function or
putative functions of thousands of proteins using very generous (i.e., low sequence
identity) criteria. The result is that many proteins are being functionally misassigned
(see Chapter 26). While sequence alignment is useful, it is important that alignment

Fig. 10. A plot showing the relationship between sequence identity and sequence length for pro-
teins. Sequences falling above this line are considered to be related (i.e., homologous), while
sequences falling below this line are likely unrelated.
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data be combined with experimental (structural, enzymatic, evolutionary) data to
get the most complete and accurate picture possible.

Recommendations
If one is working with protein sequences or coding segments, the best approach to

analyze a query sequence is by using PSI-BLAST. As a general rule, it is best to work
with proteins greater than 50 residues, as smaller sequences can lead to spurious
results. The default parameters for PSI-BLAST are usually sufficient for an initial
search. In using PSI-BLAST it is important to remember to press the Iterate button.
PSI-BLAST is an iterative process wherein each iteration allows the program to learn
about the significant features of any previously identified set of matching sequences.
Often one will have to press the  Iterate  button 3–4 times before the search con-
verges. If no obvious homologs are apparent after a few iterations, try changing the
scoring matrix to BLOSUM30 or PAM250. Once a set of proteins has been identified
from this search (using the criteria discussed earlier), one should then ascertain whether
the protein exhibits domain-like features. These features may be identified by looking
for contiguous segments of the query protein (50–150 residues) matching distinctly
different types or classes of proteins in the database. This is best observed through a
visual inspection of the colored alignment graph at the top of the BLAST output win-
dow. It can also be seen using the CD search option. Once one has identified the dif-
ferent domains in a query protein, it is often a good idea to break the protein sequence
into its constituent domains and to perform a PSI-BLAST search with each of these
domains against the Protein Data Bank (PDB). This allows one to investigate whether
the query protein may have some structural homologs. An equally good idea is to
search the SWISS-PROT database (see Website: http://www.expasy.ch) as a means of
retrieving additional annotation or information about the protein of interest. Further
analysis, e.g., using multiple alignments, hydrophobicity analysis, signal site or
PROSITE predictions, secondary structure prediction, or Medline searches. should
always be carried out to help confirm or further identify important features of any
newly sequenced protein.

However, bioinformatics and computer-based analysis can only take you so far.
Indeed, database searching is essentially a computer experiment that helps generate
(and sometimes confirm) a hypothesis. As with any experiment or hypothesis, it must
be confirmed, controlled, and verified. If one neglects to use biological intuition or
ignores the results of wet-bench experiments, or if one does not attempt to confirm the
results with another laboratory measurement, then the results of a database search
probably have little meaning or merit. Despite these cautions and caveats, it is perhaps
safe to say that database searching is probably the fastest, easiest and most revealing
experiment a biologist can perform.

Glossary and Abbreviations
Algorithm  a defined sequence of actions or computational steps that perform a

specific task.
Alignment  the process of shifting letters in two character strings to create or high-

light character matches between the two character strings.
BLAST  a very fast and very powerful heuristic sequence alignment and database

searching algorithm. BLAST uses well developed statistical methods to assess and
identify significant matches and alignments.

WWW
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Dynamic Programming  an efficient mathematical technique that can be used
to find optimal “paths” or routes to multiple destinations. Dynamic programming
belongs to a special class of optimization or minimization techniques.

FASTA  one of the first fast heuristic sequence alignment algorithms to be devel-
oped. FASTA made sequence searching through large sequence databases feasible.

Gap Penalty  the numerical cost of opening or adding a gap to a sequence align-
ment. Gap penalties typically have values similar to those in a scoring matrix.

Heuristic  an economical or intuitive strategy for determining a solution to a prob-
lem to which an exact solution is computationally impossible or intractable.

Homology  in sequence analysis, this refers to a shared ancestry. Two sequences
are homologous if they are derived from a common ancestral sequence or if one of
the two sequences has diverged (through evolution) to be different in its amino acid
sequence from its parent.

Scoring Matrix  a table of numbers that provides the “cost” of substituting one
amino acid or one base for another. Dynamic programming algorithms use scoring
matrices to determine optimal sequence alignments.

Similarity  in sequence analysis, this refers to the likeness or percent identity
between any two sequences. Sequences are similar if they share a statistically sig-
nificant number of amino acids in approximately the same positions.
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28GCG Database Searching

David J. Heard

Introduction

The various programs available for searching GCG databases using text-based or
sequence-based searches and the programs that allow the user create their own flat-file
databases using the Genetics Computer Group (GCG) and the X-windows SeqLab
interface will be described. When appropriate the equivalent command line options
will be listed using the same format as given in the GCG program manual, for example
—WORDsize = 2. It will also be assumed that the reader has access to GCG help
documents either through the SeqLab or SeqWeb interfaces or the GCG Program
Manuals that come with the software package.

Most users of GCG are well acquainted with at least one or two of the many pro-
grams available to search flat-file databases by keyword (Stringsearch, Lookup) or
with query sequences (BLAST, FastA). But many people are confused as to the differ-
ences between programs and how to choose the best application for their search. For
example BLAST seems to be the default program for most sequence-based searches
because it is fast, but it may not always be the correct choice. We will review the pros
and cons of each search program, how best to use them and how to interpret the output.
A little known area of the GCG package will be described; i.e., the programs that
allow scientists to create their own searchable databases using proprietary sequence
data or extracts of public databases.

What Are Databases?

The definition of a database is simply a collection of records of similar content that
can be easily accessed and managed. But there are two main types of databases, flat-
file and relational. It is important to understand the difference between them and how
this relates to GCG. Briefly, a flat-file is a file containing a number of records, or
pieces of data that are not related to one another in a structured way. A typical GenBank
record contains several pieces of information, such as the gene locus, accession num-
ber, organism name, the authors names, publications, features (i.e., the cds or coding
sequence), and finally the DNA sequence itself. The GenBank flat-file database could
theoretically be made up of a single large file containing several million sequence
records (it is actually made of several large files containing different divisions of the
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Fig. 1. The GenBank flat file database format. Each sequence record begins with the LOCUS and
ends with a double slash ( // ) on a separate line. There are many thousands of records in the GenBank
flatfiles.
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database). The individual records are separated from each other by a simple character
(in GenBank a double slash, //, on a separate line), which indicates the end of one
sequence record and the beginning of the next (see Fig. 1).

In contrast to flat-file databases, relational databases are made up of sets of formally
described tables that are comprised of one or more columns containing different cat-
egories of data, i.e., species name or accession number, and rows of data for each
unique record. The tables are related (hence the name relational) to one another by
shared data fields called keys. For example in Fig. 2, two tables of a simple relational
database are depicted. Table 1 of Fig. 2 contains accession numbers and sequence
names and the key piece of information in this table is the accession number. Therefore
this is called the primary key of that table. In Table 2 of Fig. 2, which contains author
and journal names, the primary key is the author name. However, this table also con-
tains a list of the accession numbers associated with each author. In Table 2 the acces-
sion number is called a foreign key and it is this information that relates the two tables.

The difference between the types of databases is obvious when you want to retrieve
data from them. If one wanted to search the GenBank flat-file database for a specific
gene one might have to search through every sequence record in the whole database,
which could take days to finish. In contrast, the data in a relational database can be
accessed and assembled in many different ways using a special programming lan-
guage, the Structured Query Language (SQL). Using SQL queries one can limit the
search to the tables containing the desired information, i.e., sequence names, ignoring
all other information. However, it is important to note that while a relational database
is more powerful and flexible than a flat-file database, it is much more complicated to
construct, maintain, and query, and requires more computer resources. The standard
release of the GCG program uses only flat-file databases. A special version of GCG
was just released that can also interact with relational databases.

Searching By Keyword

Different pieces of data in a flat-file database can be extracted into separate files
and individually searched. This process, called database indexing, makes flat-file
database searching much faster and more efficient, providing many of the advan-
tages of a relational database without the requirement of large amounts of system

Fig. 2. An example of a simple relational database showing two tables and how they are related to
one another. The foreign key in Table 2 of this figure relates this information to the information in
Table 1 of this figure.
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resources or knowledge of SQL. GCG contains a number of programs that perform
database indexing and these are used to create the files searched by the GCG text-
based search tools.

Stringsearch
To work with the GCG package, the GenBank flat-file database must be reformat-

ted using one of the GCG database reformatting utilities (GenBanktoGCG) resulting
in the sequence and the annotation information being split into different files called
genbank.seq (sequence) and genbank.ref (annotation). Another program, Seqcat,
indexes the database by extracting the locus name, accession number, definition line,
date of submission and sequence length from genbank.ref into a genbank.seqcat file.

The GCG program Stringsearch performs simple text-based searches on the
dbname.ref and dbname.seqcat files using queries (strings) typed by the user. In the
SeqLab Stringsearch window you have the option of choosing to search the definition
line contained in the dbname.seqcat file (—MENu=A) or the entire sequence annota-
tion section in dbname.ref (—MENu=B). While searching the definition line alone is
fast, only a limited amount of information is available. In contrast the entire sequence
annotation may contain much more information but search times are many times longer
(see Table 1).

The default setting in the program is to match ALL the words in the search string
using the Boolean operator AND (—MATch=AND). In the example in Fig. 3, only
records containing the words estrogen AND receptor would be returned. By selecting
the ANY option (—MATch=OR) all records containing either estrogen OR receptor
will be identified. Searches can be written in specific ways to make them more or
less stringent. Wildcards (*), which allows one to search all spellings of a word, can
make searches less stringent. For example, hum* would find entries with the words
human or humans but may also find those containing the word hummingbird. Quo-
tation marks can be used to limit searches to specific word orders. A query for “estro-
gen receptor” would only find entries containing the words in the same order as
typed and containing a space between them but would not find for example estrogen-
receptor or receptor estrogen.

The output of the Stringsearch program is a GCG list file. This file can be imported
into the SeqLab main or editor window enabling the user to access each sequence in
the list through this interface. Alternatively, a list file can be used as input to other
files including Stringsearch, BLAST, and FastA on the command line.

Table 1
Relative Speed of the GCG Text-Based Search Tools Indicating Search Time

and Results of a Search for the String: Estrogen Related Receptor a

Program Record searched Time (hh:mm:ss) Result of search

Stringsearch Definitions 00:00:27 Negative
Stringsearch Full annotations 00:27:07 Negative
Lookup Full annotations 00:00:06 Positive

a Performance on other machines will vary.
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Lookup
The GCG package contains a suite of indexing programs, the Sequence Retrieval

System (SRS) programs written for GCG by Etzold and Argos (1993) that extract and
build the SRS indices used by the Lookup program. The different pieces of informa-
tion extracted by SRS include: sequence name, accession number, definition, organ-
ism, keywords, author names, publication title, reference, features, sequence length,
and date of entry into the database. Each individual piece of information is placed into
a separate file so that each can be individually searched. Note that the complete SRS
program in its present form (version 6) is an extremely powerful database search tool
that is freely available on the internet (see Website: http://srs.ebi.ac.uk/). In order for
Lookup to access a database it must have a format that is recognized by the SRS index-
ing software otherwise it will not be useful. (This is described in detail in the GCG
System Support Manual).

Lookup is a much more powerful and faster text-based search program than
Stringsearch (see Fig. 4). To gain full advantage of Lookup, it should be accessed
from the SeqLab interface, as it is a little clumsy from the command line. The main
advantage of Lookup compared to Stringsearch is that one can write database queries
using boolean operators AND (&), OR (|), and BUT-NOT (!) in the same query allow-
ing the creation of very complex queries. An example of a complex query might be:
(mrna | cdna | (complete & cds)) ! (promoter | *pseudogene* | *intron* ). This is
interpreted as “find entries containing the words mRNA or cDNA or complete cds but
exclude those containing promoter or pseudogene in any spelling (including retro-
pseudogene, pseudogenes or retro-pseudogenes) or intron in any spelling” (alterna-
tively in bold or italics). Frequently typed queries can be saved in text files and copied
and pasted into the appropriate fields on the interface. Another important aspect of

Fig. 3. The SeqLab Stringsearch window. Queries are typed or pasted into the String to search for
window, (e.g., estrogen receptor). The database or list of sequences to search is chosen by clicking
Search Set.... One can search only the definition or the entire sequence annotation. As in all SeqLab
program windows, the various command line options can be chosen by clicking on the Options
button. The Help button gives access to the complete program description and access to all other
GCG help pages. The actual command as it would appear on the command line is indicated at the
bottom of the window.

WWW



468 — Heard

Lookup is the ability to limit the search to specific parts of the sequence annotation,
including organism, authors, and features. However, not all databases contain the same
types of annotation. On occasion this can cause problems when searching different
databases. One can routinely parse the GenBank database updates for specific subsets
of genes that are of specific interest using Lookup with saved complex queries. For
example, all the mammalian cDNAs that represent the complete coding sequence of a
gene can be separated from all the other sequences using this tool. Alternatively one
can parse the database for all sequences from a particular species (e.g., rabbit EST
sequences) in one step.

Fig. 4. The SeqLab Lookup interface allows you to click on one or all the databases that are
formatted by the SRS tools. One can also limit the search to a group of sequences chosen in the main
window (for example a List file of BLAST results). Text searches can be limited to certain parts of the
annotation, (e.g., Author name) or to all the text in the annotation (All text). The Inter-field logic
(AND/OR) buttons near the bottom of the window indicate the relationship between the different
fields (e.g., Accession number: AF00* AND Organism: Homo sapiens).
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The output from a Lookup query is a GCG list file, which can be imported into the
main window or used in other GCG programs. This feature permits list refinement on
a previous Lookup result, rather than searching the entire database again. For example,
in a first Lookup query you asked for all human EST sequences. By importing the
output of this search into the main window you can use Lookup again to find only
those ESTs that are associated with prostate cancer. This combination of complex
queries and list refinement make Lookup an extremely powerful database search and
retrieval tool.

Lookup has a few disadvantages. One of the main drawbacks is that the files
containing the indices require a substantial amount of disk space, for the full GCG
database release of June 2001 the SRS indices require nearly 8 gigabytes of disk
space. Also the indices are not as straightforward to create as those for Stringsearch
and some databases will be incompatible with the SRS indexing software. However,
as the example below will indicate, the performance of Lookup is superior com-
pared to Stringsearch.

The example search summarized in Table 1 should illustrate the difference between
Stringsearch and Lookup. A search for the string estrogen-related receptor was per-
formed with both Stringsearch and Lookup using the Unix server with the aim of find-
ing the accession number of the estrogen related receptor gamma (ERRgamma) gene.
The Stringsearch of definitions in the GenEMBL database returned a result in 27 s but
only found two entries for estrogen related receptor alpha, therefore neither was cor-
rect. A Stringsearch of the entire GenEMBL annotations with the same query took 27
min (or 60 times longer) and returned the same two genes. In contrast, using Lookup
searched the entire GenEMBL annotations and returned a result in 6 s (270 times faster
than Stringsearch) yielding 20 matches, amongst which was the gene of interest.

Searching with Query Sequences
GCG version 10.2 SeqLab contains the following sequence search programs: BLAST,

NetBLAST, FastA, Ssearch, TFastA, TFastX, FastX, FrameSearch, HMMerSearch,
MotifSearch, ProfileSearch, FindPatterns, Motifs, and WordSearch (see Fig. 5). The
GCG package can be described as a toolbox, packed with tools of various shapes and
sizes. The trick is to know which tool you need for the job. As shown in Table 2, the
search tools can be divided into 3 basic types based on the type of search. In general
BLAST, NetBLAST, (T)FastA/X, WordSearch, Ssearch, and FrameSearch are used to
search databases with a single query sequence in order to find entries with similarity to
the input sequence.

The programs HMMerSearch, MotifSearch, and ProfileSearch are similar in
that groups of related sequences are first aligned to identify conserved motifs and
the alignments are used to search the database for related sequences. Finally,
Findpatterns and Motifs use simple word matching algorithms to find matches in
short sequence patterns rather than searching full sequence databases. These will not
be discussed further in this chapter.

It is important to understand how the search programs find and evaluate hits. The
concept of scoring matrices is an important part of this task. A scoring matrix is a table
that attempts to put a value on identities and substitutions in an alignment. For nucle-
otide-nucleotide comparisons the scoring matrices are rather simple. In BLAST any
match is given a score of +1 and a mismatch of –3 by default but these numbers can be
changed at the command line (—MATCH=2 and —MISmatch=5) or in the BLAST
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options window when using the SeqLab interface. In protein-protein comparisons scor-
ing matrices are more complicated. When making an alignment the match or mis-
match value of each alignment pair is obtained from a probabilistic model that
considers the evolutionary conservation of amino acids at each position in related
proteins. The original scoring matrices were determined by globally aligning highly
conserved (85% identical) protein sequences from different organisms and determin-
ing the probability and type of amino acid substitutions in each position resulting in
the percentage acceptable mutations (PAM) matrices described by Dayhoff et al.
(1978). Matrices for more distantly related protein sequences were then extrapolated
from these original scores. There are several different PAM matrices including
PAM40, PAM70, and PAM250. Each refers to the evolutionary distance expressed as
the percentage of positions that would be expected to mutate over a period of 108 y.
The greater the value is, the greater the evolutionary distance. Therefore, PAM250
indicates a matrix for aligning proteins where 250% of all positions (or 2.5 substitu-
tions at each position) would have changed over 100 million years.

However, as the PAM matrices were derived using global alignments on closely
related sequences they are probably not the best choice to identify highly conserved
protein domains in otherwise weakly related proteins. This problem was addressed by
Henikoff and Henikoff (1992), who developed a new series of matrices called
BLOCKS substitution matrices (BLOSUM, pronounced blossom) by comparing the
ungapped, highly conserved protein sequences in the BLOCKS database. All
BLOSUM matrices from BLOSUM 30 to BLOSUM 100 were derived from actual
protein-protein alignments rather than being extrapolated mathematically. BLOSUM
matrices have been found to be more reliable than PAM for aligning members of
protein families. The numbers of the different BLOSUM matrices indicate the percent
identity of the protein blocks used to generate the matrices. For example, BLAST,
Ssearch, and FrameSearch all use the BLOSUM62 matrix by default, which was gen-

Fig. 5. The SeqLab main window showing all the Database Sequence Searching programs.
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Table 2
The Characteristics of the Various GCG Search Tools and Their Major Advantages and Disadvantages

Program Nuc-Nuc Nuc-Pro Pro-Pro Pro-Nuc Gapped alignments? Major advantages Major disadvantages

BLAST Yes Yes Yes Yes Yes Speed, gapped alignments, Requires large local databases in a
automatic detection of type specific format. SeqLab can only use
of search. one database at a time.

NetBLAST Yes Yes Yes Yes Yes Searches NCBI Database over Sequences submitted over internet
the internet. therefore insecure.

FastA Yes No Yes No No Possibly more sensitive than Slow and poor at aligning
BLAST in nuc-nuc searches. sequences with small gaps let alone
Flexible as you can search small cDNA vs Genomic sequence.
groups of sequences rather than
whole databases.

TFastA No No No Yes No See TFastX. See TFastX.

TFastX No No No Yes Frame-shifts only Allows frameshifts. Extremely slow. Poor at aligning
sequences with gaps.

FastX No Yes No No No Allows frameshifts. Slow and poor at aligning
sequences with small gaps.
Insensitive compared to BLAST.

WordSearch Yes No Yes No No Rapid. Very insensitive compared to BLAST.

Ssearch Yes No Yes No Small local gaps Greater sensitivity. Very slow.

FrameSearch No Yes No Yes Frame-shifts only More sensitive than BLAST Slower than BLAST and FastX.
or FastX.

HMMerSearch Yes No Yes No No Sensitive for finding weakly Slow, requires a number of related
related sequences. genes to build a profile.

MotifSearch Yes No Yes No No Useful for finding novel motifs Requires a number of related genes to
in protein families. build a profile.

ProfileSearch No No Yes No No Can find sequences with weak Slow, requires a number of related
homology to the profile. genes to build a profile. Not as

sensitive as HMMerSearch.

FindPatterns Yes No Yes No No Finds short sequence patterns Restricted to short sequence patterns
like restriction enzyme or no database searching.
proteolytic cleavage sites.

Motifs No No Yes No No Searches PROSITE database of Only finds motifs present in PROSITE
protein sites and patterns. cannot find novel motifs.
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erated with BLOCKS with up to 62% identity. In principle lower numbered, e.g.,
BLOSUM40 matrices should be used with weakly conserved proteins and higher num-
bered, e.g., BLOSUM80 matrices with more conserved proteins.

An amino acid identity between query and subject gives a relatively large positive
score: e.g., +4 (in BLOSUM62; see Fig. 6). A conservative amino acid substitution,
such as leucine to isoleucine, results in a smaller positive score for that position (+2),
whereas a nonconservative change, for example leucine to aspartate, results in a large
negative score (–4). Changes that result in substitutions of hydrophobic for hydro-
philic amino acids are penalized more than changes of amino acid polarity. The inser-
tion of a gap has a large negative score (–8) by default in BLOSUM62 whereas the
extension of a gap is penalized to a lower degree (–2 for each amino acid skipped).
These numbers are then used to calculate the best alignment of the query sequence to
that found in the database and to generate the sequence score. A description of all the
scoring matrices available in GCG and how to manipulate them is found in the appen-
dix VII of the GCG program manual.

BLAST/NetBLAST
The Basic Local Alignment Search Tool (BLAST) algorithm was described by

Altschul, et al. (1990) and quickly became popular primarily because of its speed in
comparison to other search algorithms. The current implementation of BLAST, called
gapped BLAST or BLAST2 (Altschul, et al., 1990), was included in GCG beginning in
version 10.0 (see Fig. 7A). This implementation allows gapped sequence alignments,
meaning that more than one alignment is possible for each entry in the database.
BLAST2 is approx three-fold faster than the original BLAST program and is faster than
all other database searching tools (see Table 3). In our toolbox analogy BLAST2 is the
handy adjustable wrench in your toolbox; if you could only have one wrench in the
toolbox this would be the one to have. BLAST works well with several different types of
databases from DNA to protein and EST to Genomic DNA. It rapidly answers the ques-
tion: Which sequences in the database are related to my sequence, regardless of length,
presence of large insertions or deletions, and sequence type. However, for serious pro-
tein function prediction BLAST is probably not the tool of choice.

NetBLAST is essentially identical to BLAST except NetBLAST uses the internet
to query the databases maintained at the National Center for Biotechnology Informa-
tion (NCBI). It is not recommended that you use NetBLAST with query sequences
that you want to keep confidential. Be aware that sending a sequence on an insecure
line may be considered public disclosure. If this is not a concern then there are two
main advantages of using NetBLAST. The first is that the databases at NCBI are
updated on a daily basis so you can query the most up-to-date sequence data. This is
important as the public sequence databases are growing very rapidly. For example,
the human EST database grew by over 14% in the 2 mo period between GenBANK
release 121 and 122. This translates to the depositioned 391,652 human ESTs, an
average of 6,528 sequences/day. The second advantage to NetBLAST is that you will
not have to invest in disk space to have the public sequence data in-house.

BLAST is actually 5 different programs: BLASTN for nucleic acid queries of
nucleic acid databases; BLASTP for protein queries of protein databases; BLASTX
for translated nucleic acid queries of protein databases; TBLASTN for protein que-
ries of translated nucleic acid databases, and finally TBLASTX for translated nucleic
acid queries of translated nucleic acid databases. The decision as to which BLAST
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Fig. 6. The Blosum62 protein-protein scoring matrix indicating amino acid identity and substitution scores. Amino acids are indicated along the
top and left side by their single letter codes.
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Fig. 7. (A) The BLAST window. In this example a DNA sequence is being used to search a protein
database (genpept). The Ignore Hits slider changes the —EXPect variable, which determines the
cutoff to show hits that would have occurred by chance alone (a higher number means more likely
to occur by chance, or less significance). The number of processors slider tells the program how
many processors that you are allowed to use for your search. Using more speeds up the program but
slows down other applications running on the same computer. (B) (opposite page) The BLAST out-
put in text format. Notice the line at the top of the output: !!Sequence_List 1.0 —this tells GCG that
this output is a valid list file that can be used to import the sequences into the SeqLab main window
(note that this line appears in the output from all the GCG search programs described in this chap-
ter). The score in bits and E-value scores appear on the right side at the top of the sequence list. An
E-value of 0.0 means it is infinitely unlikely that this match occurred by chance alone. In the align-
ment portion the definition line of the database sequence is given followed by the scores and the
orientation of the query and subject (database hit) strands. Plus equals forward direction, as the
query sequence was entered into BLAST or the database sequence submitted to the database whereas
“Minus” would indicate the reverse complement.

program to use is made automatically according to the type of input sequence (protein or nucleic
acid) being used to search the type of database chosen. When using nucleotide sequences to
query a protein database (BLASTX), the query sequence is translated in all six frames (3 forward
and 3 reverse) and each resulting protein sequence is used to search the database. When using a
protein sequence to query a DNA database (TBLASTN), the entire database is translated in all 6
frames and compared to the query peptide. The only BLAST program that has to be selected
specifically by the user is TBLASTX. This program translates both the nucleic acid query
sequence and the nucleic acid database in all 6 frames meaning that for each query sequence 36
different BLASTP searches must be performed. Note that TBLASTX is not capable of perform-
ing gapped alignments.
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Table 3
Relative Speed of the GCG Query Sequence Search Tools

Search Type Program Name Search Time (hh:mm:ss)

Nuc-NucDB BLASTN 00:00:31
Nuc-NucDB BLASTN (wordsize=7) 00:12:38
Nuc-NucDB FastA 00:29:32
Nuc-NucDB SSearch 36:00:00a

NucX-TNucDB TBLASTX 00:09:51

Nuc-ProDB BLASTX 00:00:56
Nuc-ProDB FastX 00:02:52
Nuc-ProDB FrameSearch 00:41:17

Pro-ProDB BLASTP 00:00:22
Pro-ProDB FastA 00:02:29
Pro-ProDB SSearch 00:08:12

Pro-NucDB TBLASTN 00:04:58
Pro-NucDB TFastX 01:39:03
Pro-NucDB FrameSearch 36:00:00a

aSearched stopped due to drain on system resources. Performance on other machines will vary.
 Nuc, GenBank Accession AB001636. NucDB, GenBank (release 123). NucX, AB001636 translated.

TNucDB, translated GenBank (release 123). Pro, Swissprot Accession DD15_Human. ProDB,
Swissprot (release 39).

The BLAST algorithm is complex (see the GCG manuals, Altschul, et al. (1997), and Chapter
27 for a detailed description). BLAST identifies words in the query sequence and searches for
sequences with similar words in the database. The word size is the smallest region of 100% iden-
tity between a query sequence and the sequences in a database for a sequence to be identified as a
potential hit. The default word size is 11 for nucleotide-nucleotide and 3 for protein-protein com-
parisons. This can be changed in the options menu or at the command line (—WORDsize=n).
When the program finds a similar word in a sequence in the database it tries to extend the align-
ment outwards in both directions creating a high scoring segment pair (HSP). Once an HSP is
identified, the algorithm searches in both directions for other HSPs in the same sequence to gener-
ate the gapped alignments. It is often said that FastA is more sensitive in nucleotide-nucleotide
searches than BLASTN. While this may be true using the default BLASTN settings, decreasing
the wordsize to 7 results in BLAST being nearly as sensitive as FastA, but faster (see Table 3).

Unlike other GCG search algorithms, by default, BLAST filters or masks regions of low
sequence complexity in the query sequence. Filtering removes a substantial amount of unwanted
noise from the search output. A database search with a cDNA sequence containing a long poly-
A stretch is a good example of the usefulness of a filter. Without filtering, or physically deleting
the poly-A sequence, such a search would return thousands of statistically significant but unin-
teresting hits to the polyA region that could mask potentially interesting alignments. The filter-
ing program for nucleic acid queries of nucleic acid databases (BLASTN) is called DUST and
was written by Tatusov and Lipman (unpublished). DUST replaces low complexity nucleotide
sequences with N’s that are ignored by BLAST. All other BLAST programs use the SEG algo-
rithm (Wootton and Federhen, 1996) to filter proteins for low complexity protein regions (for
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example stretches of glutamines or prolines) replacing those residues with an X (see
the example in Fig. 8A). Note that filtering is only applied to the query sequence,
not to database sequences. Filtering can be turned off when desired in both BLAST
and NetBLAST. (For further discussion on the effects of filtering tools on database
searching, see “Suggested Readings,” Shpaer, et al.)

The BLAST output in GCG is essentially comprised of a text file containing a list
of sequences and a number of alignments (see Fig. 7B). The length of the list and the
number of alignments in the output can be controlled in the options menu SeqLab or
at the command line (—LIStsize=1000 —ALIgnments=500). The output also con-
tains two different score values, which can aid evaluating aligned sequences. The first
is called the bit score, which is presented as a whole number and represents the prob-
ability of finding the same alignment by chance. The bit score is the n in the formula 1/
2n. If the bit score is 30 then the chance of finding the same sequence randomly would
be 1 in 230 or 1 in a billion. A higher bit score is better than a lower one. Importantly,
the bit score is independent of the size of the database searched. This can be important
when comparing hits in a small database such as your personal sequence database and
a large database like the GenEMBL ESTs. The other score given is the expected (E)
value, which is also an expression of the probability of finding the same match by
chance and is expressed as a number such as 5e-48 (5 × 10–48). The E value is however
dependent on the size of the database being searched. A lower E value score indicates
a better match, with 0 being a perfect match.

FastA Suite/SSearch/FrameSearch
In the toolbox analogy the FastA/SSearch/Framesearch programs would be like a

set of crescent wrenches; they come in all different sizes, both metric and imperial,
and one has to find the right wrench for the job at hand. These tools are best for
comparing protein sequences (or translated nucleotides) with protein databases (or
translated nucleotide databases). They are better than BLAST at answering the ques-
tion: What sequences in the database are distantly related to my input sequence?

The reason FastA and SSearch/Framesearch are grouped together is that they are
slower, yielding more sensitive searches of the databases, yet similar output. How-
ever, these programs are different in terms of the algorithms used to find sequence
matches. The FastA programs use the algorithm of Pearson and Lipman (1988),
whereas SSearch and FrameSearch use the Smith and Waterman (SW) algorithm. The
Pearson-Lipman and SW algorithms have been extensively compared using different
scoring matrices and in most instances the SW algorithm appears to be more sensitive
than Pearson and Lipman for protein-protein searches. However, FastA programs are
much faster than SW (see Table 3). It is possible to search subsets of sequences rather
than entire databases. This can dramatically increase performance if one is interested
in a particular protein family.

Like BLAST, FastA and Smith-Waterman (SW) searches come in several different
flavors (see Table 3), specific to the type of search you want to execute. FastA and
SSearch compare nucleotide queries against nucleotide databases and protein queries
against protein databases. Both SSearch and FrameSearch are extremely slow when
searching large databases for nucleotide-nucleotide comparisons (see Table 3). TFastA
and TFastX compare protein queries against nucleic acid databases by translating the
database sequences into all 6 frames (3 forward and 3 reverse). TFastX is probably
more useful than TFastA in that it allows for frame-shifts in the alignment. Finally,
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FastX compares a nucleic acid query, translated in all 6 frames, against a protein data-
base. FrameSearch is similar to a combined FastX and TfastX search in that a trans-
lated nucleotide query can be compared to a protein database or a protein query can be
compared to a translated nucleotide database.

The output of the FastA programs and SSearch are quite similar. At the top of the
output is a histogram showing the distribution of z-scores between the query
sequence and the database sequences (see Fig. 8A) followed by the sequence list
and alignments in the same file (see Fig. 8B). The histogram illustrates the number
of z-scores expected (indicated by an asterisk) and the actual scores observed (bars
of equal signs) for each value. This may be useful in some cases to determine whether
the observed similarity is statistically significant. The histogram search results usu-
ally show a normal distribution, with a small number of very high scores at the
bottom. The majority of alignments to database entries will be in the random noise
at lower z-scores (the large peak). A second peak, inset at the bottom right, indicates
the same region as it overlaps on the main histogram but at a lower scale (see the
histogram key to see how many sequences each equals sign represents). It is the
inset peak that one should examine for the presence of sequence entries with signifi-
cant z-scores (i.e., the asterisk appears to the left of the equals sign). In summary,
the histogram is a visual summation of whether the alignments that appear below in
the output may be significant. In the example used the histogram indicates a slightly
higher than expected number of hits in the z-score range from 44–56 and 92–116
(see Fig. 8A). This reflects the low complexity regions of the query which identified
more sequences in the database than would be expected statistically. However, by
manually filtering the complexity regions using the GCG programs Xnu or Seg prior
to searching one could ensure that these low complexity regions do not mask the
truly interesting relationships (see Fig. 8C).

The remaining portion of the output appears very much like a BLAST output with
a list of sequences sorted by score followed by the sequence alignments (see Fig. 8B).
There are 3 scores reported in the sequence list: 1) the s-w score (in SSearch) or opt
score (in FastA) is the Smith-Waterman pairwise alignment score derived from the
sum of the scoring matrix values at each position in the alignment. 2) The z-score,
which is calculated by linear regression of the s-w score with the natural log (ln) of the
length of the matching sequence from the database. 3) The E-value score for each
sequence indicates the number of sequences that would have to be searched to give a
z-score equal to the z-score obtained for that sequence match by random chance. It is
similar to the E-value score described for BLAST. The output is sorted by the E-value
in the sequence list and alignments. It is stated in the GCG program manual that for
searches of a protein database of 10,000 sequences, an E-value of less than 0.01 indi-
cates similarity to the query sequence and that E-values between 1 and 10 may also
indicate relatedness (homotogy). The Smith-Waterman program does a better job of
aligning two DNA sequences than FastA therefore it is suggested that the option Use

Fig. 8. The SSearch/FastA output. (A) (opposite page) The histogram showing the distribution of
z-scores over all the data in the database. The equal-signs indicate the actual scores whereas the
asterisks indicate the expected. Note that in this search the actual score is higher than the expected
for most of the z-scores. This is because the sequence contains low complexity regions that were not
screened out before the search (see C). In the inset histogram (bottom right) the higher z-score values
are indicated at a lower scale than the main histogram (Main: 1equals-sign represents 166 database
sequences. Inset 1 “=” represents 3 database sequences). (Continued on pages 480 and 481)
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the Smith-Waterman algorithm for final DNA-DNA alignment be chosen when
running this type of search in Fast A.

The alignments in the FrameSearch output (see Fig. 9A) show the alignment of
codons (nucleic acid) aligned with amino acids (using the 3-letter code) with identi-
ties indicated by a line (|) and conservative changes indicated by a semi-colon (:) and
a period (.) to indicate comparison values equal to at least +1. The problem with this
type of alignment is that when the codon and amino acid residue are not identical it
can be laborious to determine the identity of the amino acid in the nucleotide strand,
unless of course you have memorized the entire codon table.

The histogram created by the Framesearch program appears in a separate file and
looks quite different from the FastA/SSearch plots (see Fig. 9B). If you execute
FrameSearch from the SeqLab interface, by default the output will not contain a
histogram. It will only give a list of sequences sorted by the Smith-Waterman (s-w)
score. However, the creation of a separate output file containing a histogram of the
score distributions in the database can be selected in the options window (when run
from the command line production of the histogram is on by default). The advantage
of this graph is that an asterisk indicates the lowest scoring sequence in the list of
returned hits and therefore allows one to rapidly determine if other sequences in the
database may have significant similarity.

Fig. 8. (Continued from page 478) The SSearch/FastA output. (B) (opposite page) The list portion
of the output showing the 3 significance scores. In FastA the s-w score is called the opt score. (C) The
SeqLab editor window showing the protein sequence (single letter codes) used in this SSearch as it
was retrieved from the database and after masking low complexity regions using the GCG programs
Xnu (xnu_93) or Seg (seg_94). Two regions of low complexity sequence at the N-terminal portion of
the protein were screened out (replaced by X’s).



482 — Heard



GCG Database Searching — 483

Rules for Effective Database Searching

Dr. William R. Pearson outlined a series of rules for database searching. These are
paraphrased with additional comments and other useful rules:

1. To determine if your sequence already exists in the databases, use the BLAST
program as it is by far the fastest and most flexible search program. When
searching large eukaryotic genomic DNA or EST sequences with mRNA or
cDNA queries, use gapped BLAST rather than FastA or SSearch. Eukaryotic
genes are made up of both exons and introns and mature mRNA only contains
the exons. Only gapped BLAST will return alignments for several exons spread
over large areas of genomic DNA, whereas FastA and Ssearch will find only
the single best local alignment.

2. Whenever possible compare sequences at the amino acid level. If the protein
sequence is known, use it to search the protein databases (FastA, SSearch).
Alternatively, use a translated nucleotide vs protein search (FastX, BLASTX).
Searching protein vs. protein will allow the discovery of more evolutionary
related distant sequences than DNA vs DNA.

3. Search the smallest, best annotated sequence database before the large poorly
annotated sequence databases. I refer to these databases as information rich vs
information poor databases. Information rich databases tend to be well-curated,
highly annotated, and nonredundant (i.e., Swissprot, PIR, GenBANK refseq)
and have fewer partial sequence fragments, sequence errors, redundancies as

Fig. 9. Results of a FrameSearch of a DNA query vs a protein database. (A) (opposite page) Note
that the query is indicated as a nucleotide sequence rather than a translated protein and the amino-
acid sequence of the proteins found in the database is shown using the 3-letter code to overlap with
each codon. (B) The distribution histogram of the FrameSearch in (A). The asterisk (*) indicates the
lowest score in the list of sequence hits.
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high-throughput or low quality sequence found in the whole GenEMBL,
dbEST, or High Throughput Genomic (HTG) databases. In some instances it
may be worthwhile to create subsets of existing databases (i.e., GeneEMBL
coding sequences) using tools such as the Lookup program to improve the
chance of success and performance.

4. Use statistics rather than percent similarity scores to judge the quality of a
sequence match. Sometimes a sequence can be 100% identical but still insignifi-
cant if it is short, or consists of low sequence complexity. Matches with 50%
similarity over regions of 20–40 amino acids occur often by chance.

5. For protein query sequences use sequence-masking programs such as Seg or
Xnu to remove regions of low complexity before running your search using
FastA or SSearch.

6. When evaluating the search results of sequences with a low similarity score,
check that the statistical analysis is accurate by randomizing the query sequence
using the GCG program Shuffle. Randomized sequences should have a lower
E-value than the query sequence.

7. Try using different scoring matrices, gap opening, or extension penalties. When
searching with long query sequences, changing the scoring matrix will not dra-
matically alter the results. However when using shorter sequences to query the
database, use of more stringent matrices (Blosum 80, PAM 30) may help identify
similar sequences.

Putting the Search Output to Work for You

The output files of all the database search programs described in this chapter are
in a special GCG format called a list file. List files can be used to enter all the
sequences in a list directly into the SeqLab Main or Editor windows and can be used
as input to many different GCG programs. In SeqLab, when a database search result
appears in the Output Manager window one simply selects the file of interest and
clicks the button Add to Main List. Alternatively, the list can be opened from the
main window by clicking the File pull down menu and Open List or used directly
from the command line of different GCG programs. Now all the sequences identi-
fied by your search program are available for further GCG sequence analysis, using
programs like multiple sequence alignment and pairwise alignment. An example of
how to utilize this capability to full advantage is to perform a BLAST search with a
sequence of interest, import the BLAST output into the GCG main window, and
execute a multiple sequence alignment on the BLAST results. One can then import
the file of aligned sequences into the SeqLab Editor window to view the alignment
in color.

Another important but virtually unknown feature of the GCG software is that the
list files (and other GCG files including rich sequence format, RSF, files) can be used
to create personal databases. The program Dataset converts a group of sequences into
a GCG-formatted database. The databases thus created are compatible with other GCG
programs including Stringsearch, FastA/SSearch, the DatabaseBrowser, and many oth-
ers. In the SeqLab interface the DataSet program appears in the menu Functions>
Utilities>Database Utilities. To use this program, one simply selects the sequences
from the main window and opens the dataset window. Once the database is created, it
appears automatically in your personal SeqLab interface. Dataset can also be used
from the command line and the newly created database specified at the command line
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for any GCG search except BLAST. Note that both Lookup and BLAST programs
require databases in specific formats distinct from the normal GCG-formatted flat-file
database. A database created using Dataset can be made available to everyone using
the GCG software, however the systems administrator has to update certain GCG sys-
tem files. The 6 files created by Dataset appear in the current working directory or can
be sent to another directory using the program options or command line. Once created
the files cannot be moved or renamed unless their location is edited in your .datasetrc
file, which appears in your home directory. See the GCG Program Manual or GCG
help for a more complete description of this program.

The BLAST program requires a database with a different format than a normal
GCG database. GCG has provided a program similar to dataset to create BLAST data-
bases. The program, GCGtoBLAST, is found in the same menu as dataset and works
in much the same manner. However, unlike dataset, GCGtoBLAST does not auto-
matically update the SeqLab files so that you can use your personal BLAST database.
It is very likely that in order to access this database you will have to ask your systems
administrator to update the file BLAST.lbds in the GCG directory (the path to this file
is ../gcg/gcgcore/data/rundata/BLAST.lbds). To install the new BLAST database
called, for example, cancer_genes_BLAST, the full path to the database and the data-
base name must be entered into this file in the following format path/databasename
database-type (protein = p, nucleotide = n), and any comment you want. For
example my database would have the following entry in the BLAST.lbds file:

/export/home/david/databases/cancer_genes_BLAST n Genes involved in cancer

This database will be visible to anyone using GCG but may not be readable by them
if the Unix file permissions are set that only you can read from the files. It is probably
easier to set up your own GCG-formatted databases rather than BLAST databases, but
if you are undertaking very large sequence projects or only searching subsets of the
GenBANK databases it may be worthwhile.
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Glossary and Abbreviations

Algorithm  A step-by-step procedure for solving a problem or accomplishing some
end especially by a computer.

Bit score  Used in BLAST searches the bit score represents the probability of find-
ing the same alignment by chance. The bit score is the n in the formula 1/2n. A higher
bit score indicates a better alignment. Bit scores are independent of the size of the
database being searched.

Database  A collection of records of similar content that can be easily accessed and
managed.

Database Indexing  The process of extracting different pieces of data in from flat-
file database into separate files that can be searched individually and used to find the
original record.

Database Records  Pieces of data that are not related to one another in a struc-
tured way.
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E-value  The E-value score for each sequence indicates the number of sequences
that would have to be searched to give a similar bit or z-score score obtained for that
sequence match by random chance. A lower score is better with 0 being the best. The
E-value takes into account the size of the database being searched.

Flat-file  A database file containing a number of database records.
Foreign Key  A piece of data in a relational database table that is the primary key

of another table in the same database.
Global Alignment  The detection of global similarities over the entire length of

two or more sequences.
Local Alignment  The detection of local or short regions of similarities in portions

of two or more sequences.
Low Complexity  Complexity is the probability of finding a particular amino acid

at a particular position in a protein and is proportional to the composition of the whole
sequence. For example in a complex protein, 10 prolines in a row are unlikely and
therefore of low complexity. The same idea can apply to nucleotide sequences.

Primary Key  The most important piece of data in a relational database table.
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29Pattern Discovery
Methods and Software

Brona Brejová, Tomás Vinar, and Ming Li

Introduction

A pattern is a feature that occurs repeatedly in biological sequences, typically more
often than expected at random. Patterns often correspond to functionally or structur-
ally important elements in proteins and DNA sequences. Pattern discovery is one of
the fundamental problems in bioinformatics. It has applications in multiple sequence
alignment, protein structure and function prediction, drug target discovery, character-
ization of protein families, and promoter signal detection.

Regions important to the structure or function of the molecule tend to evolve more
slowly. In particular an occurrence of a conserved motif in a protein may imply that
this region may be involved in the interaction with some other protein, may comprise
the active site of an enzyme, or may be important for the tertiary structure of the
protein. Attempts have been made to organize proteins and protein domains from
different organisms into families based on their evolutionary relations, and structural
and functional similarity. Sequences in one family often share one or several com-
mon motifs and these motifs are used to characterize the family. Several databases
containing motifs characterizing protein families have been established. Newly dis-
covered proteins can be assigned to a family by searching a database of motifs. We
may then associate the function or structure to the new protein based on the knowl-
edge we have about the other members of the family.

Nucleotide sequences outside of protein coding regions tend to be less conserved,
except where they are important for function, that is, where they are involved in the
regulation of gene expression. Some regulatory elements are located in promoter
regions upstream from genes. Identifying promoters in genomic sequences is diffi-
cult, especially in eukaryotic genomes because they do not have a common core
promoter, but rather consist of multiple regulatory factors distributed over long dis-
tances. Adding to the complexity is low number of availab le annotated promoters.
The best programs are only able to identify about half of eukaryotic promoters.

If a pattern characteristic for a binding site of a certain transcription factor is known,
we can find occurrences of this pattern in promoter regions of known genes. This
helps us to understand how these genes are regulated, under which conditions they are
transcribed, and may even help to infer a function of a gene.

New binding motifs of transcription factors can be discovered by considering
upstream regions of co-regulated genes and identifying motifs that occur in these

ˆ ˆ
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regions more frequently than elsewhere. For example groups of co-regulated genes
can be identified by analyzing gene expression data. Provided that a transcription
factor is conserved between two species, we may discover its binding sites by iden-
tifying conserved sequences in promoter regions of these two genomes.

Related molecules, usually proteins or RNA, sometimes do not display significant
similarity at the sequence level. However, significant similarity can be found in their
secondary or tertiary structure. Discovery of structural motifs in proteins and RNA
molecules has also been studied, but this work is beyond the scope of this chapter.

The availability of several fully sequenced genomes has enabled scientists to iden-
tify homologies shared between two genomes. Such conserved regions are likely to
correspond to functionally important elements. This information has been applied to
predict genes, discover new regulatory elements, and reveal evolutionary relation-
ships between species and types of evolutionary changes to genome organization.
Identifying possibly long similarities between two long sequences can be considered a
special case of pattern discovery, yet the large amounts of data require special consid-
eration from the computer science point of view.

In this chapter, we introduce the basics of algorithms used to discover patterns.
We also discuss the goals of such algorithms and how to statistically verify their
results. Many programs for pattern discovery and databases of biologically relevant
patterns are available. We provide an overview and links to these important tools in
a supplement located in the accompanying CD-ROM.

Pattern Discovery

What is a Pattern
A pattern is an element that has multiple occurrences in a given set of biological

sequences. In this section we outline how to represent a pattern. Probably the simplest
representation of a pattern is a list of its occurrences in the given sequences which is
sufficient to specify the pattern. However, it is not convenient for further use as it is
difficult to decide whether or not a new sequence contains occurrences of the pat-
tern. Therefore we usually represent a pattern by describing properties shared by all
its occurrences. Such representation is more succinct and allows easier searches for
new occurrences.

Deterministic Patterns
The simplest kind of a pattern is a consensus sequence. For example TATAAAA is

the TATA box consensus sequence. Whenever we find string TATAAAA we say it is an
occurrence of this pattern. Of course not all such occurrences correspond to a real TATA
box and not every TATA box perfectly matches the consensus. The latter of these two
problems can be solved by allowing a certain degree of flexibility in the pattern. This
can be achieved by adding some of the following frequently used features.

Let Σ be the alphabet of all possible characters occurring in the sequences (i.e., Σ =
{A,C,G,T} for DNA sequences and Σ is a set of all 20 amino acids for protein sequences).

• An ambiguous character matches any character from a subset of Σ. Such a subset
is denoted by a list of its elements enclosed in square brackets. For example,
[LF] is a set containing L and F. A-[LF]-G is a pattern in a notation used in
PROSITE database. This pattern matches 3-character subsequences starting with
A, ending with G and having either L or F in the middle.
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For nucleotide sequences there is a special letter for each set of nucleotides,
where:

R = [AG], Y = [CT], W = [AT], S = [GC], M = [AC], K = [GT], B = [CGT],
D = [AGT], H = [ACT], V = [ACG], N = [ACGT]

• Wildcard or don’t care is a special kind of ambiguous character that matches any
character from Σ. Wildcards are denoted N in nucleotide sequences, X in protein
sequences. They may also be denoted by a dot '.'. A group of one or several con-
secutive wildcards is called a gap and patterns allowing wildcards are often called
gapped patterns.

• Flexible gap is a gap of variable length. In the PROSITE database it is denoted by
x (i,j) where i is the lower bound on the gap length and j is an upper bound. Thus
x (4,6) matches any gap with length 4, 5, or 6. Fixed gap of length i is denoted x (i)
(e.g., x (3) = xxx ). Finally * denotes a gap of any length (possibly 0).

String F-x (5)-[LF]-x (2,4)-G-*-H is an example of a PROSITE pattern containing
all of the above features.

Patterns with Mismatches

One can further extend the expressive power of deterministic patterns by allow-
ing a certain number of mismatches. The most commonly used type of mismatches
are substitutions. In this case subsequence S matches pattern P with at most k mis-
matches, if there is a sequence S' exactly matching P that differs from S in at most k
positions. Sometimes we may also allow insertions or deletions, i.e., the number of
mismatches would be an edit distance between the substring S and a closest string
matching the pattern P.

Position Weight Matrices

So far we have explored only deterministic patterns. A deterministic pattern either
matches the given string or not. However, even the most complicated deterministic
patterns cannot capture some subtle information hidden in a pattern. Let us assume we
have a pattern. The first position is C in 40% cases and G in 60% cases. The ambigu-
ous symbol [CG] gives the same importance to both nucleotides. It does not matter in
strong patterns, but it may be important in weak patterns, where we need to use every
piece of information to distinguish the pattern from a random sequence.

Probabilistic patterns are probabilistic models that assign a probability to each
sequence that was generated by the model. The higher the probability, the better the
match between the sequence and the pattern.

The simplest type of probabilistic pattern is a position-weight matrix (PWM).
PWMs are also sometimes called a position-specific score matrix (PSSM), or a profile
(however, term profile is also used for more complicated patterns allowing gaps).
PWM is a simple ungapped pattern specified by a table. This table shows the relative
frequency of each character at each position of the pattern (see Fig. 1 for an example).

Assume that the pattern (i.e., PWM) has length k (number of columns of the table).
The score of a sequence segment x1 . . . xk of length k is

Π
i=1

k A xi,i

f xi
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where A [c,i] is the entry of position weight matrix corresponding to position i of the
pattern and character c, and f (c) is the background frequency of character c in all
sequences considered. This product represents the odd-score that the sequence seg-
ment x1 . . . xk belongs to the probability distribution represented by the PWM.
In order to simplify the computation of the score we can store log-odd scores
A'[c,i] = log2 A[c,i]/f (c) in a table, in place of using frequencies A[c,i]. Then the
following formula yields the log-odd score:

Σ
i=1

k
A′ xi,i

Position-weight matrices can be visualized in the form of sequence logos (see
Fig. 1). Each column of a sequence logo corresponds to one position of the pattern.
Relative heights of the characters in one column are proportional to the frequencies
A[c,i] at the corresponding position of the pattern. At each position, the characters
are ordered according to their frequency, with the most frequent character on top.
Each column is scaled so that its total height is proportional to the information con-
tent of the position, computed as:

log2 |Σ| + Σ
c

A c,i log2 A c,i

Note: log2 |Σ| is added to obtain positive values. It is dependent on the size of alpha-
bet Σ. Sequence logos have been developed further to consider background distribu-
tion and to invert characters that occur less frequently than expected.

An examination of a sequence logo reveals the most conserved positions (highest
columns) and consensus characters at all positions (highest letter in the column).
The size of characters in different columns cannot be directly compared.

Stochastic Models
The patterns discussed thus far are explicit in the sense that the user can easily see

important characteristics of the occurrences of a pattern. Sometimes it is advanta-
geous to represent a pattern in a more implicit form, usually as a discrimination rule,
to decide whether a given sequence is an occurrence of the modeled pattern or not. It
can be based on a stochastic model, such as Hidden Markov Model (HMM), or can
employ machine learning methods, such as neural networks.

Fig. 1. Position weight matrix of vertebrate branch point in the form of a table and corresponding
visual representation as a sequence logo. The sequence logo was created using RNA Structure Logo,
an on-line tool available at Website: http://www.cbs.dtu.dk/gorodkin/appl/slogo.html.
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It is questionable whether such rules constitute a pattern at all. Obviously, they can
be trained (pattern discovery) and then they can be used for discrimination (pattern
matching). Therefore, they are applicable in pattern-related tasks such as protein fam-
ily classification and binding site discovery. In some cases (such as HMMs with simple
topology) it is even possible to obtain some information about the pattern modeled.
For example, the relative frequencies of characters at individual conserved positions.

Pattern Discovery vs Pattern Matching
There are two fundamentally different tasks related to identifying new patterns in

biological sequences. The first one is called pattern matching. This finds new occur-
rences of a known pattern. Many consensus sequences are known in biology and it is
important to have tools that will allow one to find occurrences of known patterns in
new sequences.

There are specialized software tools for pattern matching. Some are quite general,
i.e., they allow the user to specify a pattern as part of the input in a specific form.
Others are built to recognize only one pattern. Many specialized tools are available for
recognizing splicing signals, different regulatory elements, and special structural ele-
ments. Authors of such specialized tools fine-tune the parameters of the system to
increase the accuracy of the prediction.

Although pattern matching is very important, we will concentrate on a different
kind of pattern-related problem, called pattern discovery. The task is to identify a new
pattern in a set of several sequences.

The input for pattern discovery programs consists of several sequences, expected
to contain the pattern. Input sequences are typically related in some way, e.g., they
are members of the same protein family, functionally related sequences, or upstream
regions of co-regulated genes.

Goals of Pattern Discovery
The goal of pattern discovery is to identify an unknown pattern in a given set of

sequences. There are a great number of potential patterns and it is often difficult to
decide which of them are the most promising. Defining the best pattern depends on the
intended use of the pattern. We will consider two possible scenarios: 1) classification,
i.e., we want to characterize members of some sequence family and distinguish them
from nonmembers, and 2) identification of significant patterns, i.e., we want to dis-
cover patterns that are unlikely to occur by chance and would therefore probably have
functional or structural significance.

Classification
In a classification scenario we want to identify motifs that best characterize a given

protein family. The motifs thus identified are then used as classifiers. For example,
given an unknown protein we can classify it as a member or nonmember of a family,
based on whether it contains the motifs characteristic for that family. This is a typical
machine learning problem: given a set of sequences belonging to the family (positive
examples) and a set of sequences not belonging to the family (negative examples),
find a function f, which decides for each protein whether or not it belongs to the fam-
ily. In the context of motif discovery we consider classes of functions f, that match
some discovered patterns against the unknown sequence. Note, that negative examples
are simply other known proteins taken from protein databases such as SWISS-PROT.
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The common strategy in pattern discovery is to use only positive examples. The
most significant motif in the family is found in a hope that it will not occur else-
where. Negative examples are only used to evaluate the prediction. Thus, the task is
converted to the second scenario, described in the following.

Identifying Significant Patterns

Motif discovery is not always formulated as a classification problem. For example
let’s identify a regulatory element in a set of regions likely to contain this element.
However, it does not mean that this element cannot occur in other places in the
genome or that all of these sequences must contain a common regulatory element.
We are also interested in identifying conserved regions (protein family motifs) that
may indicate structurally or functionally important elements, regardless of whether
they have enough specificity to distinguish this family from other families. In this
context it is more complicated to precisely formulate the question.

The usual approach is to find the highest scoring pattern within a well-defined
class of patterns (e.g., PROSITE patterns, see Subheading “What is a Pattern?”),
that has sufficient support. Various approaches use different scoring functions and
support measures and consider different classes of patterns. Support of a pattern is
usually the number of sequences in which the pattern occurs. We can require that
the pattern should occur in all sequences or there is a minimum number of occur-
rences specified by the user. In some cases the number of occurrences is not speci-
fied but it is a part of the scoring function. A longer pattern with fewer occurrences
is sometimes more interesting than a shorter pattern with more occurrences. The
situation is more complicated in the case of probabilistic patterns, such as HMMs.
Deterministic patterns either match the sequence or not (zero or one), whereas
probabilistic models give a probability between 0 and 1. Therefore, there are dif-
ferent degrees of matching. It is necessary to set some threshold on what should be
considered a match or to integrate these matching probabilities to the scoring
scheme.

Methods for scoring patterns also differ. A score can reflect the pattern itself
only (e.g., its length and degree of ambiguity), or it can be based on the occurrences
of the pattern (their number, how much these occurrences differ from the pattern).
Scoring functions are sometimes based on statistical significance. For example, we
may ask: what is the probability that the pattern would have so many occurrences if
the sequences were generated at random? If this probability is small, the pattern is
statistically significant. (For a more detailed discussion of statistical significance of
patterns, see “Assessment of Pattern Quality” in this chapter.) The goal of an algo-
rithm is to find the highest scoring pattern, or to find several best scoring patterns,
or all patterns with some predefined level of support and score.

Algorithms for Pattern Discovery
Exhaustive Search

Many computer science problems related to pattern discovery are computationally
hard tasks. One cannot hope to find a fast algorithm that would guarantee the best
possible solution. Thus, many approaches are based on the exhaustive search. Although
such algorithms in the worst case may run in exponential time, they often use sophisti-
cated pruning techniques that make the search feasible.
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Enumerating All Patterns
The simplest exhaustive search works as follows. All possible patterns satisfying

constraints given by the user are enumerated. For each pattern the program finds each
occurrence in the input sequences and based on these occurrences assigns a score or
statistical significance to the pattern. We can then output patterns with the highest
score or all patterns with scores above some threshold. For example, if we want to
identify the most significant nucleotide pattern of length 10 with at most 2 mismatches,
we can enumerate all possible strings of length 10 over the alphabet {A,C,G,T} (there
are 410 = 1,048,576 such strings). Each string is a potential pattern. We find all occur-
rences with at most 2 mismatches in the input sequences and compute the score. We
report the pattern with the highest score.

This method is suitable only for short and simple patterns, because the running
time increases exponentially with the length of the pattern. The number of possibili-
ties is even larger if we allow patterns to contain wildcards, ambiguous characters,
and gaps. On the other hand, the advantage of this method is that with increasing
length of the input sequences the running time usually increases linearly. Therefore
the enumeration approach is suitable for identifying short patterns in large data sets.

An exhaustive search is guaranteed to identify the best pattern. We may easily out-
put an arbitrary number of high scoring patterns, we may also choose relatively compli-
cated scoring functions, providing that they can be easily computed based on the pattern
and its occurrences. We can also allow mismatches, even insertions and deletions.

Application of Enumerative Methods
Many protein binding sites in DNA are actually short ungapped motifs, with cer-

tain variability. They can be quite well-modeled with simple patterns allowing a
small number of mismatches. Therefore we can apply exhaustive searches to iden-
tify these types of binding sites. Simplicity of the exhaustive search allows one to
develop sophisticated methods for pattern statistical significance estimation.

Enumerating Gapped Patterns
In some contexts it is more reasonable to search for patterns with gaps. MOTIF is

an example of such system. MOTIF finds patterns with 3 conserved amino acids
separated by two fixed gaps (for example A. . .Q. . . . I). The gaps can have length
0,1, . . . ,d where d is a parameter specified by the user. The number of possible pat-
terns is 203d2. MOTIF does not allow any mismatches, but the pattern does not need
to occur in all sequences.

If the sequences contain a conserved region of more than 3 positions, there will be
many patterns, each containing a different subset of the conserved positions from this
region. Therefore, in the following step the algorithm removes the patterns occurring
close to each other. For each of the remaining patterns all occurrences of the pattern
are aligned. Based on the alignment the pattern is extended by finding a consensus in
the columns of the alignment. Patterns are also extended to both sides where possible.

Pruning Pattern Enumeration
If we want to identify longer or more ambiguous patterns, we cannot use a straight-

forward exhaustive search. For example, assume that we want to identify a long
ungapped pattern occurring (possibly with some mismatches) in at least k sequences.
We will start from short patterns (for example patterns of length 1) that appear in at
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least k sequences and extend them while the support does not go below k. In each step
we extend the pattern in all possible ways and check whether the new patterns still
occur in at least k sequences. Once we obtain a pattern that cannot be extended with-
out loss of support, this pattern is maximal and can be written to the output. This
search strategy is actually a depth first search of a tree of all possible sequences (see
Fig. 2). We prune branches that cannot yield supported patterns.

Improvements of this kind perform well in practice. However, in the worst-case
scenario the running time can still be exponential. The main advantage of such
improvements is that they allow a search for longer and more complicated patterns
than a simple exhaustive search. Examples of this strategy include the Pratt algorithm
described in detail below and the first scanning phase of TEIRESIAS algorithm.

Pratt
Pratt is an advanced algorithm based on applying the depth first search to a tree of

patterns. Pratt discovers patterns containing flexible gaps (with a lower and upper
bound of the gap length) and ambiguous symbols. Each pattern discovered is required
to exactly match at least some predetermined number of sequences. The user has to
specify several parameters that restrict the type of patterns. These include the maxi-
mum total length of the pattern, maximum number of gaps, maximum number of flex-
ible gaps, and set of allowed ambiguous symbols.

To reduce the size of the output and the running time, the program does not report
patterns that are less specific than other discovered patterns. Here pattern A is more
specific than pattern B, if any sequence that matches A must also match B (for
example, B is less specific if it can be obtained from A by replacing nonambiguous
characters with ambiguous characters, or making a gap more flexible). This is achieved
by a special scoring function that gives a higher score to more specific patterns.

In each step of the depth first search, we take an existing pattern with sufficient
support and we add a gap (possibly of length 0) and another character or ambiguous

Fig. 2. One way to improve an exhaustive search is to search in a tree of all possible patterns.
When we discover a node corresponding to a pattern that does not have enough support, we do not
continue to search its subtrees. Dashed nodes do not have enough support. Bold nodes are patterns
that cannot be further extended.
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character. All such possibilities are tried. New patterns without sufficient support
are then discarded. This uses a special data structure that makes the search faster.
Additional optimizations are carried out by discarding patterns that cannot be extended
to the most significant pattern.

The Pratt algorithm is guaranteed to find the pattern with the highest score when no
flexible gaps are allowed. If we allow flexible gaps, the returned pattern may not be
the highest scoring since a heuristic is used to speed up the search.

Exhaustive Search on Graphs
Not all exhaustive search methods enumerate all relevant patterns. It is also pos-

sible to enumerate all combinations of substrings of given sequences that can be pos-
sible occurrences of a pattern. Assume we have n sequences and we want to identify a
pattern of given length L, that occurs in all sequences with at most d mismatches. Then
any two occurrences of such a pattern differ at most in 2d positions, because they both
differ from the pattern in at most d positions. Therefore, we can identify the pattern by
finding a group of n substrings of length L, each from a different sequence, such that
any two substrings differ in at most 2d positions.

This can be formulated as a problem in graph theory as follows. Each substring of
length L will be a vertex of a graph G. Vertices corresponding to two substrings will be
connected by an edge if the substrings are taken from different sequences and differ in
at most 2d positions (see Fig. 3A). This graph is n-partite. This means that it can be
partitioned to n partitions so that there is no edge between vertices in the same parti-
tion. In this case partitions correspond to individual sequences. We want to find a set
of n vertices such that any two vertices are connected by an edge. Such a set of vertices
is called a clique.

The problem of finding a clique is known to be NP-hard. NP-hard problems are
computationally difficult problems. There is no known algorithm for solving an NP-
hard problem in polynomial time. One way to find a clique is to enumerate combina-
tions of vertices and test each combination for being a clique. Such an approach has an
exponential running time because there are many possible combinations. In order to
make the software practical we need to add careful pruning. This eliminates large
groups of vertex combinations that are guaranteed not to contain a clique.

The WINNOWER algorithm eliminates combinations by first modifying the
graph itself. It attempts to reduce the number of edges in the graph, removing only
edges that cannot be part of any clique of size n. In this way we may obtain a graph
with less edges that will be easier to search for a clique.

Even if we find a combination of n substrings of length L, each pair differing in at
most 2d positions, it does not guarantee that we have found a pattern. For example
assume that we want a pattern of length L = 4 with at most one mismatch and we have
found the following 3 occurrences: AAAA, BBAA and CCAA. Any two occurrences
differ in exactly 2 = 2d positions, but there is no pattern that would differ from each
occurrence in at most one position. However, we may assume that this would not hap-
pen very often and that most combinations found will actually correspond to a pattern.

Usually the user wants to know the set of occurrences and the corresponding pat-
tern. One way to identify the pattern is to enumerate all patterns that occur within
distance d from one chosen occurrence. There are at most L

d  (|Σ| – 1)d such patterns.
This number is exponential in d but not in L and d is typically small. For each possible
pattern we verify whether it is within distance d from all other occurrences as well.
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The search can be further pruned by using knowledge about the other occurrences.
Alternatively we can use the set of occurrences as a starting point for Gibbs sam-
pling or other iterative methods (see “Gibbs Sampling” and “Other Iterative Meth-
ods”). This is of course not guaranteed to find the pattern with specified parameters,
even if one exists.

Creating Long Patterns from Short Patterns
A pattern cannot be significant unless it is sufficiently long. However long pat-

terns are more difficult to identify using enumerative techniques. One possible
approach to identifying long patterns is to start with shorter patterns and then com-
bine them together. Perhaps the most elegant example of such an algorithm is
TEIRESIAS. This algorithm is based on a well-organized exhaustive search through
possible combinations of shorter patterns. In the worst case the algorithm runs in
exponential time, but in practice it works very well. Further effort has yielded a dif-
ferent algorithm that runs in polynomial time (see “Improvement of Running Time”).

TEIRESIAS Algorithm
TEIRESIAS searches for so-called (L,W) patterns (L and W are constants specified

by the user). Pattern P is an (L,W) pattern if it meets the following criteria:

• P consists of characters from Σ and wildcards '.'

• P starts and ends with a character from Σ (i.e., non-wildcard)

• Any substring of P that starts and ends with a non-wildcard and contains
exactly L non-wildcards has a length W at most (this condition is called density
constraint).

The density constraint eliminates patterns with long stretches of wildcards. Con-
sider for example L = 3 and W = 5. String AF. .CH. .E is a valid (3,5) pattern, however
string AF.C.H. .E is not (substring C.H. .E has length 6).

MAXIMAL PATTERNS

TEIRESIAS discovers all (L,W) patterns that occur in at least K input sequences
(K  2 is also specified by the user). However, out of several patterns having the
same set of occurrences it outputs only one pattern. This is selected as follows.

Fig. 3.  (A) shows the graph corresponding to the depicted set of sequences. (B) shows the same
graph after removing edges with the WINNOWER algorithm. This graph contains exactly one clique
corresponding to pattern abc.
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Pattern P is said to be more specific than pattern Q if Q can be derived from P by
removing several (possibly 0) characters from both ends of P and replacing several
(possibly 0) non-wildcards with wildcards. For example AB.CD.E is more specific
than AB. .D.

If pattern P is more specific than pattern Q, then every occurrence of P is also an
occurrence of Q. If Q has the same number of occurrences as P, it is not useful to
report both P and Q because they have the same set of occurrences and P contains
more information. Therefore the algorithm only outputs pattern P if a more specific
pattern with the same number of occurrences does not exist. Patterns reported by the
algorithm are called maximal.

Note that if P is more specific than Q and Q has more occurrences than P, i.e., Q has
greater support, Q is outputted as well. Although Q has a smaller specificity, it has
greater support.

ALGORITHM

The TEIRESIAS algorithm is based on the concept that if a pattern P is a (L,W)
pattern occurring in at least K sequences, then its subpatterns are also (L,W) patterns
occurring in at least K sequences. Therefore the algorithm assembles the maximal
patterns from smaller subpatterns.

TEIRESIAS works in two phases. In the first phase (called scanning phase), it
finds all (L,W) patterns occurring in at least K sequences that contain exactly L non-
wildcards. This is carried out by a pruned exhaustive search (see “Enumerating All
Patterns”). In the second, convolution phase these elementary patterns are extended
by gluing them together. In order to determine whether two patterns P and Q can be
glued together we compare the suffix of P containing exactly L – 1 non-wildcards to
the prefix of Q containing exactly L – 1 non-wildcards. If the suffix and the prefix
are equal, P and Q can be glued together so that the L – 1 non-wildcards overlap. The
list of occurrences of the resulting pattern can be constructed from the lists of occur-
rences of P and Q (we do not need to scan all sequences). Only when the resulting
pattern occurs at least K times, is it retained.

For example let P = AB.CD.E and Q = DFE.G (with L = 3, W = 5). In this case
P and Q cannot be glued together, because D.E DF. However if Q = D.E.G we can glue
them together obtaining AB.CD.E.G. If occurrences of P are (1,1), (2,3), (2,6), (4,7)
(each pair gives a sequence and a position in the sequence) and occurrences
of Q are (1,5), (2,8), (2,10), then the list of occurrences for the new pattern is (1,1), (2,6).

In the convolution phase we take each elementary pattern, and we try to extend it
on both sides by gluing it with other elementary patterns in all possible ways (depth
first search). Any pattern that cannot be extended without loss of support can poten-
tially be maximal. However we can still obtain non-maximal patterns in the output
and some patterns can be generated more than once. Therefore a list of patterns
written to the output is maintained. In this manner we can check any newly gener-
ated pattern with the list and if the list contains a more specific pattern with the same
set of occurrences we simply discard the new pattern.

The TEIRESIAS algorithm is an exact algorithm. It is guaranteed to find all (L,W)
maximal patterns supported by at least K sequences. The number of such patterns can
be exponential. In such cases TEIRESIAS will require exponential time to complete.
However, such a situation is not likely to occur with real data. For example, the entire
GenPept database with 120 million amino acids contains only 27 million maximal
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patterns. Experimental studies suggest that the running time of TEIRESIAS algorithm
is linear in the number of patterns it outputs.

Patterns discovered by the TEIRESIAS algorithm are not very flexible. First of all,
the only mismatches allowed are wildcard characters. Newer versions of TEIRESIAS
can now also identify patterns containing ambiguous characters representing pre-
specified groups of characters from Σ. Second, TEIRESIAS patterns do not allow gaps
with flexible length. This problem can be addressed by the post-processing phase, where
the patterns found are combined into larger patterns separated by flexible gaps. How-
ever, such methods do not guarantee that all patterns of the specified form will be found.

Improvement of Running Time
IRREDUNDANT PATTERNS

One of the drawbacks of TEIRESIAS is the potential exponential size of the output
and thus exponential running time. A new algorithm has recently been developed that
computes only a subset of maximal patterns, called irredundant patterns. Any maxi-
mal pattern can be easily obtained from the set of irredundant patterns. The main
advantage of the new method is that in any input of length n there are at most 3n
irredundant patterns and these patterns can be found in O(n3 log n) time. This is a
substantial theoretical improvement compared to traditional exponential algorithms.
However neither implementation of this algorithm, nor experimental study demon-
strating the application of this approach is available to date.

Iterative Heuristic Methods
So far we have considered algorithms guaranteed to identify the best pattern.

However for more complicated types of patterns we cannot hope to do so. We have
to use heuristic approaches that may not find the best pattern, but may converge to a
local maximum. The most important example of such technique is Gibbs sampling.

Gibbs Sampling
In its simplest version (the Gibbs sampling method), we are looking for the best

conserved ungapped pattern of fixed length W in the form of a position weight matrix.
We assume that the pattern occurs in all sequences.

The algorithm is carried out in iterations. The result of each iteration is a set of
subsequences of length W: one from each sequence. This set of subsequences repre-
sents the occurrences of the pattern. We can compute a position weight matrix charac-
terizing the pattern from this set of occurrences. The algorithm works as follows:

• Randomly select one subsequence of length W from each input sequence. These
subsequences will form our initial set of occurrences. Denote oi occurrence in
sequence i.

• Iteration step.
• Randomly select one sequence i.
• Compute the position weight matrix based on all occurrences except oi. Denote

this position weight matrix P.
• Take each subsequence of sequence i of length W and compute a score of this

subsequence according to matrix P.

• Select a new occurrence oi
′ randomly among all subsequences of i of length W

using the probability distribution defined by the scores (a higher score means
higher probability).
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• Replace oi with oi
′ in the set of occurrences.

• Repeat iteration, until a stop condition is met.

The Gibbs sampling algorithm does not guarantee that the position weight matrix and
set of occurrences giving the best score will be found. Instead, the algorithm can con-
verge to a local maximum. The method is fast, making it suitable for many applications.

Several problems related to Gibbs sampling have been identified and addressed in
subsequent work.

• Phase shifts. Assume that the optimal set contains occurrences starting at posi-
tions 8, 14, 22, and 7 of the corresponding sequences. If we start with position 21
in the third sequence, the whole system is likely to converge to the set of occur-
rences 7, 13, 21, and 6 instead.

The problem was addressed by introducing an additional randomized step.
In this step, scores of the occurrences shifted by several characters are com-
puted. One random shift is selected with a probability distribution correspond-
ing to the scores. Authors of PROBE reduce or extend patterns on both sides in
a similar manner.

• Multiple patterns. Sometimes it is appropriate to define a pattern as a sequence
of several consecutive subsequences of fixed length separated by variable length
gaps. In this case each occurrence is represented by several short subsequences in
the sequence rather than one. It is possible to identify such patterns using a modi-
fied Gibbs sampling approach that employs dynamic programming in the process
of ranking and choosing a new candidate occurrence. Lengths of subsequences
and their number are specified beforehand.

• Pattern width. We have assumed, that the pattern width is fixed and is specified
by the user. Most of the time it is not a reasonable assumption, especially if we
are looking for multiple patterns separated by variable length gaps.

In PROBE a genetic algorithm is used to determine the parameters of pat-
terns (i.e., the number of subsequences and their lengths). Two sets of param-
eters can be recombined (take part of the first and part of the second set) and in
this manner a better set of parameters may be obtained. Sets of parameters for
recombination are chosen at random with a distribution proportional to their
score (called fitness). Fitness of the set of parameters is determined by the Gibbs
sampling procedure.

• Gapped patterns. Not all positions within a continuous block of length W are
necessarily important for the function of this block. Rather we want to create a
pattern which is gapped, i.e., only J < W positions are used to form the model. This
problem can be addressed by introducing yet another randomized step, in which
we replace one of the J positions included in the pattern by one of the W – J + 1
positions, which are not included in the pattern. The choice is again random with a
distribution of probabilities proportional to the corresponding scores.

Other Iterative Methods
Several other approaches use iterative methods similar to Gibbs sampling. Typi-

cally the algorithm starts with some pattern and finds the best fitting occurrence of
this pattern in each sequence. Based on these occurrences it builds a pattern that best
matches the occurrences. This process is then repeated with the new pattern until no
improvement is obtained. The main difference between this algorithm and Gibbs
sampling is that all sequences are used to define the new pattern and subsequently
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the position of the new pattern is refined in all sequences. The process is completely
deterministic, and of course has no guarantee to find the global optimum.

This strategy was used to identify ungapped deterministic patterns of a given length
that matches all sequences with mismatches. The goal is to minimize the total number
of mismatches. By using different methods a set of occurrences of some unknown
candidate pattern is obtained that can be refined by an iterative method. In each step a
new pattern is computed by taking the most frequent character in each position (based
on the frequencies in the occurrences). The method is further improved to remove
nonsignificant columns from consideration to obtain a gapped pattern.

An iterative method has also been used to detect coiled coil regions in histidine
kinase receptors. Coiled coils were previously detected in other protein families;
therefore, the statistical properties of such regions are known, although they may be
somewhat different for this family. In this example the goal was to identify the dis-
tribution of residues and pairs of residues at different distances in a sliding window
of fixed length, provided that the window is from a coiled coil region. The process
started with taking the known distribution from other families. Based on this infor-
mation each position of the sliding window was scored and the best scoring posi-
tions were the candidates for coiled coil regions. A random sample of these
candidates was used to compute a new distribution. This process was iterated. In
each step a pseudocount from the known distribution of other families was added. In
contrast to the previous method, this is randomized, and due to pseudocounts the
result cannot extensively diverge from the original pattern.

The iterative approach can be also used to improve position weight matrices. For
example a PWM for splice-site signals computed from vertebrate genomes can be
iteratively refined to obtain a PWM specific for human.

In general it seems that the simple iterative methods are suitable for improvement
of patterns obtained by other methods or from different data. However, this approach
is not sufficient to discover patterns without any prior knowledge.

From Iteration to PTAS
The Consensus Pattern problem is another formulation of pattern discovery. The

problem is defined as follows: find a pattern P and one occurrence of P in each
sequence so that the total number of mismatches over all occurrences is minimized.

The Consensus Pattern problem is NP-hard. It is unlikely that any polynomial time
algorithm for such problems exists.

Because there is no algorithm guaranteed to find the best solution of the Consensus
Pattern problem in a reasonable time, we may wish to have a guarantee that the cost of
the found pattern (i.e., the total number of mismatches) is at most α times the cost of
the optimal pattern. The approximation ratio is termed α. For example, if α = 2 we are
guaranteed to find a pattern that has at most twice as many mismatches as the best
possible pattern.

For some problems it is possible to construct an algorithm that works for any α
supplied. However, the smaller the approximation ratio, the longer the algorithm runs.
This type of algorithm is called the polynomial approximation scheme, or PTAS. The
PTAS for a Consensus Pattern problem is based on a simple iterative idea repeated
many times with different initial patterns.

The PTAS requires input sequences, the desired length L of a pattern, and a param-
eter r. It finds all possible combinations of r substrings of length L taken from input
sequences. Each combination may contain zero, one, or several substrings from each
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sequence, some substrings may even repeat more than once. If the total length of all
sequences is N, there are O(N r) combinations. For each combination of r substrings
the following steps are performed:

• The majority pattern P of the r substrings is computed. This pattern has in each
position the character occurring most frequently in this position in the r
substrings.

• Find the best occurrence of P in each input sequence.
• Compute a new majority pattern P'.
• Find the best occurrences of P' in all sequences and compute the number of mis-

matches (cost of P').

The result will be the pattern P', which achieves the minimum cost. Notice, that the
algorithm performs one step of iteration with the pattern obtained from each possible
combination. The running time of the algorithm is O (Nr +1 L) and its approximation
ratio is 1 + 4 |Σ | A – 4 / e 4 r + 1 – 3  for r  3.

This result is very interesting from the point of view of theoretical computer sci-
ence. However the algorithm is not very practical. For example, if we choose r = 3 and
Σ = {A,C,G,T}, the algorithm will identify the pattern with at most 13 times as many
mismatches as the optimal pattern. The running time is O (N 4L), impractical for large
inputs. In order to achieve α = 2, r needs to be at least 21. This gives an algorithm a
prohibitive running time O (N22). Of course, the approximation ratio is only an upper
bound of the possible error. For some inputs the optimal or close-to-optimal results
can be obtained even for small r, however there is no guarantee.

A program called COPIA is based on the ideas of PTAS. Several changes consid-
erably reduce the running time. The enumeration of all possible combinations of
r substrings is replaced by randomly sampling combinations. The consensus pattern
obtained from each randomly chosen combination of substrings is improved by
the iterative method until there is no further improvement. COPIA runs in reasonable
time for real data but it does not have the same guarantees of pattern quality as the
PTAS algorithm.

Machine Learning Methods
Sometimes a pattern cannot be described well by a simple deterministic pattern and

one may wish to express it in a form of a stochastic model, such as Hidden Markov
Model or position weight matrix (which is a simpler version of HMM). This kind of
pattern is discovered using iterative expectation maximization techniques that do not
necessarily converge to the global maximum.

Expectation Maximization
First we will consider a simpler case of position weight matrices. A simple learn-

ing algorithm called expectation maximization (EM) is used to estimate parameters
of the stochastic model of a pattern that occurs once at an unknown position in each
input sequence. The algorithm can be easily extended to more complicated models,
e.g., patterns with flexible gaps, a finite mixture model.

The algorithm is iterative. It starts with some initial model parameters (usually
randomly set). Each iteration consists of two steps as follows:

• E step. For every sequence s and for every position in s compute the probability
that the occurrence of the pattern in s starts at this position. The probability
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is based on the model from the previous iteration (or initial model for the first
iteration).

• M step. For every position in the pattern compute new probabilities for charac-
ters at this position. This is based on all possible occurrences of the pattern
weighted by probabilities computed in E step. These values will form new para-
meters of the model.

Notice that the algorithm uses all possible occurrences of the pattern to obtain a
new matrix, instead of only one occurrence in each string. Similarly to other iterative
methods, the EM algorithm converges to a local maximum depending on the initial
parameters of the model, instead of the global maximum likelihood. There is the addi-
tional assumption that every pattern occurs exactly once in every sequence.

These are addressed in the MEME algorithm, which is a modification of EM
algorithm. The algorithm is based on the assumption that the pattern found should
closely resemble at least one subsequence found in the dataset. Several or no pos-
sible occurrences of the pattern in a sequence could be considered. The algorithm
proceeds as follows:

1. Form an initial model for each subsequence in the dataset. The initial model is
a position weight matrix. For every position the character at the corresponding
position in the subsequence has probability p (p is usually between 0.5 and
0.8), and all other characters have probability (1 - p) / (|Σ| - 1).

2. One iteration of the EM algorithm is performed on each initial model. The likeli-
hood score is computed for the resulting models.

3. The model with the largest likelihood score is selected as an initial model for
the EM algorithm.

The algorithm can be forced to report more patterns by erasing all occurrences of
the found pattern from the dataset and rerunning the entire process.

Hidden Markov Models
Hidden Markov Models (HMMs) can be used to model a family of sequences.

Given an HMM and a sequence, it is possible to compute the most probable path
through the model for this sequence in O(nm) time using the Viterbi algorithm, where
n is the length of the sequence and m is the number of states in the model. This path
represents the most probable occurrence of the pattern in the sequence. The prob-
ability P that the sequence was generated by the model can also be computed in
O(nm) time using the forward algorithm. Value – log P is called a NLL score of the
sequence with respect to the model. A higher probability of generating the sequence
corresponds to a lower NLL score of the sequence.

There are three issues that need to be addressed if HMMs are used to represent a
sequence family:

• Topology of HMM. Topology specifies the scheme of the Hidden Markov model
that is used to represent a sequence family.

• Training process. The training process is needed to estimate the parameters of
the model so that the sum of scores of sequences in the family is optimized.

• Search for sequences. The searching process should allow one to distinguish
between sequences that belong to the family and sequences that do not.

TOPOLOGY OF HMM
A common HMM topology  for sequence analysis is depicted in Fig. 4. The model

consists of three types of states. Match motif states model conserved parts of the
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sequence. Match states specify the probability distribution of characters at each con-
served position. There can be any number of match states in the model. We assume
that the user gives this number beforehand. Insertion states model possible gaps
between match states. Gaps can be arbitrarily long. The probability assigned to a
self-loop in an insertion state determines probability distribution of possible gap
lengths. The probability distribution is geometric, and the mean value can be easily
computed. Finally, deletion states permit one to model occurrences of the pattern
that do not contain some of the conserved positions.

TRAINING OF THE MODEL

Given a topology of an HMM and a family of sequences to be modeled by the
HMM, we can estimate the parameters of the model so that the model will generate
sequences similar to those in the family with high probability.

The Baum-Welch algorithm can be used to perform this task. It is an iterative
algorithm very similar to the EM algorithm used to estimate parameters of PWMs.
We start with arbitrary parameters. If we have some prior knowledge of the
sequence family, we can use this knowledge to set the initial parameters. Then in
each step, the probabilities of all paths for all sequences are computed, and the model
parameters are reestimated to minimize the NLL score of the training sequences to
maximize the probability.

The algorithm does not guarantee a global optimum. It converges to a local mini-
mum dependent on the initial parameter settings.

SEARCH FOR SEQUENCES

Searching for the pattern in the form of HMM is more complicated than in the case
of simpler patterns. Given a sequence one can efficiently compute the most probable
alignment of the sequence to the pattern and compute its NLL score. The NLL score
gives a measure of how well the sequence can be aligned to the pattern. However,
NLL scores depend highly on sequence length. In general, shorter sequences have
smaller NLL scores than longer ones. Therefore, we cannot use a fixed threshold on an
NLL score to discriminate between members and nonmembers of the family. This is
possible only if all the input sequences have approximately the same length. Fortu-
nately it was observed that sequences, that do not belong to the sequence family, form
a line corresponding to a linear dependency. NLL scores for family members drop
well below this line. Thus, it is possible to identify members of the family by a statis-
tical test using a z-score for some window of sequence length. In order to estimate
parameters needed to determine the z-score we need to compute the NLL score for
many background sequences of different lengths not belonging to the family.

Enhancing HMM Models
REDUCING THE NUMBER OF PARAMETERS

The greater the number of parameters of the model, the greater the amount of data
required to properly train the model. Too many parameters can cause overfitting,
where the model fits the training data very well but does not generalize to new
sequences. There are several ways to reduce the number of parameters of the model.
These include model surgery and different initial topology.

• Model surgery. Model surgery adjusts the model topology during the training in
order to reduce the number of parameters of the model. In particular, this tech-
nique avoids two common problems that arise during training:
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– Some match states are used only by a few sequences. If the number of
sequences using a match state drops below a given threshold (typically one-
half), the state is removed. In this way we force sequences to either use the
insertion state at this point, or significantly change their alignment.

– Some insertion states are used by too many sequences. If an insertion state is
used by more sequences than a given threshold (typically one-half), then the
state is replaced by a chain of match states. The number of inserted match states
is equal to the expected number of insertions in the replaced insertion state.

• Different initial topology. Meta-MEME uses a different program to report
simple short patterns in the sequence. These patterns are transformed into
matching states in HMM. The patterns are combined together using insertion
states as shown in Fig. 5.

DISCOVERING SUBFAMILIES

Sometimes a family of sequences consists of several subfamilies. In such cases
the family is represented by several motifs rather than by one. This problem can be
solved by combining several HMMs with standard topology to one larger HMM as
shown in Fig. 6.

If we do not have any preliminary knowledge of how to set the initial parameters of
this model, it might be difficult to accurately train the model. In this case it is appro-
priate to use the Viterbi algorithm for training. The Viterbi training algorithm uses
only the best path to reestimate the parameters, in contrast to the Baum-Welch algo-
rithm that uses all paths weighted by their probabilities. Therefore, once the para-
meters of a part of the model reflect a bias to one subfamily, only sequences in this
subfamily are used to train this part of the model in the Viterbi algorithm.

Methods Using Additional Information
Many biologically significant patterns are difficult to discover in sequences. In

such cases additional sources of information can be used to guide the search.

Identifying Motifs in Aligned Sequences
Pattern discovery and multiple local alignments are closely related tasks. One can

easily obtain a pattern (e.g., in a form of consensus sequence and PWM) from a given
local alignment by taking each column of the alignment as one position of the pattern.
The question begins to be interesting if we assume that the input contains errors (i.e.,

Fig. 4. A common HMM topology for pattern discovery. States M1, . . . , M5 are match states,
I1, . . . , IE are insertion states, and D1, . . . , D5 are deletion states.
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some sequences are not aligned correctly) or it contains several subfamilies. In this
case we may try to identify a pattern that does not match all sequences. This task is
addressed by EMOTIF.

EMOTIF searches for motifs containing characters, ambiguous characters, and
wildcards. The set of possible ambiguous characters is fixed. Each character (normal,
ambiguous, or wildcard) corresponds to one column of the local alignment. It is pos-
sible to compute the specificity of each pattern of this form (how likely it is to occur by
random) and sensitivity (how many training sequences it covers). EMOTIF identifies
many motifs with different values of specificity and coverage. For several motifs with
the same specificity, only the motif with the greatest coverage is reported and vice
versa. Motifs are found by a pruned exhaustive search.

Global Properties of a Sequence
Computational recognition of eukaryotic promoters is a difficult task. In addition

to local information in the form of transcription factor binding sites, it is also neces-
sary to consider global properties of the DNA in the surrounding regions. One
example are CpG islands: 1–2 kb long regions with higher frequency of CpG than
found elsewhere in the genome. CpG islands often demarcate the 5' region flanking
constitutively expressed vertebrate genes. In addition, regions downstream of genes
usually have low flexibility (flexibility or bendability of DNA can be estimated from
sequence-based models of DNA structure).

In the pattern matching problem we can use global information, such as CpG islands
and flexibility, to distinguish random occurrences of a pattern from those that have

Fig. 5. Meta-MEME uses much simpler initial topology. Patterns found by other programs are
connected together by insertion states.

Fig. 6. Topology of HMM suitable for representing families of sequences with several subfamilies.
HMM 1, 2, and 3 are models representing individual subfamilies.
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functional significance. In pattern discovery we may use this kind of prior knowledge
to choose appropriate parts of the genome as our input set to search for patterns.

Using Phylogenetic Tree
One of the basic assumptions in identifying patterns in biological sequences is that

regions conserved in evolution are functionally important. Therefore it is natural to
use known phylogenetic relations among sequences to guide the pattern search.

Assume we want to identify a regulatory element. Instead of using regulatory
regions from many co-regulated genes of the same species, we will use regulatory
regions of the same gene taken from many related species. We assume that the evo-
lutionary tree of these species is known. Now we may try to identify the short pat-
tern best conserved during evolution.

The best-conserved pattern can be identified using a parsimony measure as fol-
lows. We are given the length of pattern k. We want to associate a sequence tw

of length k with each node w. In internal nodes, tw can be an arbitrary string. In each
leaf, tw is required to be a subsequence of the input sequence and corresponds to an
occurrence of the pattern. We want to minimize the sum of d (tv,tw) over all tree
edges (v,w), where d (tv,tw) is a distance between strings tv and tw (in this case the
number of substitutions).

The algorithm works as follows. First the tree is rooted in an arbitrary internal
node. For each node w and each possible string t of length k let dw

*(t) be the best
possible parsimony score that can be achieved in the subtree rooted at w provided
that tw = t (i.e., string t is stored in node w). Scores dw

*(t) can be computed in a
leaves-to-root fashion.

The scores are easily found for leaf nodes: if t is a substring of the input string
associated with the leaf w, then dw

*(t) = 0, otherwise the score will be . Once we
know all scores for both children w1 and w2 of a certain internal node w, we can com-
pute the scores for w. If we assume that the node w1 stores sequence tw1

, w2 stores tw2
and w stores tw, then the parsimony of the subtree rooted at w will be:

dw1

* tw1
+ d tw1

,tw + dw2

* tw2
+ d tw2

,tw

For each possible tw we want to find tw1
 and tw2

 that minimize this sum and store the
sum as dw

*(tw). After we compute scores for all nodes, we can retrieve the overall
minimum parsimony as the smallest score computed for the root. We can use the
stored intermediate results to reconstruct the entire optimal solution in a root-to-leaves
manner. Strings of tw stored in the leaves represent the occurrences of the pattern.

With additional optimizations the algorithm can be implemented to run in time
O(nk|Σ|k), where n is the number of leaves. This is exponential in k but the problem is
NP-hard, so we cannot hope to find a polynomial solution.

The use of phylogenetic tree can help to find patterns which are hard to find other-
wise. For example, if the input contains several families of sequences, other methods
may discover patterns characteristic for the sequences in the largest family instead of
the patterns shared by all sequences. In practice, this problem is often solved by a pre-
processing step: sequences are first clustered to separate families and then a single
member is chosen from each family for further processing. If we use the phylogenetic
tree, this step is not necessary and we keep information from all sequences. Because
close homologs are grouped together in the phylogenetic tree, their weight is not so
great, as the pattern still has to agree with other parts of the tree.
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Use of Secondary/Tertiary Structure
Positions important to the secondary and tertiary structure of proteins are usually

well conserved. If we know the structure of proteins in question, we can try to locate
regions important for achieving this structure. These regions are good candidates to
identify occurrences of our pattern. One possibility is to choose points of contact
between two secondary structure elements as candidate spots for conserved positions.
This approach has been used to construct a sparse deterministic pattern containing
ambiguous characters and flexible gaps. If possible, sequences are aligned so that the
points of contact align together. In such an alignment we can choose positions that are
well-preserved among those columns that contain many points of contact.

Secondary structure and motif searching are also closely knit together in algo-
rithms that identify conserved patterns in RNA sequences. RNA molecules are more
related in their structure than in their sequence. Identifying RNA secondary struc-
ture of a set of related RNA sequences is best accomplished by first aligning the
sequences. Alignment is then used to discover similarities. The process can be iter-
ated resulting in simultaneous discovery of the alignment, secondary structure fea-
tures, and conserved patterns.

Finding Homologies Between Two Sequences
Finding homologies between two DNA or protein sequences is a special case of the

general pattern discovery problem. Here, the problem becomes simpler in principle
but with larger amounts of data, the challenge shifts to efficiency and scalability. It is
not our intention to survey the entire field of similarity searching, we will only con-
sider the specific problem of comparing two very long genome sized DNA sequences,
to shed some light on this problem.

In theory, this problem is easily solved by standard Smith-Waterman dynamic
programming algorithm. However, when sequences are long, the dynamic program-
ming and FASTA strategies become too expensive. Scalable heuristics are required.

Two strategies have lead to improvements. The first is exemplified by the popu-
lar Blast family of algorithms. This approach finds short exact seed matches (hits),
which are then extended into longer alignments. However, when comparing two
very long sequences, most programs in this category such as SIM, Blastn (BL2SEQ),
WU-Blast, and Psi-Blast run slowly and require large amounts of memory. SENSEI
is somewhat faster and uses less memory than the above, but it is currently limited to
ungapped alignments. MegaBlast runs quite efficiently without a gap open penalty
and a large seed length of 28 yielding much lower sensitivity.

Another strategy, exemplified by MUMmer, QUASAR, and REPuter, uses suffix
trees. Suffix trees suffer from two problems: They were designed to deal with pre-
cise matches and are limited to comparing highly similar sequences. MUMmer and
QUASAR have implemented various ways of linking precisely matched neighbor-
ing blocks. The second problem with suffix trees is that they have an intrinsic large
space requirement.

A new program PatternHunter has recently been developed. PatternHunter uses
optimized spaced seeds for high sensitivity and improved search and alignment
algorithms. It is implemented in Java and runs at the speed of MegaBlast and the
suffix tree program family while producing output at default Blastn sensitivity.
PatternHunter was tested against the newly improved Blastn (using BL2SEQ) and
MegaBlast, downloaded from the NCBI website on July 9, 2001. Program compari-
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sons were performed on a 700 MHz Pentium III PC with 1 gbyte of memory. Experi-
ments were performed on the following datasets: M. pneumoniae vs M. genitalium,
E. coli vs H. influenza, and A. thaliana chromosome 2 vs A. thaliana chromosome 4
were then undertaken. All programs were run without filtering (bl2seq option –F F) to
ensure identical input to the actual matching engines. With filter, Figs. 7 and 8 essen-
tially remained the same. All comparisons were based on same scoring reward and
penalties to insure the output results were comparable. MB28 is MegaBlast with seed
size 28. PH is PatternHunter at sensitivity similar to Blastn seed size 10 , and PH2 is
PatternHunter at sensitivity similar to Blastn seed size 11. Figures 7–9 show the out-
put quality of PatternHunter vs Blastn and MegaBlast. In Fig. 7, MegaBlast using seed

Fig. 7. Input: H. influenza and E. coli. The score is plotted as a function of the rank of the align-
ment, with both axes logarithmic. MegaBlast (MB28) misses over 700 alignments of score at least
100. MB11 is MegaBlast with seed size 11 (it is much slower and uses more memory), indicating the
missed alignments by MB28 are mainly due to seed size.

Fig. 8. Input: H. influenza and E. coli. PatternHunter produces better quality output than Blastn
while running 20 times faster.
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weight 28 (MB28) misses over 700 high scoring alignments. Using the same para-
meters, PatternHunter results are comparable or better than results obtained by Blastn.
It is 20 times faster and uses one tenth the memory (see Fig. 8). Figure 9 shows
that MegaBlast produces alignments with significantly lower scores compared to
PatternHunter (PH2), which uses only one sixth the time and one quarter the space, on
arabidopsis chromosomes. Figure 10 shows a genome alignment of M. Pneumoniae vs
M. Genitalium, by PatternHunter and MUMmer. The table in Figure 11 compares the
time and space used by PatternHunter (PH2). For example, the comparison of human
chromosome 22 (35M bases) vs human chromosome 21 (26.2M bases) only required
1 h to complete.

Fig. 9. Input: A. thaliana chr 2 and chr 4. PatternHunter (PH2) outscores MegaBlast in one sixth of
the time and one quarter the memory. Both programs used MegaBlast’s non-affine gap costs (with
gapopen 0, gapextend –7, match 2, and mismatch –6) to avoid MegaBlast from running out of
memory. For comparison we also show the curve for MegaBlast with its default low complexity
filtering on, which decreases its runtime more than sixfold to 3305 seconds.

Fig. 10. Highscoring Segment Pairs plot of M. Pneumoniae vs M. Genitalium.
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Assessment of Pattern Quality

A wide variety of pattern discovery methods are available. They differ in what they
consider to be the best pattern and most are not guaranteed to identify the best pattern.
Thus we need to evaluate the quality of the discovered patterns. Various statistical
methods have been employed to address the question: how likely is it that the pattern
occurs in our sequences merely by chance? The smaller the likelihood the bigger the
chance that the pattern discovered has biological meaning. Statistical significance of a
pattern is used to evaluate the performance of different algorithms, but also as a scor-
ing function to rank discovered patterns for a user, or to guide a search for the most
significant pattern.

Although statistical significance is an important tool that allows one to distinguish
artifacts of search algorithms from significant patterns, one must keep in mind that
the goal of pattern discovery is to identify elements of certain biological importance.
Even a very significant pattern may not be what we are looking for. For example we
may want to discover functionally important sites but the pattern was conserved
because it was essential for structure instead. Therefore it is important to verify pat-
terns by appropriate biological experiments. For example, mutagenesis or another
appropriate biological assay can be used to verify the function of a protein, x-ray
crystallography or nuclear magnetic resonance (NMR) to determine the structure of a
protein, and DNA footprinting to verify binding sites.

Background Model
If we want to understand what the probability is that a pattern occurs by random

we need to define random. In other words, we need to select a background model.
The simplest background model assumes that all possible characters of the alphabet
are equally likely and the individual positions of the sequence are independent.
Therefore all possible sequences of characters of the same length are equally likely.

This model is usually not adequate because different characters of the alphabet,
i.e., individual nucleotides or amino acids, occur in biological sequences with differ-
ent frequencies. For example in an AT rich sequence we can expect that the string
'TAATA' will be more frequent that 'CGGCG'. We can solve this problem using the
Bernoulli model. In this model each character of the alphabet potentially has a differ-
ent probability but individual positions of the sequence are still independent.

An even more complicated model is Markov chain. In this case, the probability of
each character at position j depends on the characters at positions j – 1, j – 2,..., j – k,
where k is a parameter called the order of the Markov chain. A Markov chain of order
0 is identical to the Bernoulli model. Markov chains take into account the fact that

Fig. 11. Performance comparison: If not specified, all with match 1, mismatch –1, gap open –5,
gap extension –1. Table entries under PH, PH2, MB28 and Blastn indicate time (seconds) and space
(megabytes) used;  means out of memory or segmentation fault.

Seq1 Size Seq2 Size PH   PH2    MB28 Blastn

M. pneumoniae 828K M. genitalium 589K   10s/65M   4s/48M     1s/88M 47s/45M
E. coli 4.7M H. influenza 1.8M   34s/78M 14s/68M       5s/561M 716s/158M
A. thaliana chr 2 19.6M A. thaliana chr 4 17.5M 5020s/279M 498s/231M 21720s/1087M
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some combinations of characters occur less or more frequently than expected based on
the frequencies of their constituents.

Parameters of background models, i.e., probabilities of individual characters, can
be estimated as a function of the observed frequencies in the input sequences or in
some larger databases.

Pattern Significance
Given a deterministic pattern P and a sequence of length L we can simply count the

number of occurrences of P in the sequence. Denote this number NP. Let E(XP,L) be the
expected number of occurrences of pattern P in a sequence of length L generated by a
background model. If the observed number of occurrences NP is much higher than the
expected value E (XP,L), P is then a significant pattern. The standard measure used in
this context is the z-score:

zP =
NP – E XP,L

σ XP,L

where σ(XP,L) is the standard deviation of the number of occurrences of P in a random
sequence of length L. This measure gives the number of standard deviations by which
the observed value NP differs from the expected value.

The simplest approach towards computing the z-score is to generate a large number
of sequences using the chosen background model, count the number of occurrences of
the pattern, then estimate the expected value and standard deviation from this random
sample. This works for any kind of background model and pattern but it has a high
running time (especially if we need to evaluate the z-score for many patterns). The
values obtained are only estimates.

Another approach is to compute the mean and variance of the distribution of the
number of occurrences of a given pattern exactly. For example, algorithms are avail-
able for a large class of patterns when the background distribution is a Markov chain
of order k.

Information Content

In case of probabilistic models such as position weight matrices we do not have
strictly defined occurrences but rather a score between 0 and 1 for any string. One can
set a threshold on what we consider to be an occurrence and then evaluate the z-score or
other appropriate statistical measures. Alternatively when evaluating position weight
matrices an information content (also called relative entropy) measure is used. This
tells how much the distribution defined by the PWM differs from the (Bernoulli-type)
background distribution. Relative entropy is computed as follows:

Σ
i
Σ
c

A c,i log2
A c,i
f c

where A[c,i] is the frequency of character c in column i of the matrix and f (c) is the
background frequency of the character c. Relative entropy has two disadvantages. First,
it does not depend on the number of occurrences of the pattern in the sequences. A
strong pattern with very many occurrences has higher relative entropy than a weaker
pattern with few occurrences. Therefore, it is an appropriate measure only in situa-
tions where the pattern is required to occur in all sequences. This is often the case in
Gibbs sampling methods. Second, relative entropy of one column is always non-nega-
tive and therefore if we add columns that are not well-conserved to the pattern, we can
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obtain a better score. Therefore relative entropy is not suitable for comparing patterns
of different lengths. This can be solved by subtracting the appropriate term from the
contribution of each column so that the expected contribution of a column is zero.

Sensitivity and Specificity of Classification
One application of the various methods of pattern discovery is to identify patterns

that characterize a given family of related sequences. In this context we need to mea-
sure how well we can distinguish members of the family from nonmembers based on
the occurrence of the pattern. For this purpose a test set consisting of sequences of a
known family is required. We find all occurrences of the motif in the test set and com-
pute the following four scores: T P (true positives) are sequences that contain the motif
and belong to the family in question, T N (true negatives) are sequences that do not
belong to the family and do not contain the motif, F P (false positives) are sequences
that contain the motif but do not belong to the family and F N (false negatives) are
sequences that do not contain the motif but belong to the family. Thus T P + T N is the
number of correct predictions and F N + F P is the number of wrong predictions. Based
on counts of T P, T N, F P, F N we can define various measures. Sensitivity (also called
coverage) is defined as T P / (T P + F N) and specificity is defined as T N / (T N + F P).
A pattern has maximum sensitivity, if it occurs in all proteins in the family (regardless
of the number of false positives) and it has maximum specificity, if it does not occur in
any sequence outside the family. A score called correlation coefficient gives an overall
measure of prediction success:

C = TP · TN – FP · FN
TP + FP TP + FN TN + FN TN + FP

This expression grows from –1 to 1 as the number of correct predictions increases.

Concluding Remarks

An overview of methods available for pattern discovery was presented. The tools
developed by computer scientists are common today in many biological laborato-
ries. They are required to handle large-scale tasks, including the annotation of newly
sequenced genomes, organization of proteins into families of related sequences, or
identifying regulatory elements in co-expressed genes. They are also important in
smaller-scale projects because they can be used to detect possible sites of interest
and assign putative structure or function. Thus, they can be used to guide biological
experiments in wet labs, decreasing the time and money spent in discovering new
biological knowledge.

Indeed, there are many examples, where computational tools have helped biologists
to make important discoveries. For example, pattern-discovery tools helped to identify
a number of putative secretory proteins in Mycobacterium tuberculosis genome. Sub-
sequently, 90% of the predicted candidates were experimentally confirmed. Identifica-
tion of M. tuberculosis secretory proteins is a first step to the design of more effective
vaccines against tuberculosis.

In order to fully understand the meaning of the output of a pattern-discovery tool,
biologists need to understand the basics of the algorithm used in the tool. It is very
useful to know the performance guarantees of the algorithm. Tools that cannot guar-
antee finding the best or all patterns, might find only low-scoring patterns in sequences
which contain high-scoring patterns as well.
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The pattern discovery process is often a computationally intensive task. Therefore
many databases are maintained and updated containing results of pattern discovery
applied to particular tasks. These databases often contain experimental evidence from
biological literature and other useful information. On the accompanying CD-ROM,
we provide a list of such databases together with related links and short descriptions of
database contents. An overview of the software tools is also included on the CD-ROM.
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The Role of Transcription
Factor Binding Sites in Promoters
and Their In Silico Detection

Thomas Werner

Introduction

Transcription is the general process of copying part of the genomic DNA into RNA.
This RNA either has functions of its own or is used to produce proteins. This is a
multi-step process requiring the coordinated interaction of a plethora of proteins with
the genomic DNA at various loci. The major regions of DNA involved in transcription
are the regulatory regions like locus control regions, enhancers, and promoters.

Regulatory regions have to fulfill several requirements in order to serve a biologi-
cal function in transcriptional control. The general chromatin status is a major deter-
minant of sequence accessibility and is dependent on special protein complexes known
as nucleosomes and their higher-order organization. On the molecular level, DNA
methylation is of crucial importance and all processes discussed below can only occur
after chromatin structure as well as DNA methylation have achieved a state where
regulatory sequences are accessible for protein binding.

The basic principles of the interaction of proteins with DNA in transcriptional con-
trol are identical for all of these regions, so it is possible to focus on one representative
region. The promoter is the best-studied of all regulatory regions and will be reviewed.

The Promoter

In general, the promoter is an integral part of the gene and often makes sense only
in the context of its own gene, especially if important parts of the regulation are deter-
mined outside of the promoter (e.g., by an intron enhancer). The function of a pro-
moter is to mediate and control initiation of transcription of that part of a gene that is
located immediately downstream of the promoter (3'). This can be achieved either in
an unregulated permanent manner (constitutive transcription) or in a highly regulated
fashion by which transcription is subjected to the control of various extracellular and
intracellular signals (regulated transcription). The DNA region required to fulfill this
function can be determined by assays for promoter function in a heterologous context.
I will refer to a promoter mainly as the region that is necessary to achieve transcrip-
tional initiation, although this region may not be sufficient to completely determine
the regulation of a gene. The promoter by definition marks the beginning of the first
exon of a gene (see Fig. 1). The functional setup of promoters is intimately coupled
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with the basic events of transcriptional initiation. The focus throughout this chapter
will be on polymerase II responsive promoters, which are controlling the vast major-
ity of cellular genes encoding proteins in higher eukaryotes.

Transcription can only proceed after a competent transcription complex consisting
of RNA polymerase II (pol II) and several general transcription factors (GTFs) have
been recruited to the promoter. Usually, pol II is not capable of functionally interact-
ing with a promoter alone and initiating transcription by itself and requires a host of
cofactors. The polymerase complex is mainly concerned with accurately copying the
DNA into RNA and not with determining where to start this process. This is the job of
other types of proteins, called activators, that help to recruit the RNA polymerase to
the correct location on the genomic DNA. Basically, there are two different phases in
transcriptional activation of a gene. The first step includes a variety of transcription
factors (TFs), that bind to upstream promoter and enhancer sequences to form a
multiprotein complex (see Fig. 2). In the second step this complex directly or indi-
rectly recruits a pol II complexed with GTFs to the core promoter and the transcription
start site (TSS) located within the core promoter. Subsequently, transcription is initi-
ated by this initiation complex, which itself is subject to regulatory influences of TFs.

Once the complete complex including the polymerase complex is assembled on
the promoter (called the initiation complex), it is now competent to initiate RNA

Fig. 1. Location of the promoter in genomic DNA. The promoter overlaps with the first exon and
contains the transcription start site (TSS) where the transcription of genomic DNA into the nuclear
RNA starts.

Fig. 2. Binding of transcriptional activators to the upstream promoter. The transcription factors
bind to the promoter sequence and form the “activation complex,” which attracts the polymerase
complex to the promoter.
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synthesis. The promoter can be defined as the minimum region of DNA that allows
the formation of a functional initiation complex. This can be reduced to a core pro-
moter or may include one or several upstream and/or downstream elements. Other
regions directly upstream to this minimum promoter are termed upstream regula-
tory regions as long as they cannot be clearly identified as separate functional units
(e.g., enhancers). There is a gradual transition from upstream promoter elements to
enhancer elements (position and orientation independent activator regions), which
is not necessarily obvious from inspecting the sequence. Similarly, the elements
located downstream of the minimal promoter may also be downstream of the pro-
moter elements and may constitute part of enhancers.

Transcription Factors

As evident, the key players in promoter activation are specialized proteins called
transcription factors. Although there is a large variety of transcription factors in a single
cell, at least several hundred if not a thousand, share some very basic features.

All transcription factors (TFs) contain a DNA binding domain enabling them to
bind to genomic DNA as well as an activator domain, which has either an activating or
suppressing activity. Many transcription factors have the ability to form specific homo-
or hetero-dimers with other TFs. Such factors contain an additional domain, called a
dimerization domain completing the generic structure of a TF shown in Fig. 3.

The function of a transcription factor is very simple and by itself not directly
coupled to transcriptional control. The factor brings its action domain into a specific
location by binding to the genomic DNA at selected sites. Whether this has conse-
quences for transcription of a gene is determined by the functional context, i.e., by
what other factors are bound or brought close enough to interact with the particular
factor. Only a larger complex of transcription factors that often contain regulatory
proteins that do not bind directly to DNA (so called mediators of transcription) have
the ability to recruit the DNA polymerase complex to the promoter and thus influ-

Fig. 3. Schematic representation of two transcription factors that can dimerize. The DNA binding
domains may have different specificities as well as the activation domains that do not need to be of
the same kind. The dimerization domains determine which factors can form dimers.
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ence transcription. Transcription is a very dynamic process. Aggregate binding of a
variety of factors to genomic DNA form an active initiation complex and the timely
dissociation of the initiation complex, and even release of transcription factors from
the DNA is crucial to transcription. This push/pull complicates considerably the
process of optimization of binding site detection. It has very important consequences
on the nature and detection of TF binding sites as will become evident below.

How Transcription Factors Bind to DNA

Transcription factors bind to DNA via a multitude of atomic interactions that are
either van der Waals hydrophobic contacts or supported by juxtaposition of oppo-
sitely charged amino acids and DNA components. The two basic modes of molecular
interactions can be distinguished:

1. The first mode involves nonspecific contacts between the protein side chains and
the so-called backbone of the DNA, consisting of the sugar-phosphate structure
that links the bases together. Such contacts can form anywhere on a DNA (double)
strand and are responsible for the general tendency of TFs to associate with DNA.

2. The second mode is sequence-specific recognition. This is achieved by the direct
contact of the amino acid side chains with the DNA bases. Therefore, these con-
tacts can only be formed where there is a suitable succession of bases, i.e., a
specific nucleotide sequence (see Fig. 4).

The apparent binding affinity of a TF to a particular DNA sequence is the sum of
the nonspecific and the specific binding:

Affinity = Sum (general contacts) + Sum (specific contacts)

Fig. 4. Basic structure of a single DNA strand. The gray area represents the sugar-phosphate back-
bone supporting general protein contacts. The white boxes represent the bases that form sequence-
specific contacts with proteins.
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This shows that specific contacts only account for part of the binding affinity and
that sequence variation has a quantitative effect on the binding affinity of TFs.

However, proteins as well as DNA are three-dimensional structures. There are
sterical dependencies for each of the individual contacts. For example, a bulky side
chain can only form a very limited number of sterical arrangements with respect to
the DNA. This has direct consequences for the selection of neighboring positions in
the DNA sequence. Due to such restrictions individual exchanges of nucleotides can
have dramatically different effects on the binding affinity. This is not a simple linear
function of sequence fit. The contribution of a DNA protein contact is a function of
the sterical neighborhood and is easily represented by the nucleotide sequence. Tak-
ing this into consideration, the affinities are calculated as:

general contact i = Ei * f (S i)  and  specific contact j = Ej * f (S j)

where i and j are the position within the binding site, S i is the sequence context of
position i, and E i is the energy of the interaction at position i.

The Characteristics of TF Binding Sites

TF binding sites are usually short 8–20 nucleotide stretches of DNA that are cov-
ered by the protein upon binding. Surprisingly, at first glance, the sequences for the
binding sites for the same protein vary considerably in different locations. Neverthe-
less, the binding affinity may be comparable and all of these sites are part of a func-
tional context. Interestingly, the average binding affinity of natural binding sites is
often suboptimal, that is, there are other sequences that would bind with a much higher
affinity to the protein. There are several reasons for these very general observations.

First, TFs have to bind to DNA during a lifetime of an individual or on a larger
scale, until evolution has changed that particular regulatory event. Therefore, TF bind-
ing is faced with the inevitable mutations that occur over time in genomic DNA. By
allowing a variety of slightly different sequences to be bound, TFs can reduce the risk
of losing their ability for DNA binding due to point mutations in binding sites. Sec-
ond, with regard to TF function, they not only need to specifically bind to DNA, but
they must dissociate correctly in order to complete each transcriptional cycle.

The observed flexibility of TF binding sites has quite favorable consequences for
biological function and fitness. However, how is this limited flexibility achieved on a
molecular basis? This is important in order to design optimal algorithms for the detec-
tion of real binding sites by in silico methods. Detailed analysis of individual TF bind-
ing sites, binding the same factor, revealed that sequence variations are not evenly
distributed over the binding site sequence. On one hand, there are a few highly con-
served nucleotide positions within the binding site that are never or rarely changed.
Mutations at such sites often have deleterious effects on DNA binding of the protein
and have been shown in many cases to represent positions that are contacted by the
protein in a sequence-specific manner. On the other hand, many binding sites contain
positions that are covered by the protein as evident from footprint studies, but where
there is low or no sequence conservation. Those internal spacers are usually not con-
tacted in a base-specific manner and may or may not contribute back-bone contacts to
binding (see Fig. 5).

The series of three-dimensional interactions can impart a mutual dependency of
pairs of nucleotides within a binding site. This is evidenced as correlated positions.
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These are different from conserved positions because correlated positions do vary in
the nucleotide from sequence to sequence but in a coordinated manner (e.g., if posi-
tion A contains an A then position B contains a G, if position A contains a T then
position B contains an A). Thus, TF binding sites can be viewed as collections of
closely related but distinct sequences that can be described in a collective manner.
Thus, TF binding sites sequences only carry the potential to bind their cognate pro-
tein. They occur everywhere in the genome and are by no means restricted to regula-
tory regions. This complicates their recognition because there are always a large
number of potential binding sites that have absolutely no function in transcriptional
control. It is therefore almost impossible to discriminate functional from nonfunc-
tional sites (usually referred to as false positive matches) based solely on the analysis
of the individual binding sites.

The Principles of In Silico TF Binding Site Detection

The question becomes how does one identify these TF binding sites in nucleotide
sequences? The first and obvious approach would be to collect known TF binding
sites and then simply use a string matching algorithm to find new locations of
the series of letters in question. Allowing for one or two mismatches to the known
sites could mimic the sequence variations. As intriguing as this simple approach
appears, it is so flawed in its practical application that it can only serve as a negative
example. First, it can only identify binding sites already known if no mismatches
are allowed. When mismatches are permitted this algorithm will return an over-
whelming number of sequence matches, most of which may not even be binding
sites for the factor in question.

Fig. 5. Comparison of calculated importance (consensus index based on Shannon entropy) and
experimental evidence for the Glucocorticoid Receptor Binding site. The scale on the left side shows
the normalized consensus index derived from the nucleotide weight matrix of the GRE. The experi-
mental evidence is given as follows: – = no DNA contact by the protein; + = backbone contact; ++ =
unspecific base contact; +++ = sequence specific base contact.
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This illustrates the problem of this approach, ignoring the well-known variety of
binding sites. Rather than using individual sequences, one can compile a consensus
from all known binding sites and then search with this consensus to eliminate this
problem. This is accomplished by aligning the binding sites by optimizing the number
of matching positions then transforming this alignment into a single description. This
can be accomplished by employing the International Union of Pure and Applied Chem-
istry (IUPAC) code that is an extended alphabet of nucleotides of 15 letters including
symbols for alternative nucleotides (R = A or G). The first successful algorithms to
locate TF binding sites in DNA have used this IUPAC string representation and they
are still in use (see Fig. 6).

These approaches have limitations. First the IUPAC strings are absolutely unfor-
giving for sequences that were not part of the training set, i.e., the sequences used to
derive the IUPAC consensus string. For example, if all training sequences contained
either an A or a G at a particular position, a C at this position would cause all candi-
dates to be rejected, even if they were identical to the IUPAC in all other positions.
This may be correct in case of a sequence-specific recognition at this position but is
unacceptable if this position is located within an internal spacer. IUPAC string
matching yields a binary decision only; match or no match. There is no way to quan-
titatively distinguish between the candidates. In addition, the use of the IUPAC
strings allows sequences to be identified that would not contain a functional binding
site because the combinations of individual positions were not restricted by any
means (allowing the accumulation of rare nucleotides throughout the binding site).
Currently, the most reliable way to detect TF binding sites in DNA sequences is
based on nucleotide weight matrices.

The Nucleotide Weight Matrix

The concept of nucleotide weight matrix (NWM) descriptions were developed in
the 1980s. A weight matrix uses the complete composition of nucleotides for each
position of the alignment to achieve a more differentiated rating of a matching
sequence. For example, a single position of an alignment of 12 sequences containing
(T,T,T,T,T,T,T,A,A,A,C,C; each letter representing one sequence at this position)
would be assigned T in the IUPAC consensus. A new sequence with a T at this posi-
tion would be considered a match while an A at the same place would cause the
sequence to be dismissed as no match. Even a simple nucleotide distribution matrix
would assign a weighted score (in this case proportional to the percentage of the nucle-
otide) of 0.58 to the T and still 0.25 to an A. In this manner, weight scores represent

Fig. 6. The 15 letter IUPAC ambiguity code.
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the similarity of the tested sequence to all of the sequences in the alignment much
better than IUPAC consensus sequences. Most weight matrix-based methods use
additional weighting. This is achieved by comparison of the actual nucleotide distri-
bution with random values (log odds methods) or by other statistical measures. (e.g.,
information content).

The widespread use of weight matrices was delayed for almost a decade because
only a few special matrices had been defined. In 1995 two (overlapping) matrix
libraries for TF sites were compiled for the first time and became widely available.
They still represent the only libraries of their kind and are used in several
bioinformatics tool sets. Some of the tools are available through the world-wide-
web (WWW) (see Table 1).

Available methods for TF binding site definition and detection have been sur-
veyed and an extensive comparison of their capabilities was also published (see
Suggested Reading).

The Hidden Markov Model

Consider tossing coins. There are just two possibilities for the outcome: heads or
tails. You may attempt to find out what the probability is that either side will show
up during the next coin toss given the outcome of the last event. This would consti-
tute a simple Markov chain. Now consider, there is somebody behind a curtain (so
you cannot observe the actual action) tossing coins and telling you the outcome.
Again you attempt to predict the outcome from the previous result. However, this
time things are complicated by the fact that the person behind the curtain has several
coins to choose from and will not tell you which one was tossed. You are only told
the final result while you do not know the start condition (i.e., which coin was
tossed). If the selection of the coins is a stochastic background process, which can-
not be observed directly (hidden) then calculating the probabilities for the various
outcome scenarios from the previous outcome involving such a hidden background
process constitutes a Hidden Markov Model (HMM).

If the selection of actual sequences used for the alignment of binding sites is con-
sidered a stochastic background process, then the probability of the occurrence of

Table 1
Internet Accessible Methods to Detect Promoter Elements (Transcription Factor Binding Sites)

Program Availability Comments

MatInspector http://www.genomatix.de/cgi-bin/matinspector/matsearch.pl MatInspector matrix library
(includes matinspector.pl
 TRANSFAC matrices)

SIGNAL SCAN http://wwwbimas.dcrt.nih.gov/molbio/signal/ IUPAC consensus library
based on TFD

MATRIX SEARCH http://wwwbimas.dcrt.nih.gov/molbio/matrixs/ IMD matrix library
(TRANSFAC+TFD)

TFSearch http://pdap1.trc.rwcp.or.jp/research/db/TFSEARCH.html TRANSFAC matrices

TESS http://agave.humgen.upenn.edu/utess/tess/ TRANSFAC Matrices

WWW
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each of the four nucleotides at the next position of the alignment (of a new sequence to
the existing alignment) can be calculated by a HMM. A schematic of a HMM is shown
in Fig. 7.

As illustrated in Fig. 7., the parameters of the HMM are being trained from the
existing alignment. In this manner any new candidate can be checked against the HMM
describing a known binding site and quantitatively scored. HMMs have the advantage
that they can account for almost all of the variability occurring in real sequences
including the variable length of spacers within binding sites (not common but pos-
sible). Unfortunately, HMMs require a high number of parameters to describe binding
sites with the required flexibility. Optimal training of all these parameters would
require training sets of hundreds or even thousands of known binding sites for each
factor. This is the sole reason why weight matrices still dominate the field of binding-
site recognition although in theory HMMs are superior.

Frequent Problems with Practical Application of Search Programs

All search programs attempting to locate potential TF binding sites in genomic
DNA face similar challenges. The most notorious, is incomplete data that prevents the
generation of high quality descriptions by any means. For example, it is meaningless
(but not impossible) to construct a weight matrix if only two examples for a specific
binding site are available. Even a simpler IUPAC string will not be very useful. This is
very close to the next most frequent problem, i.e., the nonexistent description. One
must remember that if an IUPAC or matrix that describes a binding site is not avail-
able, it does not mean that a specific binding site for that protein does not exist.

Now, let us consider the case where there is a sufficiently well-defined weight
matrix and this is used to scan sequences. Regardless of the matrix there will always
be a disappointingly large number of matches in long sequences. Most of these
matches will have no function in transcriptional control. The majority of the same
matches may bind the cognate protein. The dilemma results not from the software,

Fig. 7. Schematic architecture of a HMM describing the alignment of sequences with a length of
five nucleotides. The square boxes indicate matching positions. The circles above the boxes indicate
insertions and the circles below indicate deletions. Note that each sequence can feed through a
different path in this HMM. The bold arrows represent the transitions and carry the parameters deter-
mining the relative probabilities for these transitions.
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but from the confusion of two different topics. Transcriptional function only arises
from TF binding sites located within the correct functional context. Accordingly,
examination of the individual binding sites can never yield information about tran-
scriptional function. This may seem trivial after the previous introduction. However,
this incorrect expectation is very common among researchers and accounts for at
least 95% of all concerns raised about TF binding site-detection programs.

The question then becomes, why are nonfunctional candidate sites identified that
are obviously out of context? This can be addressed by considering that DNA
sequences are used to encode many functions beyond transcription factor binding. For
examples, the AP-1 binding site (IUPAC consensus TGASTCA) is several fold over-
represented in coding regions as compared to promoter regions. This puzzling obser-
vation has a very simple explanation. This combination of nucleotides encodes a series
of frequently used amino acids. Occurrence of the AP-1 binding site is therefore a
consequence of the coding potential of these sequences and has absolutely nothing to
do with transcriptional regulation. However, there is no rule without an exception.
There are coding regions that contain functional AP-1 binding sites.

How to Define Unknown Transcription Factor Binding Sites
In light of an ever-growing number of full-scale genomic sequencing projects it is

very important to discover new, previously unknown binding sites. However, the ques-
tion becomes how can a weight matrix be created for an unknown binding site when it
requires a set of known binding sites?

It is difficult to identify transcription factor binding sites in a large totally anony-
mous sequence. However, there are several, at least partial ways out of this dilemma.
Some previous level of knowledge is required to use pattern definition algorithms to
produce new patterns that can be used as IUPAC consensus sequences or nucleotide
weight matrices. A very effective and relatively simple approach is experimental
determination of the binding site spectrum for a given protein. This is called SELEX
that is actually the in vitro selection of binding sequences from a large collection of
random oligonucleotides. Only sequences with sufficient affinity to the protein will
be bound. The rest can be washed away. Sequencing of the bound oligonucleotides
reveals individual binding sequences that can be used to derive a nucleotide weight
matrix. However, before that can be done an extensive purification of the protein
has to be carried out.

Another experimentally oriented approach is the evaluation of expression array
data. Here, large amounts of gene probes are arrayed onto a filter or glass chip. This
array is then hybridized to RNA (via complementary DNA) isolated from cells that
have undergone some treatment. The amount of signal over each spot indicates the
approximate level of RNA present for this gene. By comparing such values with
a parallel experiment, e.g., with untreated cells, it is possible to detect which genes
changed their RNA levels under treatment. Is is then possible to cluster genes
according to their expression patterns. Analyzing promoter regions from the corre-
sponding genes with a very similar expression pattern can be used to identify common
patterns, many of which are transcription factor binding sites. Brazma, et al. (1998)
have demonstrated this approach successfully in the yeast system. Unfortunately, pro-
moters in higher eukaryotes, like mammals, are not as readily available as in yeast, but
this will change in the near future. Regardless of the means by which promoter
sequences are acquired, the sequences need to be analyzed for unknown motifs hidden
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in the set. There are many programs available to define the patterns in a set of
sequences. The most popular methods are the Gibb’s sampler reviewed in expectation
maximization algorithms. A variety of other approaches are reviewed in Chapter 29
(see Suggested Reading).

Some Rules of Thumb for Application

It is most important to clearly define which kind of analysis makes sense and which
does not. In contrast, the particular algorithm being used to detect TF binding sites is
not as important. The rules of application are outlined below:

1. The first criterion is the length of the sequences to be analyzed. A binding site
that appears to be a significant finding in a hundred base pairs may turn out to
be matching every few hundred base pairs even in long random sequences. The
smaller region selected for analysis (this can be localized, e.g., by experimental
results or annotation), the more informative are results from TF binding site
analysis.

2. Another important factor is the threshold to be used for the analysis. A very high
threshold will most likely prevent the occurrence of false matches (those not bind-
ing to the protein). However, it will also suppress some true matches that just do
not reach the high threshold. Optimal binding may not be the biological opti-
mum, as dissociation must also occur at some time.

3. Using a low threshold will faithfully record all positive matches but will also
collect a huge number of false matches. There are two solutions to this problem.
First , observe the limitations of the sequence length: If it is not possible to
restrict the length of the sequence to less than one kb then in most cases a low
threshold will return substantially more data than is useful. One could look for
binding sites within a larger context (at least another binding site near by),
which allows for both lower thresholds as well as analysis of larger sequences.

4. If it is necessary to identify individual binding sites with low thresholds,
sequence length should be 500 bp or less. It is worthwhile to concentrate one’s
efforts on meeting such conditions before carrying out the actual analysis for
TF binding sites. Otherwise the results are usually not interpretable and the
whole endeavor becomes a waste of time.

Nevertheless, even when observing the aforementioned conditions, results often
contain more matches than desired. Evaluation of the matches is then required to
select the most likely candidates for further analyses. Match scores are of limited
use since scores do not necessarily reflect the binding affinities correctly and weak
binding sites may be perfectly suitable within the correct context. Biological evi-
dence should be used to evaluate the matches. Examples are correlation with other
features (e.g., TSS, the closer the more likely involved in the promoter), conserved
occurrence of sites in orthologous sequences in other species (indicative of func-
tional conservation), or correlation with another binding site in promoters of
coexpressed genes (indicative of promoter modules).

An example would be the development of a promoter model describing the histone
H1 genes. In order to generate this model the following strategy was used: collecting
suitable promoters for a set of histone H1 genes. We used the homology group 6.1.2.1.1
from the Eukeryotic Promoter Database (EPD) yielding the promoter sequences as
seen in Table 2.
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Table 2
Promoter Sequences from EPD Homology Group 6.1.2.1.1.

EPD AC EMBL AC (ID) Description

EP27002 M17019 (GGH1PL) Gg histone H1-a 11L
EP27003 M17020 (GGH1PR) Gg histone H1-a` 11R
EP27004 M17021 (GGH103) Gg histone H1-b 03
EP27005 M17018 (GGH1LH) Gg histone H1-c .10
EP07047 U18782 (GG18782) Gg histone H1-c` 01

J00863 (GGH11A1)
EP33001 X06128 (APHISH1) Cm histone H1
EP11065 X01752 (GGHISH1) Gg histone H1-d 02
EP48019 Y12292 (MMHISTH14) Mm histone H1-E

L26163 (MMH1EH2B)

Table 3
H1t and H1a Alignment Carried Out by CLUSTAL with Default Parameters

The following sequences are too divergent to be aligned:
hs_h1a and hs_h1t (distance 1.637)
(All distances should be between 0.0 and 1.0)
This may not be fatal but you have been warned!

hs_h1t --GAAAATC-GAGGGCTTTCTCGAATAGTTTTGGCATCCAGGGT-CATTTTTCATTAAAA
hs_h1a ATGAAAAGCTGAAGGGATTTTTTAAAATATCTTTCATCAATTGCACAAGATTCTTGAAAA

  ***** * ** **  ** *  ** *  * *  **** *  *  **   *** * ****

hs_h1t -AGAGAAAAGTCATGTCAAATATGAATTTCCGCAGATTATTCAGCACTAGACCCTGGGAG
hs_h1a CACAAACAAGT-ATGTGAACCTGGAGGCTGTTTTCCTCCTTTGGAGCTTCAAAGTGCCAA

 * * * **** **** **    **   *       *  **  *  **  *   **  *

hs_h1t ATTCTGTAAAGAGGGGTTTTGT-TATACTCAACTTTTCCGGGTAAAACAAACACAAAT--
hs_h1a ATTCTGTACCATTGTTTTAAGCATTTAATCAAATTTTGAGGACTAA-CAAACACAATTTG

********     *  **  *  * ** **** ****  **   ** ********* *

hs_h1t --ACTCCTCCTCCAAGG-GGCGG-----GGGCGGTGCCTAGGT-GATGCACCAATCACAG
hs_h1a GGAGTCCAACGCGAGCGCGGCGGCCAGAGGGCGGTGGATTGGACGCTCCACCAATCACAG

  * ***  * * *  * *****     ********  * **  * * ************

hs_h1t CGC-GCCCTACCCTATATAAGGCCCCGAGGCCGCCCGGGTGTTTCATGCTTTTCGCTGGT
hs_h1a GGCAGCGCCGGCTTATATAAG--CCCGGGCCCGAGCATAGCAGCAACGCAAAAC-CTGCT

 ** ** *   * ********  **** * ***  *         * **    * *** *

hs_h1t TATTACATCTTGCGTTTCT-CTGTTGTTATGTCTGAAACCGTGCCTGCAGCTTCTGCCAG
hs_h1a CTTTAGATTTCGAGCTTATTCTCTTCTAGCAGTTTCTTGCCACCATGNNNNNNNNNNNNN

  *** ** * * * ** * ** ** *      *     *   * **

hs_h1t TGCTGGTGTAGCCGCTATGGAGAAAC
hs_h1a NNNNNNNNNNNNNNNNNNNNNNNNNN

The term homology group is a bit misleading as the sequences only share sequence
similarity around the TSS (by defintion position 500 in EPD promoters). This can be
illustrated by an alignment of the best conserved part of two human histone H1 pro-
moters, H1t and H1a (carried out by CLUSTAL with default parameters) as shown in
Table 3.
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As clearly evident from the alignment there is some limited similarity that may be
insufficient for recognition of the promoters. However, as pointed out, promoter func-
tion is encoded by a particular arrangement of transcription elements, in this case tran-
scription factor binding sites. The next step is to format all of these promoter sequences
for use as a training set, into one FASTA file and to analyze this file with GEMS
Launcher (Genomatix software GmbH, Munich, Germany) for a conserved frame-
work of binding sites.

This analysis results in a closely related framework, which can be summarized into
the promoter model (see Fig. 8). This model consists of five binding sites in a linear
arrangement with the characteristics described in Table 4.

It is interesting to note that E2F is known to be involved in cell-cycle regulation
while the presence of a hepatic factor (HEPA) does not make immediate sense. Subse-
quently, one evaluates the specificity of the new model. For that purpose database
searches were carried out using the EMBL database (see Table 5)

The complete results included 59 matches. The list shows the 30 histone gene
promoters found by the model in one search. Most of the matches that were not shown
were located in unannotated sequences. This shows that the model is quite specific
(about 1 match every 12 million basepairs) and indeed locates new histone genes that
were not in the training set (indicating that specificity is not just a trivial consequence
of overtraining). As a negative control we purged EPD for histone promoters, result-

Fig. 8. Promoter Model.

Table 4
Transcription Elements Conserved in Histone H1 Promoters

Element Name Strand Parameters Dist. to next element

Matrix V$E2FF (+/–) Min. core sim.: 0.750   0 to 75 bp
Min. matrix sim.: optimized-0.07

Matrix V$HEPA (–) Min. core sim.: 0.800 10 to 100 bp
Min. matrix sim.: optimized-0.07

Matrix V$SP1F (+) Min. core sim.: 0.750   5 to 50 bp
Min. matrix sim.: 0.800

Matrix V$PCAT/ (+) Min. core sim.: 0.800 20 to 30 bp
CAAT_01 Min. matrix sim.: 0.860

Matrix V$TBPF (+) Min. core sim.: 0.800
Min. matrix sim.: 0.890

                                       Total length: 35 – 255 bp

See
companion CD
for color Fig. 8
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ing in a total of 808,200 bp of 1347 non-histone H1 but functional promoters. The
model had no false positive matches in this control set further supporting the extraor-
dinary specificity.

Summary

Transcription factor binding sites are important elements in transcriptional control.
TF binding sites per se only have the function of binding their cognate protein(s). The
function in transcription control only arises within the appropriate context. TF bind-
ing sites represent a collection of variable sequences and are currently best described
by nucleotide weight matrices. Since potential TF binding sites are not restricted to
regulatory DNA regions, matches to search programs are best evaluated by looking at
the functional context of candidates.

Glossary and Abbreviations

For a complete list of terms, see Website: http://www.genomatix.de/genomics_
tutorials/basic_terms/basic_terms.html.

Table 5
Sequences Matched by Histone Promoter Model

Sequence Identifier [acc. #] Sequence Name

MMHISH1T [M97756] Macaca mulatta histone H1t gene
APHISH1 [X06128] Duck histone H1 gene
GG18782 [U18782] Gallus gallus histone H1 gene
GGH103 [M17021] Chicken H1 histone gene lambda-Ch03 H1
GGH11A1 [J00863] Chicken histone H1 gene
GGH1LH [M17018] Chicken H1 histone gene lambda-H1.10
GGH1PL [M17019] Chicken H1 histone gene pCH11.5E left
GGH1PR [M17020] Chicken H1 histone gene pCH11.5E right
GGHISH1 [X01752] Chicken histone H1 gene
-MM06232 [U06232] Mus musculus CD-1 histone H1t (H1t) gene
MMH1EH2B [L26163] Mouse histone H1e gene
-MMH1T [X72805] M.musculus gene for testicular histone H1
-MMH1X [L26164] Mouse histone H1
MMHIS1 [J03482] Mouse histone H1 gene
-MMHIST431 [Y12290] M.musculus genes encoding histone H1.1
-MMHISTA [L28753] Mus musculus histone H1t (Hist) gene
MMHISTH12 [Y12291] M.musculus genes encoding histone H1.2
MMHISTH14 [Y12292] M.musculus genes encoding histone H1.4
MMU62922 [U62922] Mus musculus histone H1b gene
RNH1D2B [X67320] R.norvegicus genes for H1d-histone
RNH1TH4T [M28409] Rat testis-specific histone H1t
RNHIS1D [M31229] Rat histone H1d gene
RNHIS1TP [M13170] Rat testis-specific H1 histone variant H1t gene
HS193B12 [Z98744] Human histone H1.5 gene
HSH1FNC1 [X06757] Human H1 histone gene FNC16 promoter region
HSH1T [M60094] Human testicular H1 histone (H1) gene
HSHISAC [M60748] Human histone H1 (H1F4) gene
HSHISH1T [M97755] Human histone H1T gene
HSHISTN15 [X83509] H.sapiens gene for histone H1.5.
HSU91328 [U91328] Human histone 2A-like protein gene

WWW
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Enhancer  DNA regions which are usually rich in transcription factor binding
sites and/or repeats. They enhance transcription of the responsive promoter indepen-
dent of orientation and position.

Expression Array  Assessment of the expression of a gene in various cells/tissues
or under specific conditions (stimulation by signals, development or differentiation)
using DNA-chips and labeled hybridization probes.

Gene  An entity of a genome consisting of sequences defining the gene product
(RNA or protein) and additional sequences directing expression of the gene (regula-
tory sequences for transcriptional and post-transcriptional control). The human
genome contains about 60,000 ± 30,000 genes.

Promoters  DNA regions which are rich in transcription factor binding sites simi-
lar to enhancers, but also contain elements that allow specific initiation of transcrip-
tion (core promoter).

Transcription Factor Binding Site  Short stretches of DNA, sufficiently conserved
to allow specific recognition by the corresponding transcription factor.
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31An Introduction to Multiple
Sequence Alignment and Analysis

Steven M. Thompson

Introduction

Given the nucleotide or amino acid sequence of a biological molecule, what do we
know about that molecule? We can find biologically relevant information in sequences
by searching for particular patterns that may reflect some function of the molecule.
These can be catalogued motifs and domains, secondary structure predictions, physi-
cal attributes such as hydrophobicity, or even the content of DNA itself as in some of
the gene-finding techniques. What about comparisons with other sequences? Can we
learn about one molecule by comparing it to another? Yes, naturally we can; inference
through similarity is fundamental to all the biological sciences. We can learn a tre-
mendous amount by comparing our sequence against others.

The comparative method is a cornerstone of the biological sciences. Multiple
sequence alignment is the comparative method on a molecular scale and is a vital
prerequisite to some of the most powerful biocomputing techniques available. Many
methods are available for aligning more than two sequences. Understanding the algo-
rithms and the program parameters of each is the only way to rationally know what is
appropriate. Several methods are even available on the Internet over www servers.
Knowing and staying well within the limitations of this route will avert much frustra-
tion. However, realizing these limitations and being able to do something about them
are very different things.

The power and sensitivity of sequence based computational methods dramatically
increases with the addition of more data. More data yields stronger analyses if care-
fully carried out! Otherwise, it can confound the issue. The patterns of conservation
become clearer by comparing the conserved portions of sequences among a larger and
larger dataset. As in pairwise comparisons and database searching, those areas most
resistant to change are functionally the most important to the molecule. The basic
assumption is that those portions of sequence of crucial functional value are most
constrained against evolutionary change. They will not tolerate many mutations. Not
that mutations do not occur in these portions, just that most mutations in the region are
lethal and thus not observed. Other areas of sequence are able to drift more readily
being less subject to evolutionary pressure. Therefore, sequences become a mosaic of
quickly and slowly changing regions over evolutionary time. We can use those con-
strained portions as anchors to create a sequence alignment allowing comparison. It is
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easy to see that two sequences are aligned when they have identical symbols at iden-
tical positions, but what happens when symbols are not identical or the sequences are
not the same length? How can we know that the most similar portions of the sequences
are aligned, when is an alignment optimal and does optimal mean biologically cor-
rect? Part of the solution is the dynamic programming algorithm.

Dynamic Programming
Let’s review pairwise dynamic programming. Follow the example below. We will

consider matching symbols to be worth one point, nonmatching symbols to be worth
zero points, and we will use a very simple gap-penalty function. We will penalize the
scoring scheme by subtracting one point for every gap inserted unless they are at the
beginning or end of the sequence. In other words, end gaps will not be penalized, i.e.,
both sequences do not have to begin or end at the same point in the alignment. This
zero penalty end-weighting scheme is the default for most alignment programs, but
can often be changed with a program option. However, the gap function described
here and used in the example below is a much simpler gap penalty function than used
in most alignment programs. Normally an affine, i.e., a linear, function is used; the
standard y = mx + b equation:

total penalty = gap opening penalty + [(length of gap) · (gap extension penalty)]

 To execute most alignment programs with this simple DNA gap penalty, you
have to designate a gap creation or opening penalty of zero and a gap extension
penalty of whatever counts in that particular program as an identical base match for
DNA sequences.

As we will see, the oversimplified gap function used in this example does have a
rather unusual effect. The solution occurs in two stages. The first begins very much
like a dot matrix method while the second is totally different. A simple representation
is used here. Instead of calculating the score matrix on the fly as you proceed through
the graph, as is often done in illustrations of dynamic programming, I like to com-
pletely fill in an original match matrix first, and then add points to those positions that
produce favorable alignments next. Points are added based on a “looking back over-
your-left-shoulder” algorithm rule where the only allowable trace-back is diagonally
behind and above. Follow the example in Table 1.

There will probably be more than one best path through the matrix. This time,
starting at the top and working down as we did, then tracing back, I found two opti-
mum alignments:

cTATAtAagg cTATAtAagg
|  ||||| |   ||||
cg.TAtAaT. cgT.AtAaT.

Each of these solutions yields a trace-back total score of 22. This is the number
optimized by the algorithm, not any type of a similarity or identity score! Even though
one of these alignments has six exact matches and the other has five, they are both
optimal according to the rather strange gap-penalty criteria in which we solved the
algorithm. Do you have any ideas about how others could be discovered? Often if you
reverse the solution of the entire dynamic programming process, other solutions are
found! In other words, reverse the sequences in software programs to see alternative
alignments. Some programs also offer a highroad/lowroad option to help explore this
solution space. To summarize, an optimal pairwise alignment is defined as an arrange-
ment of two sequences, the first of length i and the second of length j, such that:
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Table 1
Dynamic Programming Examplea

a. First complete a match matrix using one point for matching and zero points for mismatching between
bases:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 1 1
T 0 1 0 1 0 1 0 0 0 0
A 0 0 1 0 1 0 1 1 0 0
t 0 1 0 1 0 1 0 0 0 0
A 0 0 1 0 1 0 1 1 0 0
a 0 0 1 0 1 0 1 1 0 0
T 0 1 0 1 0 1 0 0 0 0

b. Now add and subtract points based on the best path through the matrix, working diagonally, left to
right and top to bottom. When you have to jump a box to make the path, subtract one point per box
jumped, except at the beginning or end of the alignment. Fill in all additions and subtractions and
calculate the sums and differences as you go:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0
g 0     0+1=1 0+1–1=0 0+0–0=0 0+0–0=0 0+0–0=0 0+0–0=0 0+0–0=0 1+0–0=1     1+0=1
T 0 1+1–1=1     0+1=1 1+1–1=1 0+0–0=0 1+0–0=1 0+0–0=0 0+0–0=0 0+0–0=0 0+1–0=1
A 0 0+0–0=0     1+1=2     0+1=1     1+1=2 0+1–1=0     1+1=2 1+1–1=1 0+0–0=0 0+0–0=0
t 0 1+0–0=1 0+1–1=0     1+2=3     0+1=1     1+2=3 0+2–1=1     0+2=2     0+1=1 0+0–0=0
A 0 0+0–0=0     1+1=2 0+2–1=1     1+3=4 0+3–1=2     1+3=4 1+3–1=3     0+2=2     0+1=1
a 0 0+0–0=0 1+0–0=1     0+2=2 1+3–1=3     0+4=4 1+4–1=4     1+4=5     0+3=3   0+2=2
T 0 1+0–0=1 0+0–0=0     1+1=2     0+2=2     1+3=4     0+4=4     0+4=4     0+5=5 0+5–1=4

c. Clean up the score matrix next. I’ll only show the totals in each cell here:
c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0 0 1 1
T 0 1 1 1 0 1 0 0 0 1
A 0 0 2 1 2 0 2 1 0 0
t 0 1 0 3 1 3 1 2 1 0
A 0 0 2 1 4 2 4 3 2 1
a 0 0 1 2 3 4 4 5 3 2
T 0 1 0 2 2 4 4 4 5 4

d. Finally, convert the score matrix into a trace-back path graph by picking the bottom-most, furthest
right and highest scoring coordinates. Then choose the highest scoring trace-back route, to connect
them all the way back to the beginning using the same ‘over-your-left-shoulder’ rule:

c T A T A t A a g g

c ➀ 0 0 0 0 0 0 0 0 0
g 0 ➀ 0 0 0 0 0 0 1 1
T 0 1 ➀ ➀ 0 1 0 0 0 1
A 0 0 2 1 ② 0 2 1 0 0
t 0 1 0 3 1 ③ 1 2 1 0
A 0 0 2 1 4 2 ④ 3 2 1
a 0 0 1 2 3 4 4 ⑤ 3 2
T 0 1 0 2 2 4 4 4 ⑤ 4

aThis example uses two randomly generated sequences that happen to fit the TATA consensus regions of
eukaryotes and prokaryotes. The most conserved bases within the consensus are capitalized. The eukaryote
promoter sequence is along the X-axis, the prokaryote along the Y-axis. Circled digits indicate trace-back route.
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1. You maximize the number of matching symbols between 1 and 2;
2. You minimize the number of gaps within 1 and 2; and
3. You minimize the number of mismatched symbols between 1 and 2.

Therefore, the actual solution can be represented by:

Sij = sij + max

Si–1 j–1

max Si–x j–1 + wx–1

2 < x < i

max Si–1 j–y + wy–1

2 < y < i

or
or

or

where Sij is the score for the alignment ending at i in sequence 1 and j in sequence 2,
sij is the score for aligning i with j,
wx is the score for making a x long gap in sequence 1,
wy is the score for making a y long gap in sequence 2,

allowing gaps to be any length in either sequence.

Just because dynamic programming guarantees an optimal alignment, it is not nec-
essarily the only optimal alignment. Furthermore, the optimal alignment is not neces-
sarily the correct or biologically relevant alignment! As always, question the results of
any computerized solution based on what you know about the biology of the system.
The above example illustrates the Needleman and Wunsch (1970) global solution.
Later refinements, like Smith and Waterman (1981), demonstrate how dynamic pro-
gramming could also be used to find optimal local alignments. Programs use the fol-
lowing two means to solve dynamic programming using local alignments.

1. An identity match matrix that uses negative numbers for mismatches is incorpo-
rated. Therefore, bad paths quickly become very bad. This leads to a trace-back
path matrix with many alternative paths, most of which do not extend the full
length of the graph.

2. The best trace-back within the graph is chosen. This does not have to begin or end
at the edges of the graph; it is looking for the best segment of the alignment!

Scoring Matrices
What about protein sequences, conservative replacements and similarities, as

opposed to identities? This is definitely an additional complication to consider. Cer-
tain amino acids are very much alike, structurally, chemically, and genetically. How
can we take advantage of the similarity of amino acids in our alignments? Margaret
Dayhoff (1979) unambiguously aligned closely related protein datasets with no more
than 15% difference available at that point in time. She noticed that certain residues, if
they mutate at all, are prone to change into certain other residues. These propensities
for change fell into the same categories that chemists had known for years, those
chemical and structural classes, conserved through the evolutionary constraints of
natural selection. However, Dayhoff’s empirical observation quantified these changes.
Based on the multiple sequence alignments that revealed a level of divergence
between the sequences considered, the assumption that estimated mutation rates in
closely related proteins can be extrapolated to more distant relationships was born.
Using matrix and logarithmic mathematics that smooth out the statistics of the system,
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she was able to empirically specify the relative probabilities that different residues
mutate into other residues through evolutionary history. This is the basis of the famous
PAM (corrupted acronym of accepted point mutation) 250 (meaning that the matrix
has been multiplied by itself 250 times) log odds matrix. Since Dayhoff’s time, other
biomathematicians, (see Henikoff and Henikoff’s BLOSUM series of tables) have cre-
ated newer matrices with more or less success than Dayhoff. Dayhoff’s original PAM
250 table remains a classic as historically the most widely used.

Collectively these types of tables are known as symbol comparison tables, log odds
matrices, or scoring matrices and they are fundamental to all sequence comparison
techniques. The standard default scoring matrix for many protein similarity compari-
son programs is now the BLOSUM62 table. It appears in Table 2.

Rather than using the one/zero match function shown in the simple dynamic pro-
gramming used for nucleic acids, protein sequence alignments use the match func-
tion provided by a scoring matrix. The concept of similarity becomes very important
with some amino acids being more similar than others! A common misnomer in this

Table 2
BLOSUM62 Scoring Matrix

A B C D E F G H I K L M N P Q R S T V W X Y Z

A 4 –2 0 –2 –1 –2 0 –2 –1 –1 –1 –1 –2 –1 –1 –1 1 0 0 –3 –1 –2 –1

B –2 6 –3 6 2 –3 –1 –1 –3 –1 –4 –3 1 –1 0 –2 0 –1 –3 –4 –1 –3 2

C 0 –3 9 –3 –4 –2 –3 –3 –1 –3 –1 –1 –3 –3 –3 –3 –1 –1 –1 –2 –1 –2 –4

D –2 6 –3 6 2 –3 –1 –1 –3 –1 –4 –3 1 –1 0 –2 0 –1 –3 –4 –1 –3 2

E –1 2 –4 2 5 –3 –2 0 –3 1 –3 –2 0 –1 2 0 0 –1 –2 –3 –1 –2 5

F –2 –3 –2 –3 –3 6 –3 –1 0 –3 0 0 –3 –4 –3 –3 –2 –2 –1 1 –1 3 –3

G 0 –1 –3 –1 –2 –3 6 –2 –4 –2 –4 –3 0 –2 –2 –2 0 –2 –3 –2 –1 –3 –2

H –2 –1 –3 –1 0 –1 –2 8 –3 –1 –3 –2 1 –2 0 0 –1 –2 –3 –2 –1 2 0

I –1 –3 –1 –3 –3 0 –4 –3 4 –3 2 1 –3 –3 –3 –3 –2 –1 3 –3 –1 –1 –3

K –1 –1 –3 –1 1 –3 –2 –1 –3 5 –2 –1 0 –1 1 2 0 –1 –2 –3 –1 –2 1

L –1 –4 –1 –4 –3 0 –4 –3 2 –2 4 2 –3 –3 –2 –2 –2 –1 1 –2 –1 –1 –3

M –1 –3 –1 –3 –2 0 –3 –2 1 –1 2 5 –2 –2 0 –1 –1 –1 1 –1 –1 –1 –2

N –2 1 –3 1 0 –3 0 1 –3 0 –3 –2 6 –2 0 0 1 0 –3 –4 –1 –2 0

P –1 –1 –3 –1 –1 –4 –2 –2 –3 –1 –3 –2 –2 7 –1 –2 –1 –1 –2 –4 –1 –3 –1

Q –1 0 –3 0 2 –3 –2 0 –3 1 –2 0 0 –1 5 1 0 –1 –2 –2 –1 –1 2

R –1 –2 –3 –2 0 –3 –2 0 –3 2 –2 –1 0 –2 1 5 –1 –1 –3 –3 –1 –2 0

S 1 0 –1 0 0 –2 0 –1 –2 0 –2 –1 1 –1 0 –1 4 1 –2 –3 –1 –2 0

T 0 –1 –1 –1 –1 –2 –2 –2 –1 –1 –1 –1 0 –1 –1 –1 1 5 0 –2 –1 –2 –1

V 0 –3 –1 –3 –2 –1 –3 –3 3 –2 1 1 –3 –2 –2 –3 –2 0 4 –3 –1 –1 –2

W –3 –4 –2 –4 –3 1 –2 –2 –3 –3 –2 –1 –4 –4 –2 –3 –3 –2 –3 11 –1 2 –3

X –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

Y –2 –3 –2 –3 –2 3 –3 2 –1 –2 –1 –1 –2 –3 –1 –2 –2 –2 –1 2 –1 7 –2

Z –1 2 –4 2 5 –3 –2 0 –3 1 –3 –2 0 –1 2 0 0 –1 –2 –3 –1 –2 5

a Values whose magnitude is  ± 4 are drawn in outline characters to make them easier to recognize. Notice
that positive values for identity range from 4 to 11 and negative values for those substitutions that rarely occur
are as low as –4. The most conserved residue is tryptophan with an identity score of 11; cysteine is next, with
a score of 9; histidine, 8; both proline and tyrosine have scores of 7. The hydrophobic substitutions: isoleucine,
leucine, valine, and to a lesser extent, methionine, easily swap places.
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area is the concept of homology vs similarity: there is a huge difference! Similarity
is merely a statistical parameter that describes how two sequences, or portions of
them, are alike according to some set scoring criteria. It can be normalized to ascer-
tain statistical significance as seen in the database searching methods. Homology, in
contrast and by definition, implies an evolutionary relationship. You need to be able
to demonstrate lineage between the organisms or genes of interest in order to claim
homology or provide experimental evidence, e.g., morphological, genetic, or fossil,
that corroborates your assertion. The term percent homology does not exist; some-
thing is either homologous or it is not. The famous molecular evolutionist Walter
Fitch likes to relate the joke, “homology is like pregnancy; you can’t be 45% preg-
nant, just like something can’t be 45% homologous. You either are or you are not.”
Do not make the all too commonly made mistake of calling any sequence similarity
homology. Highly significant similarity can be used to argue homology, but never
the other way around.

Multiple Sequence Dynamic Programming

As seen in pairwise dynamic programming, a brute force approach, looking at
every possible position by sliding one sequence along every other sequence, is just
not practical for alignment. Even without considering the introduction of gaps, the
computation required to compare all possible alignments between just two sequences
requires time proportional to the product of the lengths of the two sequences. There-
fore, if the two sequences are approx the same length (N), this is a N2 problem. To
include gaps, the calculation would be repeated 2N times to examine the possibility
of gaps at each position within the sequences. This is now a N4N problem! Dynamic
programming reduces the problem to N2.

How do you work with more than just two sequences at a time? You could pains-
takingly manually align all your sequences using some type of editor, and many
people do that, but an automated solution is desirable, at least as a starting point to
manual alignment. However, solving the dynamic programming algorithm for more
than just two sequences rapidly becomes intractable. Dynamic programming’s com-
plexity, and hence its computational requirements, increases exponentially with the
number of sequences in the dataset being compared [complexity = (sequence
length)number of sequences]. Mathematically this is an N-dimensional matrix, quite com-
plex indeed. As we have seen, pairwise dynamic programming solves a two-dimen-
sional matrix and the complexity of the solution is equal to the length of the longest
sequence squared. A three-member standard dynamic programming sequence com-
parison would be a matrix with three axes, the length of the longest sequence cubed,
and so forth. You can at least draw a three-dimensional matrix, but more than that
becomes difficult, if not impossible, to even visualize. It quickly boggles the mind.

Several different heuristics have been employed over the years to simplify the
complexity of the problem. One program, MSA, attempts to globally solve the
N-dimensional matrix equation using a bounding box trick. However, the algorithm’s
complexity precludes its use in most situations, except with very small datasets. One
way to globally solve the algorithm and yet reduce its complexity is to restrict the
search space to only the most conserved local portions of all the sequences involved.
This approach is used by the program PIMA. MSA and PIMA are both available
through the Internet.
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How the Algorithm Works

The most common implementations of automated multiple alignment modify
dynamic programming by establishing a pairwise order in which to build the align-
ment. This modification is known as pairwise, progressive dynamic programming.
Originally attributed to Feng and Doolittle (1987), this variation of the dynamic
programming algorithm generates a global alignment, but restricts its search space
at any one time to a local neighborhood of the full length of only two sequences.
Consider a group of sequences. First, all pairs are compared to each other, using
normal dynamic programming. This establishes an order for the set, most to least
similar. Similarly, subgroups are clustered together. Then, take the top two most
similar sequences and align them using normal dynamic programming. Now create
a consensus of the two and align that consensus to the third sequence using standard
dynamic programming. Now create a consensus of the first three sequences and align
that to the forth most similar. This process continues until it has worked its way
through all sequences and/or sets of clusters. The pairwise, progressive solution is
implemented in several programs including Des Higgins’ and Julie Thompson’s
Clustal (1994) (a copy of which is available on this volume’s accompanying CD) and
the GCG PileUp program.

As seen with pairwise alignments and sequence database similarity searching, all
of this is much easier with protein sequences vs nucleotide sequences. Twenty sym-
bols are easier to align then only four; the signal-to-noise ratio is far better. Further-
more, the concept of similarity applies to amino acids but generally not to nucleotides.
If at all possible, multiple sequence alignment should always be carried out at the
protein level. Therefore, translate nucleotide sequences to their protein counterparts if
you are aligning coding sequences before performing multiple sequence alignment.
The process is much more difficult if you are forced to align nucleotides because the
region does not code for a protein. Automated methods may be able to provide a start-
ing point, but there is no guarantee that the alignment will be biologically correct. The
resulting alignment will probably require extensive editing, if it works at all. Success
will largely depend on the similarity of the nucleotide dataset.

One liability of the global progressive pairwise methods is they are entirely depen-
dent on the order in which the sequences are aligned. Fortunately, ordering them from
most similar to least similar usually makes biological sense and works very well. How-
ever, the techniques are very sensitive to the substitution matrix and specified gap
penalties. Programs that allow fine-tuning areas of an alignment by re-alignment with
different scoring matrices and/or gap penalties can be extremely helpful. However,
any automated multiple sequence alignment program should be thought of as only a
tool to offer a starting alignment that can be improved upon, not the end-all-to-meet-
all solution, guaranteed to provide the one-true answer.

Reliability

To help assure the reliability of the sequence alignment, always use comparative
approaches. A multiple sequence alignment is a hypothesis of evolutionary history. To
insure that you have prepared a reasonable alignment, be sure it makes sense. Think
about it, a sequence alignment is a statement of positional homology. It establishes the
explicit homologous correspondence of each individual sequence position, each col-
umn in the alignment. Therefore, devote considerable time and energy toward devel-

See
companion CD
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oping the most satisfying multiple sequence alignment possible. Editing alignments is
encouraged. Specialized sequence editing software helps achieve this, but any editor
will do as long as the sequences are properly formatted. After some automated solu-
tion has offered its best guess, go into the alignment and use your own brain to
improve it. Use all available information and understanding to insure that all columns
are homologous. Look for conserved functional sites to help guide your judgement.
Assure that known enzymatic, regulatory, and structural elements all align. The
results of subsequent analyses are absolutely dependent on the alignment.

Researchers have successfully used the conservation of co-varying sites in riboso-
mal and other structural RNA alignments to assist refinement. That is, as one base in
a stem-structure changes the corresponding Watson-Crick paired base will change in
a corresponding manner. The Ribosomal Database Project at the Center for Microbial
Ecology at Michigan State University has used this process extensively to help guide
the construction of their rRNA alignments and structures (see Website: http://rdp.
cme.msu.edu/html/index.html).

Be sure an alignment makes biological sense. Beware of comparing apples and
oranges. If creating alignments for phylogenetic inference, either make paralogous
comparisons (i.e., evolution via gene duplication) to ascertain gene phylogenies within
one organism, or orthologous (within one ancestral loci) comparisons to ascertain
gene phylogenies between organisms, which should imply organismal phylogenies.
Try not to mix them up without complete data representation. A substantial amount of
confusion can arise, especially if you do not have all the data and/or if the nomencla-
ture is contradictory; extremely misleading interpretations can result. Be wary of try-
ing to align genomic sequences with cDNA when working with DNA, the introns will
cause all sorts of headaches. Similarly, do not align mature and precursor proteins
from the same organism and loci. It does not make evolutionary sense, as one has not
evolved from the other, rather one is the other. These are all easy mistakes to make, try
your best to avoid them.

Some general guidelines to remember include the following:

• If the homology of a region is in doubt, then throw it out (or mask it).

• Avoid the most diverged parts of molecules, they are the greatest source of sys-
tematic error.

• Do not include sequences that are more diverged than necessary for the analysis
at hand.

Practical consideration: remember the old adage: “garbage in—garbage out!”

Applicability

The question arises, what are the uses of multiple sequence alignments? They are:

• Very useful in the development of PCR primers and hybridization probes;

• Great for producing annotated, publication quality, graphics and illustrations;

• Invaluable in structure/function studies through homology inference;

• Essential for building “Profiles” for remote homology similarity searching;

• Required for molecular evolutionary phylogenetic inference programs such as
those from Phylogenetic Analysis Using Parsimony (and other methods)
(PAUP*) and PHYLogeny Inference Package (PHYLIP).

WWW
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The results from a multiple sequence alignment are useful for probe and primer
design. They allow you to visualize the most conserved regions of an alignment.
This technique is invaluable for designing phylogenetic specific probes as it clearly
localizes areas of high conservation and high variability in an alignment. Depending
on the dataset that you analyze, any level of phylogenetic specificity can be achieved.
Areas of high variability in the dataset can be used to differentiate between univer-
sal and specific probe sequences. After localizing these general target areas, you can
then use any of a number of primer discovery programs to find the best primers
within those regions and to test those potential probes for common PCR conditions
and problems.

Graphics prepared from multiple sequence alignments can dramatically illustrate
functional and structural conservation. These can take many forms of all or portions
of an alignment, shaded or colored boxes or letters for each residue, cartoon repre-
sentations of features, running line graphs of overall similarity, overlays of attributes,
various consensus representations. All can be printed with high-resolution equip-
ment, in color or gray tones. These can make a big difference in a poster or manu-
script presentation.

Conserved regions of an alignment are functionally important. In addition to the con-
servation of primary sequence and function, structure is also conserved in these crucial
regions. In fact, recognizable structural conservation between true homologs extends
way beyond statistically significant sequence similarity. An often-cited example is in
the serine protease superfamily. S. griseus protease A demonstrates remarkably little
similarity when compared to the rest of the superfamily (Expectation-values E 10 1.8 in a
typical search) yet its three-dimensional structure clearly shows its allegiance to the
serine proteases (Pearson, W.R., personal communication). These principles are the
premise of homology modeling and it works remarkably well.

As originally described by Michael Gribskov (1987), profiles are a position spe-
cific weight matrix description of an alignment or a portion of an alignment. Gap
insertion is penalized more heavily in conserved areas than in variable regions, and the
more highly conserved a residue is, the more important it becomes. Later refinements
have added more statistical rigor. Generally, a profile is created from an alignment of
related sequences and then used to search databases for remote sequence similarities.
Profile searching is tremendously powerful and can provide the most sensitive, albeit
extremely computationally intensive, database similarity searches possible.

We can use multiple sequence alignments to infer phylogeny. Based on the asser-
tion of homologous positions in an alignment, several algorithms can estimate the
most reasonable evolutionary tree for that alignment. Always remember that regard-
less of the algorithm used, parsimony, any distance method, or even maximum likeli-
hood, all molecular sequence phylogenetic inference programs make the absolute
validity of your input alignment their first and most critical assumption.

The most important factor to infer reliable phylogenies is the accuracy of the mul-
tiple sequence alignment. The interpretation of your results is utterly dependent on
the quality of your input. In fact, many experts advice against using any parts of the
sequence data that are at all questionable. Only analyze those portions that assuredly
align. As a general rule, if any portions of the alignment are in doubt, throw them out.
This usually means trimming down or masking the alignment’s terminal ends and
may require internal trimming or masking as well. Biocomputing is always a delicate
balance—signal against noise—and sometimes it can be quite the balancing act.
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Complications
One of the biggest problems in computational biology is that of sequence format.

Each suite of programs seems to require its own different sequence format. The major
databases all have their own. Clustal has its own; even the database similarity search-
ing program FastA has a sequence format associated with it. The GCG Package
sequence format exists both as single and Multiple Sequence Format (MSF) forms, and
GCG’s SeqLab has its own format called Rich Sequence Format (RSF) that contains
both sequence data and reference and feature annotation. PAUP* has a required format
called the NEXUS file and PHYLIP has its own unique input data format requirements.
The PAUP* interfaces in the GCG Package, PAUPSearch, and PAUPDisplay, auto-
matically generate their required NEXUS format directly from the GCG formatted files.
Most systems are not nearly so helpful. Several different programs are available to
convert formats back and forth between the required standards, but it all can get quite
confusing. One program, ReadSeq by Don Gilbert at Indiana University (1993), allows
for the back and forth conversion between several different formats. I would heartily
recommend installing it on all of your computers. It is available as a C version or a new
JAVA version with a graphical interface. Alignment gaps are another problem. Differ-
ent program suites may use different symbols to represent them. Most programs use
hyphens, “-”, the GCG Package uses periods, “.”. Furthermore, not all gaps in sequences
should be interpreted as deletions. Interior gaps are probably okay to represent this
way, as regardless of whether a deletion, insertion, or a duplication event created the
gap; they will be treated the same by the algorithms. These are called indels. However,
end gaps should not be represented as indels because a lack of information beyond the
length of a given sequence may not be due to a deletion or insertion event. It may have
nothing to do with the particular stretch being analyzed at all. It may just not have been
sequenced. These gaps are just place holders for the sequence. Therefore, it is safest to
manually edit an alignment to change leading and trailing gap symbols to +, unknown
amino acid, or n, unknown base, or ?, which is supported by many programs and means
unknown residue or indel. This will ensure that the programs do not make incorrect
assumptions about your sequences.

The Protein System
The Elongation Factors are a vital protein family crucial to protein biosynthesis.

They are ubiquitous to all of cellular life and, in concert with the ribosome, they must
have been one of the very earliest enzymatic factories in life. The Elongation Factor
subunit known as 1-Alpha (EF-1α) in Eukaryota and Archaea and called Elongation
Factor Tu in [Eu]Bacteria (and Euk and Arch plastids) will be used as an example. It
is essential in the universal process of protein biosynthesis and promotes the GTP-
dependent binding of aminoacyl-tRNA to the A-site of the intact ribosome. GTP is
hydrolyzed to GDP in the process. Because of strong evolutionary pressure resulting
in very slow divergence and because of its ubiquity, it is an appropriate gene to esti-
mate early life questions. In fact, a series of papers in the early 1990s, notably those by
Iwabe, et al. (1989), Rivera and Lake (1992), and Hasegawa, et al. (1997) all base
universal trees of life on this gene. Iwabe, et al. used the trick of aligning the α
gene paralog EF-1β to their α dataset to root the tree. Elongation Factor 1α/Tu has
guanine nucleotide, ribosome, and aminoacyl-tRNA binding sites. There are three dis-
tinct types of elongation factors that all work together to help perform the vital func-
tion of protein biosynthesis, as seen in Table 3.
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In EF-1α, a specific region is involved in a conformational change mediated by the
hydrolysis of GTP to GDP. This region is conserved in both EF-1α/EF-Tu and EF-2/
EF-G and seems to be typical of GTP-dependent proteins, which bind noninitiator
tRNAs to the ribosome.

In E. coli EF-Tu is encoded by a duplicated loci; tufA and tufB. They are located at
positions 74.92 and 90.02 of the chromosome. In humans at least 20 loci on seven
different chromosomes demonstrate homology to this gene. However, only two are
potentially active. The remainder appear to be retropseudogenes. The gene is encoded
in both the nucleus and mitochondria and chloroplast genomes in eukaryotes and is a
globular, cytoplasmic enzyme in all life forms.

The three-dimensional structure of elongation factor 1α/Tu has been solved in
about 15 cases. Partial and complete E. coli structures have been resolved and
deposited in the Protein Data Bank (1EFM, 1ETU, 1DG1, 1EFU, and 1EFC). The
complete Thermus aquaticus and thermophilus structures have been determined
(1TTT, 1EFT, and 1AIP), and even the cow EF-1α has been determined (1D2E).
Most of the structures show the protein in complex with its nucleotide ligand, some
show the terniary complex. The T. aquaticus structure is shown in Fig. 1. The
T. aquaticus structure has six well-defined helices that occur from residue
24 through 38, 86 through 98, 114 through 126, 144 through 161, 175 through 184,
and 194 through 207. There are also two short helices at residues 47 to 51 and
54 to 59. The guanine nucleotide-binding site involves the following regions:
residues 18 to 25, residues 81 to 85, and residues 136 to 139. Residue 8 is associated
with aminoacyl-tRNA binding. Multiple sequence alignment with this dataset
can be used to explore these functional and structural regions as well as discover
other interestingly conserved sites. To illustrate the various principles, we will
restrict the example to a subset of lower eukaryotic EF-1α sequences. These
will include many protists and algae but will exclude much of the Crown group,
including all of the higher plants, true fungi, and metazoans. As such it may be an
appropriate dataset with which to ask early branching order questions deep in
eukaryotic evolution.

Table 3
The Three Elongation Factors in Eukayota and Bacteria

Eukaryota [Eu]Bacteria Function

EF-1α EF-Tu Binds GTP and an aminoacyl-tRNA; delivers the latter to the A
site of ribosomes.

EF-1β EF-Ts Interacts with EF-1α/EF-Tu to displace GDP and thus allows
the regeneration of GTP-EF-1α/EF-Tu

EF-2 EF-G Binds GTP and peptidyl-tRNA and translocates the latter from
the A site to the P site.

a In [Eu]Bacteria and Eukaryota they have the names as described. The nomenclature in Archaea is still
under consideration.
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What is Available

A large range of programs is available for performing multiple sequence alignment
on your own computer or on server computers. Many of the client/server applications
are web-based so the only program requirement on your part is a Web browser. Spe-
cialized programs such as the global MSA and local PIMA software are generally not
loaded onto personal machines, most are run over Web links. However, running a
general purpose, progressive, pairwise implementation for multiple alignment directly
on your own computer can often be very helpful. This is especially true if your Internet
connection is slow or unreliable. Perhaps the most popular of the general purpose
multiple sequence alignment programs is Clustal. The current version, ClustalW and
its multi-platform, graphical user interface ClustalX can be found at biocomputing
sites around the globe and on the CD accompanying this volume, and installed on your
own machine. ClustalX has versions available for most graphical computer Operating
Systems; including UNIX, Microsoft Windows, and Macintosh. The ClustalX home-
site guarantees the latest version (see CD and Website: http://www-igbmc.u-strasbg.fr/
BioInfo/ClustalX/). Complete documentation comes with the program and is accessed
through a Help menu.

Fig. 1. The Thermus aquaticus elongation factor Tu structure, 1EFT. Notice that half of the protein
has well-defined alpha helices and the rest consists of rather unordered coils. GTP/GDP fits right
down in amongst all the helices in the pocket.

WWW
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Running ClustalX on Your Machine, Briefly
Sequences are entered into the program through the File menu Load Sequences

choice. They must all be in one of the following file formats: NBRF/PIR, EMBL/
SWISSPROT, Pearson’s FastA, Smith’s GDE, GCG’s MSF, or RSF, or its own native
Clustal format. The GenBank format cannot be used. Therefore, if you are saving
sequences from the National Center for Biotechnology Information (NCBI), the home
of GenBank, be careful to switch the default saved sequence format to be compatible
with ClustalX. However, be careful of FastA format files downloaded from NCBI. For
example, ClustalX will not properly load FastA format sequences, uploaded from a
Mac running Netscape using Entrez at NCBI. NCBI encodes UNIX style carriage
returns in the file and Mac ClustalX requires Mac style hard returns. If you run into
this problem, BBEdit can be used to change the return type to Mac style globally in the
file and it will work fine thereafter.

The collection of sequences used in the example contains representative EF-1α
sequences from many lower eukaryotes. This dataset was assembled using GCG’s
LookUp program, a Sequence Retrieval System (SRS) derivative. These sequences
can also be collected using Entrez at NCBI, either through the Web or installed as their
client/server NetEntrez application, or SRS on the Web, available at all EMBL and
many other biocomputing sites around the world (see Website: http://srs.ebi.ac.uk/).
After the sequences are properly loaded into ClustalX, the window should look similar
to Fig. 2.

Colors are based on the physical properties of the amino acids and can easily be
modified by changing the default color parameter file. The plot along the bottom shows
positional conservation within the dataset. Since this dataset is not yet aligned, there is
little positional conservation at this point.

WWW

Fig. 2. The ClustalX interface with a newly loaded dataset ready to be aligned.
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The ClustalX interface is not an editor. You can select entire sequence entries
and cut and paste them from the alignment or change their order but you can not
change any characters within the alignment including gaps. The exception is you
can globally remove gaps, either all of them or just common columns of gaps. Any
manual editing of the alignment is not possible. This can only be done with a dedi-
cated sequence editor, such as GCG’s SeqLab editor (see Chapters 28 and 33).

The Help pages within the program are quite valuable. Documentation on the
Web, including tutorials (see Website: http://www.may.ie/academic/biology/james/
ClustalX_tutorial.html as an example) are also available. ClustalW uses an enhanced
progressive, pairwise, dynamic, programming-alignment algorithm. Enhancements
include the addition of an alternative fast heuristic-alignment method, differential
sequence weighting, the use of a neighbor-joining guide tree rather than a UPGMA
and the use of several additional protein parameters over and above the built in
scoring matrices, such as different gap penalties associated with runs of hydrophilic
amino acids or other structural attributes. Look through all of the program param-
eters and think about each before you run your alignments.

To create an alignment using default parameters Select All Sequences using the
Edit menu and then Do Complete Alignment from the Alignment menu. However,
take a moment to review the Alignment Parameters from the Alignment menu
before starting the process. Your machine will dedicate itself to solving the align-
ment after  pressing ALIGN from the Complete Alignment window. This dataset
took under 5 min on a 300 MHz G3 Macintosh computer to compute using the
default slow alignment method. The results are shown in Fig. 3.

WWW

Fig. 3. An aligned dataset in ClustalX. Notice the columns of color, as well as the similarity plot
along the bottom, and the similarity symbols along the top of the display.
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Now the colors align nicely and a line appears along the top where asterisks (*)
indicate absolute residue conservation, semi-colons (:) denote strong conservation,
and periods (.) show weak conservation. The cutoff value between strong and weak
amino acid relationships is ± 0.5 from the built-in Gonnet PAM250 scoring matrix.
The plot along the bottom of peaks indicates those areas of sequence conservation and
valleys show areas of sequence divergence (or misalignment). Alignment quality can
also be gauged with the options Calculate, Show Low-Scoring Segments, and Show
Exceptional Residues that highlight residues in black and gray respectively. Regions
of low quality can be realigned by selecting across their columns, lowering the Mul-
tiple Alignment Parameters, Gap Opening penalty and then using the Realign
Selected Residue Range option. This can be very effective for cleaning up problem
areas of the alignment.

Clustal also lets you manipulate two alignments, or an existing alignment and
other unaligned sequences, all at once in the Profile Alignment Mode. A Clustal
profile is just a multiple sequence alignment, but it does provide an efficient and
effective means for combining alignments or adding to an existing alignment. To
run ClustalX in this manner switch from Multiple Alignment Mode to Profile Align-
ment Mode. This can be illustrated by adding the T. aquaticus EF1-Tu sequence to
the example dataset. After switching modes, Load Profile 2 to the empty lower
panel, then Align Profile 2 to Profile 1 from the Alignment menu. If you have
changed any alignment parameters, while refining some region, e.g., you may have
lowered gap penalties, you may want to reset them for this step. After pressing
ALIGN, the new sequence will be aligned to the existing multiple alignment. The
Lock Scroll button allows you to simultaneously scroll through both alignments
with one scroll bar. Profile Alignment Mode is displayed in Fig. 4. To merge the
pregapped 1EFT sequence with the existing alignment, you need to use the Edit
menu to Add Profile 2 to Profile 1 and then Save Profile 1 As... a new alignment
file. Increasing an alignment’s size in this manner is not nearly as powerful and
accurate as the true profile methods. However, it is certainly an easy-to-use alterna-
tive that works quite well as long as Profile 1 and Profile 2 are sufficiently similar.

The World Wide Web and Multiple Sequence Alignment

Web resources for multiple alignments are not as easy to use nor as powerful as
locally performing the multiple alignment, on either your own office machine or on a
local dedicated sequence analysis server. Some of the difficulty comes from limits in
Web interface scripting and forms capabilities, and cut-and-paste errors, but also just
the unreliability of Internet connections. In spite of that warning, it is possible, and
straightforward to take advantage of multiple sequence resources available on the
Internet through the www. Naturally, if you are not willing to install and use any local
tools for multiple alignment, www resources can be invaluable. However, problems
with very large datasets make multiple sequence alignment on the Web impractical
after your data has reached a certain size.

One of the most comprehensive multiple sequence alignment resource collections
on the www are at the Bielefeld University Virtual School of Natural Sciences
BioComputing Division (VSNS-BCD) in Germany. This is part of an extensive Web
site developed, starting in 1995, for teaching bioinformatics over the Internet. Explor-
ing all of their pages is very worthwhile as it contains incredibly informative lectures,
demonstrations, and tutorials. The VSNS-BCD multiple alignment URL home page
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(see Website http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/welcome.html)
is shown in Fig. 5. Another very good multiple alignment resource is at the PBIL
(Pôle Bio-Informatique Lyonnais) World Wide Web server in Lyon, France (see
Website: http://pbil.univ-lyon1.fr/alignment.html). Developed in association with the
Laboratory of Biometry and Evolutionary Biology and the Institute of Biology and
Chemistry of Proteins, the PBIL multiple alignment page has some of the same URLs
as the VSNS page, but the differences merit a look. Its multiple alignment section is
displayed in Fig. 6.

ClustalW on the Web
The European Molecular Biology Laboratory’s European Bioinformatics Insti-

tute (EMBL EBI) in Hinxton UK provides an interface to ClustalW. All program
parameters are set from the main forms window (see Website: http://www.ebi.ac.uk/
clustalw/), and are shown in Fig. 7. To run ClustalW through a Web server in the
USA go to the Baylor College of Medicine Search Launcher (see Website: http://
searchlauncher.bcm.tmc.edu/). The Baylor Search Launcher provides a single, pow-
erful Web portal to many different types of sequence analysis services available on
the WWW. Functions are organized according to what type of analysis is offered,
e.g., protein vs DNA similarity searches. The welcome page is displayed in Fig. 8.

Click on Multiple sequence alignments to get the correct form and paste your
unaligned sequence set in the box. Many popular formats are accepted, though the FastA
format is probably the most reliable. Select the Most ReadSeq formats accepted link
to read the help file for all of your input choices. Program Help files are displayed,
Options are set, default Parameters are listed, and Examples are shown, respectively, by

Fig. 4. ClustalX in Profile Alignment Mode. A new elongation factor sequence is merged with the
existing alignment in this example.
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Fig. 6. The Pôle Bio-Informatique Lyonnais (PBIL) World Wide Web server’s alignment page (see
Website: http://pbil.univ-lyon1.fr/alignment.html).

Fig. 5. The VSNS-BCD multiple sequence alignment home page (see Website: http://www.techfak.
uni-bielefeld.de/bcd/Curric/MulAli/welcome.html).
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Fig. 8. The Baylor College of Medicine’s BCM Search Launcher welcome page (see Website:
http://searchlauncher.bcm.tmc.edu/). The Baylor Search Launcher organizes commonly used search
functions according to what type of analysis is offered, e.g. protein versus DNA similarity searches.

Fig. 7. The European Molecular Biology Laboratory’s European Bioinformatics Institute’s World
Wide Web interface to ClustalW. Program parameters are all set right from the main form window
(see Website: http://www.ebi.ac.uk/clustalw/).
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clicking the HOPE buttons next to every service: [H] [O] [P] [E]. The default multiple
alignment program choice is ClustalW. The screen will look similar to that shown in
Fig. 9 after you’ve pasted your dataset into the form. Press the Submit button when
ready. The Search Launcher screen will go away and be replaced by the following text:

ClustalW Multiple Sequence Alignment Results
Courtesy of the BCM Search Launcher

Your job has been accepted. Please DO NOT submit it again. Thanks.
Click here to check your job cw18-3028 status.

The sample dataset was aligned in less than 5 min. It is returned in an easy-to-read
interleaved format as well as a standard FastA format section that you can cut-and-
paste into subsequent applications. The alignment is very similar to that derived on the
desktop. There are some interesting differences though. In particular the Baylor
ClustalW alignment is considerably shorter, 471 residues and gaps long, vs 498. One
significant difference, ClustalX uses the Gonnet scoring matrix series by default
whereas ClustalW through the Baylor Search Launcher uses the BLOSUM matrix
series by default.

Web Alternatives to ClustalW
 MSA and PIMA are both very specialized programs. Generally, they would not

be used for most standard datasets and in fact, both have quite limited input capaci-
ties. So why would anyone want to use either? It is largely a matter of local vs global
similarity and dissatisfaction with standard algorithms. PIMA is very good at find-
ing local patches of similarity between sequences and aligning those patches inde-
pendent of high background dissimilarity. MSA globally aligns the full length of

Fig. 9. The Baylor College of Medicine’s BCM Search Launcher’s multiple sequence alignment
input form.
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sequences but does so all-at-the-same-time, it does not use a pairwise process, it
explores an n-dimensional trace-back matrix. So, PIMA is valuable for aligning
domains of proteins where full-length alignments just will not work, and MSA is
good for aligning the full lengths of proteins in situations where pairwise, progres-
sive techniques leave too much ambiguity. However, both programs are limited to
small datasets. The PIMA limit at the Baylor Search Launcher is 20,000 total char-
acters and 60 min of computation time whereas the MSA limit is 8 sequences, 800
characters, and 10 min of computation time.

Multiple Sequence Alignment and Structure Prediction

Structural inference is fraught with difficulties. However, it becomes possible using
comparative multiple sequence approaches. One of the best predictors of secondary
structure is on the World Wide Web (see Website: http://www.embl-heidelberg.de/
predictprotein/predictprotein.html). This uses multiple sequence alignment profile tech-
niques along with neural net technology. PredictProtein is a service offered by the
Protein Design Group at the European Molecular Biology Laboratory, Heidelberg, Ger-
many. A multiple sequence alignment is created with the MaxHom weighted dynamic
programming method and a secondary structure prediction is produced by the profile
network method (PHD). PHD is rated at an expected 70.2% average accuracy for the
three states helix, strand, and loop. This Web page provides default, advanced, and
expert submission forms. One powerful advanced and expert option is the ability to
submit your own multiple alignments. Their automated search and alignment proce-
dure is very good, but if you have been working for months on a multiple alignment,
and you know it is the best it can be, you may want to force PredictProtein to use that
information, rather than it’s own automated alignment. The welcome page shown in
Fig. 10 presents a wealth of informational links.

Three-dimensional modeling without crystal coordinates is even possible. This is
homology modeling. It will often lead to remarkably accurate representations if the
similarity is great enough between your protein and one with an experimentally
solved structure. Automated homology modeling is available through the Web as
GlaxoSmithKline’s SWISS-MODEL at Amos Bairoch’s ExPASy server in Switzer-
land (see Website: http://www.expasy.ch/swissmod/SWISS-MODEL.html). As with
PredictProtein, using the First Approval Mode you can submit an individual
sequence and the server will perform a database search. In this case it will search
against all of the sequences from the three-dimensional Protein Data Bank. It will
then create a multiple alignment of the significant hits, to provide a structural infer-
ence. Alternatively, using the Optimise (project) mode you can submit your own
customized and carefully scrutinized multiple sequence alignment. Naturally, your
template sequences must have solved structures. Swiss-PdbViewer must be used to
format and submit your data. Swiss-PdbViewer is an interactive molecular structure
viewer and editor developed at GlaxoSmithKline. Swiss-PdbViewer allows super-
positioning of both structures and their corresponding sequences, that you install on
your own computer. It has versions for many of the major operating systems. An
extensive menu and help system is provided by the SWISS-MODEL home page as
shown in Fig. 11.

Results are returned via e-mail in one of three modes, Swiss-PdbViewer mode,
normal mode, or short mode. Normal mode and short mode both return PDB format
coordinates for the model, normal with a complete log file of all the server actions,
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Fig. 11. GlaxoSmithKline’s SWISS-MODEL automated homology modeling home page at Amos
Bairoch’s ExPASy server in Switzerland (see Website: http://www.expasy.ch/swissmod/SWISS-
MODEL.html).

Fig. 10. The PredictProtein secondary structure prediction server home page in Heidelberg, Ger-
many (see Website: http://www.embl-heidelberg.de/predictprotein/predictprotein.html).
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short without. Swiss-PdbViewer mode returns a project file containing PDB format-
ted coordinates for the model and all templates superimposed, formatted for Swiss-
PdbViewer, and a complete log file. The results from submitting the Giardia lamblia
elongation factor 1α sequence to SWISS_MODEL in First Approach mode were
e-mailed back in less than 5 min. Figure 12 displays a RasMac (see Website: http://
www.umass.edu/microbio/rasmol/) Strands graphic of the Giardia EF1α structural
model superimposed over eight other chains.

Glossary and Abbreviations

Affine  An affine function is a linear function, described by the algebraic formula:
y = mx + b.

Anchor  An anchor in the context of a multiple sequence alignment is a region
across all the sequences of the alignment that is very highly conserved and thus can
help guide alignment by constraint of that region.

Crown Group  In the context of the universal tree of life, the Crown group refers
to the ‘explosion’ of diversity that occurred relatively late in the history of life on
earth and includes all animals, plants, true fungi, algae, and many protists.

WWW

Fig. 12. A RasMac Strands graphic of the Giardia EF1α structural model superimposed over eight
other chains (see Website: http://www.umass.edu/microbio/rasmol/).
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Gap Penalties  The creation or opening penalty is how many points a dynamic
programming algorithm is penalized for imposing a gap in an alignment. The exten-
sion or lengthening penalty describes how many additional points the algorithm is
penalized for each additional gap added to the first one, after that first gap, the gap
creation penalty, is introduced.

Global Alignment  As opposed to local alignment, which is the alignment of only
the best regions within sequences, global alignment is the alignment of the full length
of your sequence set and generally applies to the multiple sequence alignment prob-
lem. However, it should be realized that global alignment can be restricted to subse-
quences within sequences, the distinction being that local alignment ‘picks’ the best
regions for you, whereas global alignment uses the full length of whatever is specified.

Homology  Homology, as opposed to sequence identity and similarity, can have
no level. A sequence and, in fact, a position within an alignment, is either demonstra-
bly related via evolution to another or it is not. Statistically significant similarity can
argue for homology; however, a lack of statistically significant similarity can not be
used to argue against homology.

Homology Modeling  The secondary and often tertiary, three-dimensional struc-
ture of proteins can be inferred by alignment with proteins whose structure has been
experimentally determined. Obviously the more similar the sequences are, the more
successful the model will be.

Indel  An indel is a gap introduced into a sequence alignment necessary to recon-
cile differing lengths and evolutionary histories. It is impossible to ascertain whether
an insertion or a deletion event created the discrepancy, hence the term indel.

Lower or Primitive Eukaryotes  Both terms are misnomers as they imply evolu-
tionary ‘progress’ and these organisms are no less successful than the ‘higher’ eukary-
otes of the Crown group, but the terms persist and are descriptive of the more basal
placement of this assemblage of protists in the universal tree of life.

Matrices  A match matrix is the first step in solving the dynamic programming
algorithm. Its cells contain the value each position receives for matching (aligning)
respective X and Y axis characters. A score matrix can have two meanings. In the
context of dynamic programming it is the matrix in which cell values have received
initial match values adjusted by gap penalties and trace back paths. The alternative
meaning describes the values that amino acid residues or bases receive for aligning
with one another, e.g. the PAM and BLOSUM matrix series. The trace-back path ma-
trix delineates the alignments discovered by the dynamic programming algorithm; it
illustrates the path through the matrix.

Orthology  One of the two major classes of sequence homology exist. Orthology
describes homologous sequences present in different organisms as a result of specia-
tion processes. Major confusion can result from mixing paralogues and orthologues in
the same analysis.

Paralogy  One of the two major classes of sequence homology exist. Paralogy
describes homologous sequences within the same organism as a result of gene dupli-
cation. As stated above, major confusion can result from mixing paralogues and
orthologues in the same analysis.

Universal Tree of Life  A phylogenetic tree, i.e. a graph that illustrates the rela-
tions of organisms through evolutionary time, that attempts to establish the placement
of all earth’s extant cellular life.
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323D Molecular Visualization
with Protein Explorer

Eric Martz

Introduction

Visualization of macromolecular structure in three dimensions is becoming ever
more important for understanding protein structure-function relationships, functional
consequences of mutations, mechanisms of ligand binding, and drug design. Free
molecular visualization software of excellent quality is now available. Protein
Explorer is featured because it is easiest to use, yet quite powerful. It is compared
with Cn3D, WebLab Viewer Lite and DeepView (SwissPDB-Viewer). In brief,
among these four packages, Protein Explorer is best for visualization, WebLab is
best for publication-quality printed graphics, and DeepView is the only freeware
package capable of modeling operations such as mutation, homology modeling,
and structural alignments. Other packages that have strong features, but are not cov-
ered here, include DINO, MAGE, PyMOL, and VMD. Chime and RasMol are dis-
cussed in the next subheading.

Protein Explorer is freeware, for Windows or Macintosh, designed to make 3D
macromolecular visualization as easy as possible. Its basic features are designed for
students and educators, but it also has powerful, yet easy to use features appreciated
by protein structure specialists and crystallographers. Although the majority of uses
for Protein Explorer involve protein structure visualization, it is also well suited to
visualization of other macromolecules, such as RNA, DNA, and polysaccharides, as
well as complexes, such as those between transcriptional regulatory proteins and DNA.

Protein Explorer can operate directly from the web (see Website: http://www.
proteinexplorer.org), or can be downloaded for off-line use. Either Netscape Commu-
nicator or Internet Explorer is required along with a plug-in called MDL Chime. If you
have not downloaded and installed Chime, when you attempt to use Protein Explorer,
it will direct you where to do so. Table 1 provides a list of associated websites.

Protein Explorer vs Chime and RasMol
Because of its greater ease of use and power, Protein Explorer has superceded

Chime and RasMol  for interactive exploration of macromolecular structure in most
situations (see Website: http://www.umass.edu/microbio/chime/explorer/pe_v_ras.htm).
Protein Explorer is, in part, a user interface to MDL Chime that would not be possible
without the visualization power and chemical intelligence built into Chime. Protein
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Explorer’s purpose is to make the power in Chime accessible and to extend it by add-
ing higher level capabilities (see Website: http://www.umass.edu/microbio/chime/
explorer/why_pe.htm).

Chime is a Netscape plugin that renders images of molecules. Chime’s name is
derived from Chemical and MIME, where MIME denotes the method used to cat-
egorize information sent through the Internet (Multi-part Internet Mail Extension).
Chime is freeware created at MDL Information Systems (see Website: http://
www.mdlchime.com), and is built upon the rendering and command language source
code of RasMol (see Website: http://www.umass.edu/microbio/rasmol), a brilliant
and deservedly popular, open-source, stand-alone molecular visualization program
generously put in the public domain by its author, Roger Sayle. In addition to its
browser plugin functionality, Chime’s visualization capabilities go considerably
beyond those of RasMol, to include surfaces and animation support.

Those willing to acquire some programming skills can create user-friendly web pages
in Chime. Examples of excellent, molecule-specific tutorials in Chime, as well as meth-
ods for building these tools are indexed (see Website: http://www.molvisindex.org).

Sources of Macromolecular Structure Data:
The Protein Data Bank (PDB)
PDB Files and Codes

In order to display a macromolecule, Protein Explorer like the other programs,
requires an atomic coordinate data file, that specifies the positions of each atom in
space with Cartesian coordinates. There are many formats for such data files, but the

Table 1
Major Websites

Website name Location

Protein Explorer a http://www.proteinexplorer.org

World Index of Molecular Visualization Resources http://www.molvisindex.org
(including tutorials using Chime, dedicated to specific molecules)

PDB Lite (search interface for novices) http://www.pdblite.org

Protein Data Bank http://www.pdb.org
 (source of all published macromolecular structure data)

Nature and Limitations of 3-D Structural Data http://www.rcsb.org/pdb/
experimental_methods.html

    Cn3D (see category “Free Software”) http://www.molvisindex.org

    DeepView (SwissPDB-Viewer) http://www.molvisindex.org

    WebLab Viewer Lite http://www.molvisindex.org

aConsult Protein Explorer’s Help, Index and Glossary to find how to access specific features of Protein
Explorer. It is linked to Protein Explorer’s FrontDoor under About PE.
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most common is the Protein Data Bank (PDB) format. These files are often referred to
simply as PDB files rather than the generic name, atomic coordinate files. A PDB file
is a plain text file that can be edited with a text editor or word processor. An introduc-
tion to the PDB format is available (see Website: http://www.umass.edu/microbio/
rasmol/pdb.htm), along with the official PDB format specification (see Website: http:/
/www.pdb.org and click on File Formats).

Each entry deposited at the PDB is assigned a unique four-character identifica-
tion code. The first character of the code is always a numeral; the last three charac-
ters can be either letters or numerals. Examples of PDB identification codes are
given in Table 2. These codes can be entered in the slot on the FrontDoor page of
Protein Explorer to see the corresponding molecules.

The PDB file format is antiquated and inadequate in many respects. Therefore,
the International Union of Crystallography has adopted a new format called macro-
molecular Crystallographic Information File Format or mmCIF. However, many
software packages depend on the old PDB format. To accommodate the transition,
the Protein Data Bank will continue to provide all entries in PDB format for the
foreseeable future. The Chime plugin cannot read mmCIF, and because Protein
Explorer is built upon Chime, Protein Explorer cannot read mmCIF files. RasMol
(version 2.7 or later) can read mmCIF files, but WebLab Viewer Lite, Cn3D, and
DeepView cannot.

Contents of the Protein Data Bank
The Protein Data Bank is the internationally accepted repository of all published

3D macromolecular structures. Currently, there are over 15,000 PDB files available
from the Protein Data Bank (PDB). This number is growing rapidly due to stream-
lining of structure determination methods. However, many of the entries are muta-
tions or different experiments with the same molecule. Depending on how stringent
your criteria, the number of sequence related molecules in the PDB with good reso-
lution is only a few thousand (see Website: http://www.fccc.edu/research/labs/
dunbrack/culledpdb.html). Less than two thousand are human proteins. Since the
human proteome is encoded by approx 35,000 genes, the 3D structures that are avail-
able only represent a small percentage of human proteins. Moreover, a large per-
centage of the PDB files are solutions for single domains and not entire proteins.

Certain categories of proteins are underrepresented at the PDB. In most cases, the
protein must be crystallized to enable its structural determination (see the following
section). Proteins with hydrophobic surfaces, notably transmembrane proteins, tend to
precipitate in an amorphous mass, rather than forming regular crystals. Therefore,
transmembrane proteins are underrepresented, but several are listed in Table 2. In
addition, large proteins are also underrepresented due to difficulties in crystallization.
Often, single domains can be crystallized when intact proteins cannot. Nevertheless,
some astounding successes have been achieved with large molecules, like the nucleo-
some and the entire ribosome (see Table 2).

Origins and Limitations of Empirical 3D Structure Data
X-ray crystallography or nuclear magnetic resonance is empirically the most reli-

able way to determine the 3D conformation of a macromolecule. Crystallographic
results are characterized by an average resolution value given in Ångstroms. On the
average, the uncertainty in the position of an atom is roughly one-fifth to one-tenth of
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the resolution value for high-quality data. However, uncertainty varies in different
parts of the molecule as a result of the varying degrees of disorder in the crystal. In
Protein Explorer’s QuickViews, this can be visualized by applying the Temperature
color scheme. Most published crystallographic results have resolutions in the range of
1.8–2.5 Å. Small values of resolution, such as 1.2 Å, mean very high resolution. Even
hydrogen atoms may be resolved while large values, e.g., 5.0 Å, mean low resolution,
such that only the general outlines of the backbone, but not details of side chain posi-
tions could be resolved.

Table 2
Some Interesting Molecules and Their PDB Identification Codesa

Molecule Identification code

Acetylcholinesterase with inhibitor 1VOT
Alpha hemolysin transmembrane heptamer 7AHL
Antibody (intact IgG) 1IGT
Antibody Fab bound to lysozyme 1FDL
Bacteriorhodopsin 1C8R
Calcineurin (ser/thr phosphatase), FKBP, FK506 1TCO
Calcium transporting ATPase including transmembrane 1EUL
Calmodulin (NMR ensembles) 1CFC (slight flexibility) or

2BBN (much flexibility)
Green fluorescent protein 1EMB
Hemoglobin, deoxy 1HGA
Hemoglobin, oxy 1HHO
Hemoglobin, sickle 1HBS
Hemolysin transmembrane (mushroom) 7AHL
HIV protease with inhibitor 1OHR
Lipase 1LPM vs 1TRH
Lysozyme, human 1LZR
Major Histocompatibility I (with virus peptide) 2VAB
Myoglobin, oxy 1MBO
Nucleosome (histones + DNA) 1AOI
Potassium channel 1BL8
Ribosome with tRNAs and mRNA 1GIX plus 1GIYb

RNA Polymerase, T7 1QLN
Transcriptional regulator, Gal4 + DNA 1D66
Transfer RNA, Phenylalanine 1TRA
Trypsin (porcine pancreatic) complexed to soybean trypsin inhibitor 1AVX
To search for other molecules see Website: http://www.pdblite.org

a (PDB codes are case-independent: 1VOT is the same as 1vot.)
b The ribosome is too big to fit in a single PDB file when all side chains are included. A PDB file containing

only the phosphorus atoms for the rRNA, and only the alpha carbons for proteins, is available (see Website:
http://www.molvis.sdsc.edu/pdb/1gix1giy.pdb). This URL can be entered in the long slot on the FrontDoor of
Protein Explorer.



3D Molecular Visualization with Protein Explorer — 569

Nuclear magnetic resonance (NMR) has the advantage that the protein molecules
are in aqueous solution while measurements are made. In fact, the molecules need to
tumble rapidly in order to achieve high resolution. This limits NMR experiments to
proteins of approx 30 kD or less in size. While the result of crystallography is a single
model that best fits the diffraction results, the result of a successful NMR determina-
tion is an ensemble of models all consistent with the data. Protein Explorer has excel-
lent support for viewing such ensembles, e.g., see calmodulin in Table 2. About 15%
of the results in the PDB are from NMR, the remainder being largely from X-ray
crystallography. There are a few theoretical models in the PDB and these are much
less reliable.

Protein crystals used in X-ray diffraction contain approx 50% water. Some proteins
have been determined both by X-ray crystallography and by NMR, with consistant
results. This gives confidence that crystallographic results reflect the conformations
of proteins in aqueous solution. A more detailed introduction to the origins and limita-
tions of macromolecular structural data is available on-line (see Website: http://
www.rcsb.org/pdb/experimental_methods.html).

Theoretical Models of Proteins
When empirical structural data are lacking, one can turn to theoretical models.

These are attempts to predict the 3D conformation from the amino acid sequence.
There are two categories of theoretical models; ab initio models and homology mod-
els. Ab initio modeling attempts to predict the folded conformation of a protein using
general principles of protein structure. It is moderately successful for predicting sec-
ondary structure, but poor for predicting tertiary or quaternary structure.

Homology modeling requires that an empirical structure be available for a protein
with greater than 25% sequence identity. The amino acid sequence is then threaded
into the template structure, following a carefully constructed sequence alignment.
Homology models are more reliable than ab initio models at predicting the general
fold of a protein, especially when the sequence identity with the template is high.
However, neither method is capable of predicting side-chain positions reliably, and
even homology models based on >80% sequence identity occasionally have major
errors in tertiary structure. Protein Explorer includes detailed instructions on how to
use existing web resources for homology modeling, notably Swiss-Model, DeepView,
with links to tutorials for the latter by Gale Rhodes.

Finding Your Molecule
As explained earlier, in many cases, no empirical 3D structure is available for a

molecule of interest. Nevertheless, structures are available for thousands of interesting
molecules. There are many search interfaces for the Protein Data Bank, and each has
its strengths and weaknesses. If you are having trouble finding a molecule, be sure to
try several search interfaces. Sometimes one search interface fails to identify the rel-
evant entries that exist in the PDB, while another succeeds.

If you have a specific molecule of interest and you have little experience search-
ing the PDB, a good place to start is with PDB Lite. This interface is simple, avoids
unnecessary jargon, explains the terms it uses, and provides detailed instructions for
saving PDB files to your disk. A more sophisticated search form is provided at
SearchFields (see Website: http://www.pdb.org) or OCA (see Website: http://
www.bioinfo.weizmann.ac.il:8500).
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If you want to browse general categories of molecules, try PDB At A Glance (see
Website: http://www.cmm.info.nih.gov/modeling/pdb_at_a_glance.html). For further
sources of PDB files; for both large and small molecules, including lipid bilayers and
micelles, see Website: http://www.molvisindex.org.

Molecular Visualization Needs Satisfied by Protein Explorer

Ease of Use
Protein Explorer offers three tiers of interaction designed for beginners, interme-

diate users, and advanced users. These tiers correspond to sections in the software
named FirstView, QuickViews, and Advanced Explorer respectively. FirstView
shows a highly informative first image of the molecule together with an explana-
tion. QuickViews provide menus and buttons that enable moieties of interest to be
rendered and colored interactively to answer additional questions about the mol-
ecule. Finally, Advanced Explorer offers powerful features that require more expe-
rience to use effectively, including sections that give increased control over some
visualization modes available as less flexible one-click operations in QuickViews.

Following a two-day Protein Explorer workshop, a high school biology teacher
commented, “It is the most user-friendly program I have ever encountered.” The visu-
alization tools that Protein Explorer offers you at the outset are designed for non-
specialists and people who need visualization on an occasional basis. Knowledge of
basic biochemistry is assumed, but beyond that, Protein Explorer is designed to be
self-explanatory. An introductory overview of its capabilities is built in as the One-
Hour Tour. Protein Explorer’s menu system, QuickViews, automatically displays con-
textual help and access to relevant resources whenever a menu or button is clicked.
When you do not know how to do something, or how best to accomplish your objec-
tive, consult the Help/Index/Glossary. For those planning to use Protein Explorer
often, an extensive Tutorial is provided. All of these resources are accessible from
Protein Explorer’s FrontDoor page (see Website: http://www.proteinexplorer.org).
This remains open in a background window while one or more Protein Explorer ses-
sions are running.

Getting Started Quickly and Smoothly
To try Protein Explorer, see Website: http://www.proteinexplorer.org and click on

the large Quick-Start link near the top of the first page, which is called the FrontDoor.
Printing and following the One-Hour Tour that is prominently linked on the FrontDoor
screen is the recommended way to begin.

Protein Explorer works in the Netscape browser (Windows or Macintosh) or in
the Microsoft Internet Explorer browser (Windows only). At Website: http://
www.proteinexplorer.org, when you click on QuickStart, Protein Explorer will tell
where to get the free Chime plugin if needed. It will refuse to start until Chime is
installed. If you have problems getting Protein Explorer to display the QuickStart
molecule, use the Troubleshooting link at the FrontDoor.

FirstView: Informative and Friendly
The first view of a molecule offered by Protein Explorer is designed to be maxi-

mally informative (see Fig. 1). Protein Explorer’s FirstView page describes this image
and offers extensive background information on how protein and nucleic acid back-
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bone traces and disulfide bonds are rendered, on water in protein crystals, and a key to
the standard Corey-Pauling-Koltun color scheme used to identify elements in ligands.
You are ready to leave the FirstView page when you know how many chains are
present in the molecule, whether each chain is protein or nucleic acid, and whether
disulfide bonds or ligands are present.

QuickViews: Easy but Powerful Interactivity
The most fundamental need in any molecular visualization software is the ability to

interactively render and color components of the molecule as desired. Often hiding
some portions of the molecule helps to visualize the moieties of interest. Protein
Explorer provides these basic visualization capabilities in its QuickViews menu system.

Fig. 1. Protein Explorer’s FirstView strives to be maximally informative. The molecule shown,
PDB identification code 1D66, is the DNA-binding domain of Yeast Gal4 complexed to a 19 base
pair DNA double helix. Rotating the image with the mouse makes 3D relationships clear, difficult
to appreciate in this static screenshot. FirstView enables you to observe how many chains are in
the molecule, which are protein and which are nucleic acid, and whether disulfide bonds or ligands
(spacefilled) are present. Protein chains have been made thicker than DNA chains in this figure;
normally all chains are the same thickness and can be distinguished by color. Extensive back-
ground information is available through hyperlinks on this screen. For example, backbone traces
and simplified disulfide bond rendering are explained graphically (not shown). Clicking on any
atom reports its identification in the message box, hence protein chains can be easily distinguished
from nucleic acid chains. The arrow indicates the atom clicked for this figure. Water, currently
hidden, is shown by default (configured in Preferences), but can be shown or hidden with the
button Hide/Show Water. The window at the lower right can be closed or reopened at any time by
pressing the Molecule Information button.
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Basic Rendering, Coloring, and Hiding
Most rendering needs are met by QuickViews’ DISPLAY menu (see Figs. 2–4).

To keep the QuickViews menus compact to fit in the available space, short keyword
identifiers are used for most menu options; however, a detailed explanation is auto-
matically displayed in the middle help frame when any option is chosen. Therefore,
the way to become familiar with the menu options and what they mean is to try them
out. In an important enhancement that goes beyond RasMol, molecular surfaces, con-
structed with a rolling solvent probe, can be created quickly and displayed and rotated
in real time (see Figs. 2 and 4).

In order to apply different renderings and color schemes to different parts of the
molecule, subsets of atoms must first be selected. Protein Explorer’s SELECT menu
(see Fig. 3) offers many commonly used subsets of atoms, including each chain, and
ligand. When multiple ligand molecules or chains are present, an arbitrary subset can

Fig. 2. The QuickViews menu system is the heart of the user-friendly power of Protein Explorer.
Select, Display, and Color menus (see Fig. 3) and buttons make it unnecessary to learn any RasMol-
style commands. However, Rasmol commands may be entered freely by those who have learned
them. Buttons include Spin, Zoom, Background (toggles between black and white), Water, Ligand,
Molecule Information, Center (clicked atom or currently selected atoms), Stereo, Slab, and Synch.
Each menu or button action automatically displays help in the left middle frame. Sometimes the help
includes submenus. In this case, there are links to make the protein surface transparent, hidden, or
solid (it is currently transparent). This image shows an inhibitor (spacefilled) bound to the catalytic
site of lipase (divergent stereo pair). The catalytic triad (ball and stick) is visible inside the transparent
surface of the protein. This screenshot is of Protein Comparator, which is identical to ProteinExplorer
except that two molecules can be compared, one above the other. All menus and buttons work on
one molecule at a time, selected by the Top — Bottom radio buttons. In this case, the same molecule
was loaded in both top and bottom positions, but is shown at different zoom levels.

See
companion CD
for color Fig. 2
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Fig. 3. QuickViews menus expanded to show all options. These menus and associated features
enable sophisticated interactive visualization without learning the RasMol command language. The
paradigm for modifying the image of the molecule, adopted from RasMol, is to select a subset of
the atoms, display or render them as desired (or hide them), and color them if desired. Repeating
these three steps on different subsets of atoms produces complex displays. Choosing Clicked on the
SELECT menu changes the action of the mouse clicks to selection, rather than the default (atom
identification). Using mouse clicks facilitates selection of arbitrary subsets of atoms, residues, or
chains. (A separate window not shown, Seq3D, enables selecting arbitrary residues or ranges by
clicking on a sequence listing.) Every menu selection automatically displays help, or for color
schemes, a color key, in the left middle frame shown in Fig. 2. A section of QuickViews called
QuickViews Plus (not shown) enables Boolean operations between items on the SELECT or DISPLAY
menus (access by scrolling down in the upper left frame in Fig. 2). For example, one can select
Protein, then subtract from the selection Helices and Strands; or one can add a ball and stick render-
ing to a backbone rendering. Some options on the DISPLAY menu invoke complex command scripts,
notably Contacts (see Fig. 4), Cation-Pi, and Salt Br. Nevertheless, from the perspective of the user,
these are one-click operations.

be selected by clicking with the mouse. The number of currently selected atoms is
always shown in a slot beneath the molecular image (see Fig. 1).

A color scheme to reveal each of the following is a one-click operation from the
COLOR menu (see Fig. 3): locating the amino and carboxy termini (with a rainbow
color sequence, N->C Termini); secondary structure (alpha helices, beta strands, and
turns); distribution of hydrophobic vs. polar amino acid side chains (Polarity2, two
colors); charged residues (Polarity5, 5 colors); nucleotides (A, C, G, T and U); and
regions of higher disorder in the crystal (temperature).

See
companion CD
for color Fig. 3
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Sequences: Detecting Gaps and Identical Chains
Protein Explorer can display the sequences of the chains in your molecule. The

Sequences and Seq3D (see following section) pages are accessed through the Molecule
Information Window, available by clicking the Mol. Info. link that is present on all tiers
of Protein Explorer. This display is especially useful for spotting whether the structure
has gaps because the sequences are taken directly from the atomic coordinates. Leading
and trailing ends of a chain are often unresolved in protein crystals because they are
disordered. Sometimes, surface loops are missing for the same reason. These gaps are
difficult to detect by looking at the 3D structure. Another use of the sequences display is
to discover whether there are multiple copies of chains with identical sequences. Protein
sequences are displayed in one-letter amino acid code, but touching any residue with the
mouse pointer displays the corresponding three-letter code.

Sequence to 3D Mapping
In addition to an annotated full-screen sequences display, Protein Explorer offers a

more compact listing of sequences that can be viewed alongside the 3D image. In this
window, called Seq3D, clicking on a residue (or range of residues) highlights the
positions in the 3D structure. It also leaves them selected, so they can be rendered and
colored as desired. Seq3D includes the option to scrutinize a range. This highlights a
range of amino acids so it is easy to tell whether a gap in the results from the sequence
absence of residues in the structure, due to disorder or is merely a residue numbering
artifact with no residues actually missing.

Measurements and Labels
Identification labels, distances between atoms, dotted lines between atoms labeled

with distances (monitor lines), or simple and dihedral angle values can be displayed
using the Distances, Labels, or Clicks options of the QuickViews DISPLAY menu.
Identification labels may be customized as in the example at top of Fig. 2, by enter-
ing arbitrary text onto a form. These can then be applied to the atoms by clicking on
them. All these are done from menus and forms. Knowledge of command language
syntax is not required. The current action of mouse clicks is always shown in a one-
line message at the top of the middle help frame, unless it is the default messaging
atom identification.

Zooming, Centering, Stereo
It is important to be able to easily enlarge (zoom) or reduce the size of the image, at

will. A cluster of convenience buttons is accessible on all pages (except FirstView)
including zoom and centering. Centering can operate on the currently selected atoms, or
on a single atom designated by clicking. Centered atoms remain centered during rota-
tion and zooming. A stereo button toggles the split image stereo on and off. This also
provides a link to the help frame, for instructions for learning how to view stereo. Con-
vergent (cross-eyed) vs divergent (wall-eyed) stereo is set with a preference checkbox.

Contact Surfaces Reveal Interfacial Bonds
Contact surface displays are one of the most unique and powerful displays offered

by Protein Explorer (see Fig. 4). One-click on DISPLAY Contacts shows the atoms
that are likely noncovalently bonded to the currently selected group of atoms on the
contact surfaces. Interfacial bonds can be shown for an entire chain, a single second-
ary structure element (helix or strand), a ligand molecule, a single residue, a single
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atom, or any other selected subset of atoms. The surface of the selected subset of
atoms is shown, decorated with the atoms noncovalently bonded to it (see Fig. 4).
Putatively noncovalently bonded atoms, shown as balls, are defined as oxygen or
nitrogen atoms within 3.5 Å of an oxygen or nitrogen beneath the surface and carbon
or sulfur atoms within 4.5 Å of a carbon or sulfur beneath the surface. After displaying
a contact surface, the middle help frame offers a submenu with many options for modi-
fying the initial image. Such modifications include hiding noncontacted regions of the
surface, rendering the surface transparent and showing the likely noncovalently bonded
atoms beneath the surface. Together with centering and zooming, these make it easy to
visualize and identify noncovalent bonding interactions.

Fig. 4. The Contacts surface display. Two clicks reveal noncovalent bonding relationships across
any interface. The user selects the moiety to be surfaced, then DISPLAY Contacts. In this case,
Chain A (one of the two homodimer protein chains in the DNA-binding domain of Gal4, 1D66)
was  selected, and is shown as a surface. The surface is rendered and automatically decorated with
small spheres (balls), which represent atoms close enough to appropriate atoms beneath the sur-
face to be noncovalently bonded. Sticks are added to the balls to show all covalent bonds up to
7 Ångstroms from the surface. All portions of the structures outside the surface that are farther than
7 Å from the surface are hidden. (The DNA backbone can be shown for context using Backbones:
Show in the lower left frame.) The surface is colored by distance from the nearest atoms. Dark areas
of the surface are too distant from any atoms to be noncovalently bonded. Light areas are at dis-
tances suitable for van der Waals interactions, and magenta areas (see companion CD for color)
are close enough for hydrogen bonds or salt bridges. The finger of this member of zinc-finger
superfamily can be seen protruding upwards, where it contacts several DNA bases in the major
groove. In color (see companion CD), it is immediately apparent that the noncovalently bonded
atoms (balls) include oxygens and nitrogens, hence that the protein is recognizing a specific base
sequence. Clicking on the nucleotide base rings that include balls, from left to right (in the rearmost
chain D), reports CGG, the published recognition sequence for Gal4.

See
companion CD
for color Fig. 4
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Cation-Pi Orbital Interactions and Salt Bridges
Interactions between cations and the faces of aromatic rings (pi orbitals) typically

make an energetically significant contribution to the stability of a folded protein. They
can be displayed in one click. At the time of this writing, they are identified with
approximate distance-based criteria. Energetically significant cation-pi interactions
can be confirmed by consulting Gallivan and Doherty’s CaPTURE server, which can
be accessed through the link automatically shown in the middle help frame in
QuickViews. It is planned that a future release of Protein Explorer will display only
the energetically significant cation-pi interactions, obtained directly on-line from the
CaPTURE server. Anions and cations within 4.0 Å of each other may be highlighted
as likely salt bridges with a one-click operation (DISPLAY Salt Bridges). Advanced
Explorer enables ions or aromatic rings within ligands to be included in the cation-pi
and salt bridge displays.

Advanced Explorer
The Advanced Explorer section within Protein Explorer offers increased flexibil-

ity for some operations available in QuickViews, and some additional capabilities
discussed below. An example of increased flexibility is the option to include aro-
matic rings of ligands, or charged atoms, in the displays of cation-pi interactions or
salt bridges and to adjust the distances used to identify and highlight these interac-
tions. Another section offers more control over construction of contact surface dis-
plays than is available in QuickViews. The Surfaces section of Advanced Explorer
enables multiple surfaces to be concurrently shown. This enables the probe radius to
be adjusted and offers molecular electrostatic potential and molecular lipophilicity
potential color schemes.

The Noncovalent Bond Finder (NCBF) is an alternative to the Contact Surface
display of QuickViews. Whereas a Contact Surface shows an overview of all
noncovalent interactions at an interface, the NCBF allows a more detailed exploration
of noncovalent bonding, better suited to large interfaces. It displays the atoms closest
to any selected moiety, stepping out in 0.1 Å shells with each click on the Find button.
To simplify the view, the display can be limited to subsets of noncovalent bonds, such
as only hydrophobic, or only hydrophilic bonds.

Animation and NMR Ensembles
Multiple models of the same molecule may be contained in a single PDB file.

NMR experiments result in an ensemble of alternative models, all consistent with the
data (see Website: http://www.rcs.org/pdblexperimental_methods.htm). Advanced
Explorer has an NMR Models section with numerous buttons and form slots to facili-
tate visualization of the models in an NMR ensemble. NMR ensembles can also be
animated, simulating thermal motion.

Two different conformations of a protein are sometimes observed experimentally.
When there are large differences between the conformations, animation of the transi-
tion with a morph helps the eye to visualize the changes in specific regions. These
morphs include at least a dozen intermediate models interpolated between the experi-
mental models. Advanced Explorer’s Animation control page enables such morphs to
be shown as movies. However, such animations differ from true movies in being able
to be played from any rotational perspective or magnification on an arbitrary center.
Moreover, these animations can be played in a variety of renderings, e.g., backbone,
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cartoon, wireframe, spacefilled, and color schemes. By clicking on the animated icon
at the upper left of Protein Explorer’s FrontDoor, the conformational change of a pro-
tein EF hand upon binding calcium will be presented.

Coloring by Multiple Sequence Alignment (MSA3D)
Multiple protein sequence alignments reveal patterns of conservation or mutation

during evolution. Advanced Explorer’s MSA3D feature assigns colors to the align-
ment, representing conservation or mutation, and then applies these colors to the 3D
image (see Fig. 5). Conserved regions in the 3D structure can then be visualized.
The requisite sequence alignments must be prepared outside of Protein Explorer
with appropriate websites or software. MSA3D includes ready-made built-in
examples and a tutorial with instructions for preparing an alignment at the Biology
Workbench (see Website: http://workbench.sdsc.edu).

Fig. 5. Conserved regions (dark) of the surface of the PUF translation repressor Pumilio 1 (1LB2)
revealed by Protein Explorer’s MSA3D (divergent stereo). There is little conservation on the convex
surface (top), but a large conserved patch in the concave surface of the same molecule (bottom) is
believed to bind to the 3’ untranslated region of the mRNA. A multiple protein sequence alignment
was constructed (outside of Protein Explorer) that included sequences from human, Xenopus, Droso-
phila, Yeast (2), Dictylostelium, and C. elegans. A 3D crystallographic structure is available for the
human sequence (1LB2). The sequence alignment (in FASTA or PIR format) was pasted into a form
box in MSA3D, the consensus requirement set to 80% for the seven aligned sequences. With one
click of a button, MSA3D produced a text listing of the alignment (not shown) assigning three colors
representing identity, similarity, and difference. The colors were then automatically applied to the
3D molecular model. (Thanks to David S. Bernstein for providing this alignment and example.)
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Side by Side Comparisons
 Protein Comparator is available from the FrontDoor of Protein Explorer. It is a

full-featured mode of Protein Explorer that shows two molecules side by side. In Win-
dows, rotations with the mouse can be synchronized so that both molecules rotate
together when one is dragged.

Molecular Visualization Needs Not Satisfied by Protein Explorer

Limitations to Visualization
Protein Explorer’s ability to display hydrogen bonds is inadequate. Currently, it can

only display protein, backbone-to-backbone hydrogen bonds, and in DNA or RNA,
only canonical Watson-Crick base-pair hydrogen bonds. Thus, it cannot automatically
display nonstandard hydrogen bonds in nucleotides, nor hydrogen bonds in proteins
that involve solvent or side chains. Better visualization of hydrogen bonds is possible
in DeepView. Protein Explorer is not the best option for publication quality images,
although in some cases it can suffice. This results from a compromise between image
quality and speed of rendering, enabling Protein Explorer’s images to be rotated
smoothly in real time on ordinary personal computers. This is a feature of the Chime
plugin and is unlikely to be changed. Among freeware, WebLab Viewer Lite easily
produces images suitable for publication. However, interactive rotation of its high qual-
ity images is much slower, making depth perception problematic unless images are
viewed in split image stereo. But unlike Protein Explorer, WebLab Viewer Lite can
show alpha helices as cylinders, or nucleotide bases as cartoons.

No Modeling
Protein Explorer is limited to visualization; it cannot do modeling. Modeling, in

the strict sense, means building models, or making chemical or conformational
changes in existing models. Covalent bonds cannot be formed nor broken in Protein
Explorer, nor can atoms be moved relative to each other. Thus, Protein Explorer
cannot do docking, that is, for example, it cannot move a ligand into a favorable
binding position on a protein. It cannot mutate amino acid side chains, or do energy
minimization. However, DeepView is the only freeware package capable of substan-
tial modeling.

Comparisons with Other Freeware Visualization Packages

Chime and RasMol
As explained in the section Protein Explorer vs Chime and RasMol, because of its

substantially greater ease of use and power, Protein Explorer is preferable to Chime
(by itself) or RasMol for most common visualization purposes. For a detailed com-
parison see Website: http://molvis.sdsc.edu/protexpl/pe_v_ras.htm

Cn3D from NCBI
Cn3D is the visualization freeware offered by the US National Center for Biotech-

nology Information (NCBI; see Weblinks). Its main goals include showing the user
an informative first view of a molecule (an excellent feature which was released in
Cn3D well before Protein Explorer was designed), and enabling interactive explora-
tion, similar to Protein Explorer. It is a well-developed package with many strong

WWW



3D Molecular Visualization with Protein Explorer — 579

features. It works on unix as well as Windows and Macintosh platforms, and has open
source code. Cn3D accepts atomic coordinate files only in the ASN.1 format peculiar
to the NCBI; it cannot read PDB format. The advantage is that the ASN.1 atomic
coordinate files have better internal consistency and fewer errors than do PDB files;
one disadvantage is that there is a lag between when a PDB file is first released, and
when it becomes available in ASN.1 format.

Cn3D is, in my opinion, not as easy to use as Protein Explorer, especially for begin-
ners. It has no context-sensitive help (in contrast with QuickViews in Protein
Explorer). Cn3D has no presentation capabilities; such capabilities are under develop-
ment for Protein Explorer at the time of this writing (see Website: http://www.
umass.edu/microbio/chime/pipe).

Cn3D’s image quality is higher than Protein Explorer’s, and as a consequence,
rotation of the molecule is slower and jumpier. Its sequence-to-structure interface
is superior to Protein Explorer’s in that it is clickable in both directions (sequence to
structure and structure to sequence) and it maintains the same colors in both the
sequence and structure displays. Rendering and coloring operations are generally at
the residue level; it is less able to operate at the atomic level than is Protein Explorer.
It can render helices as Cylinders (unlike Protein Explorer), but cannot render surfaces
(Protein Explorer can). All views are customized from menus; there is no scripting or
command language. A file can easily be saved that will restore the same view of a
molecule in a later session; this is more difficult to do in Protein Explorer. Many PDB
files give alternative conformations for amino acid side chains; Cn3D handles these
very well, while Protein Explorer handles them badly. Cn3D’s support for coloring a
3D structure according to a multiple sequence alignment appears to be more fully
developed (more color schemes) than Protein Explorer’s, but more difficult to use.
Cn3D lacks the kind of generalized animation capability present in Protein Explorer,
and has nothing equivalent to the Contact Surfaces, Noncovalent Bond Finder, Cat-
ion-Pi, or Salt-Bridge displays in Protein Explorer.

WebLab Viewer Lite

WebLab Viewer Lite is the free version of the commercial WebLab Viewer Pro
from Accelrys Inc. (formerly Molecular Simulations, Inc.). Both Pro and Lite ver-
sions are available for Windows; Lite is available for Macintosh. The Pro version
has extensive modeling capabilities lacking in the Lite version (which can however
add hydrogen atoms, and change torsion angles). Image quality is higher in WebLab
than in Protein Explorer, with the consequence that images rotate much more slowly,
making it difficult to perceive depth without using split-image stereo. Because
of the high image quality, WebLab is especially suited to printing publication-qual-
ity images. It can simplify alpha helices to cylinders (unlike Protein Explorer). In
addition to the usual renderings, WebLab can show surfaces, and color them by
molecular electrostatic potential (MEP). Its MEP-colored surfaces are strikingly
better-looking than those of Protein Explorer (see Website: molvis.sdsc.edu/
protexpl/mep.htm).

WebLab has some unusual features. It can display all hydrogen bonds, label centers
of chirality with “R” or “S”, and show “bumps” (atoms that are too close, namely less
than 70% of the sum of their covalent radii). It has a Crystal Builder that fills out
crystallographic unit cells and neighbors (but this is a great deal slower than the com-
parable feature in DeepView).
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In my opinion, WebLab Lite’s ease of use is not as great as that of Protein Explorer,
but is fair. There is no context sensitive help, and color keys do not appear for the
numerous color schemes available. There is no tutorial, but there is an extensive refer-
ence manual (in the form of a Windows help file).

Modeling with DeepView Freeware

DeepView, also known as SwissPDB-Viewer, is a powerful modeling and visual-
ization package for Windows, Macintosh, SGI and linux. It is a closed-source freeware
program from GlaxoWellcome. For purely visualization purposes, its images are not as
attractive or compelling as those of Protein Explorer, Cn3D, or WebLab. Many useful
components of the images disappear during rotation, making stereo viewing especially
important. DeepView’s user-friendliness is at the low end of the scale, but Gale Rhodes
has written a number of excellent tutorials for it (accessible through the DeepView
section of molvisindex.org), and procedures for mutating, structural alignment, or build-
ing crystal contacts in DeepView are built into Protein Explorer (see below).

DeepView’s modeling capabilities are powerful and extensive, and include energy
minimization, and integration with the SWISS-MODEL web server for homology mod-
eling. A comprehensive overview of DeepView’s capabilities is beyond the scope of
this chapter. However, DeepView’s capabilities complement the visualization capa-
bilities of Protein Explorer nicely, and below are summarized some of the most popular
uses of DeepView for producing models to be visualized in Protein Explorer.

As mentioned above, if no empirical structure is available for a protein, the best
way to visualize its 3D structure is with a homology model. Construction of a homol-
ogy model requires that an empirical template structure be available with at least 25%
sequence identity. Homology modeling is beautifully automated by SWISS-MODEL
working in concert with DeepView. Protein Explorer provides orientation to homol-
ogy modeling using SWISS-MODEL and DeepView (look for “homology modeling”
in the Help/Index/Glossary).

People using Protein Explorer often want to know how to mutate selected residues in
a published PDB structure. DeepView makes this very easy (look for “mutation” in
Protein Explorer’s Help/Index/Glossary; see the Major Websites box above). It is some-
times important to examine contacts between molecules in a crystal, to evaluate whether
they have affected the conformations of surface features. Crystal contacts can be con-
structed using DeepView for visualization in Protein Explorer. For instructions, in Pro-
tein Explorer, open the Molecule Information Window and click on Crystal Contacts.
Finally, DeepView provides the easiest way to create structural alignments of two or
more molecules, even with multiple chains, while retaining hetero atoms. For instruc-
tions, look up “alignments” in Protein Explorer’s Help/Index/Glossary.

Challenges to Help You Learn Protein Explorer
Do the QuickTour

 See Website: http://proteinexplorer.org and take a careful look at the FrontDoor
page. It is important to know about the resources that can be accessed here. Before
you can begin to use Protein Explorer effectively, you will need to spend an hour or
two completing the QuickTour. Go to proteinexplorer.org and click on the large link
to the QuickTour. Once you have finish the QuickTour, it will be very worthwhile to
continue into the section entitled Beyond the QuickTour.
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Generic Questions for Any Molecule
Using a molecule of your choice from the Interesting Molecules from Table 2

or a search, (e.g., see Website: http://www.pdblite.org), go to Website: http://www.
proteinexplorer.org and enter the PDB identification code in the slot at the FrontDoor
of Protein Explorer. A good place to start is the set of questions applicable to any
molecule available on-line as Discovery in Protein Explorer (see Website: http://
molvis.sdsc.edu/protexpl/discover.htm, linked under Lesson Plans). It is important to
have completed the QuickTour before you attempt to answer these questions. You
may wish to print the questions and record your answers as a record of your progress.
You will learn the most if you try to answer these questions before you look at the
hints on how to answer them in Protein Explorer (see Website: http://molvis.sdsc.edu/
protexpl/genhints.htm).

Heme and Water in Myoglobin
Myoglobin is a protein within muscle cells that stores and transports oxygen for use

in oxidative metabolism. Oxygen is bound by an embedded heme group, identical to
that found in the hemoglobin of red blood cells. Heme gives myoglobin a reddish-
brown color. The muscles of animals that need to store unusually large amounts of
oxygen, such as marine mammals, are brown due to the large amounts of myoglobin
present. Myoglobin was the first protein for which a 3D structure was obtained by
X-ray crystallography, in work done by John Kendrew and coworkers in the 1950’s.

Assuming you have completed the QuickTour and are familiar with the techniques
learned, load 1MBO into Protein Explorer. Use the generic questions (linked under
Lesson Plans) to become familiar with this molecule. You may wish to print the ques-
tions and record your answers as a record of your progress. Myoglobin-specific ques-
tions follow.

Speed Up Performance by Saving Your PDB File to Disk
If you have a slow connection to the Internet, it will help to have a copy of the

myoglobin PDB file on your local disk. After loading 1MBO from the Internet once,
while it is visible in Protein Explorer, click on MDL to the lower right of the mol-
ecule, then use the menu that pops up for File, Save Molecule As, naming the file
1mbo.pdb. You may want to create a new folder named PDB Files to put it in. To
speed up the performance of Protein Explorer, return to the FrontDoor, and start Bare
Protein Explorer. Use the Browse button to find and load 1mbo.pdb from your disk.
As a result, using Reset View (which reloads the molecule) will be much faster. Also,
when you start another session of Bare Explorer, 1mbo.pdb will be on the menu of
recently loaded molecules.

You can further speed up performance by downloading Protein Explorer itself, using
the download link on the FrontDoor.

Myoglobin-Specific Questions

IS HEME AN AMPHIPATHIC MOLECULE?

That means: Does it have a largely hydrophobic (nonpolar, carbon) end and a more
hydrophilic (polar) end? In QuickViews, SELECT Ligand, DISPLAY Only. (Use the
Center and Zoom buttons.) (Spacefill the heme, and color it by element.)
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HOW MANY IRON ATOMS ARE IN ONE HEME MOLECULE?
WHAT HOLDS THEM IN PLACE?

DISPLAY Ball + Stick. Protein Explorer does not show the bonds that hold
the iron in place, but with a basic knowledge of chemistry you can deduce that the
atoms closest to the iron have lone electron pairs facing the electron-hungry metal
ion (Fe+++). The molecular oxygen, O2, bound to the iron is not covalently bound
and can be released. (Bonds shown by Protein Explorer are often incorrect around
metals due to limitations in Chime.)

IS ANY PORTION OF THE HEME IN CONTACT WITH WATER?
Examine the surface of the protein. In QuickViews, use FirstView: Reset View.

Return to QuickViews, then SELECT Protein, DISPLAY Surface. Use the Water
toggle button to examine the protein surface with water hidden, then with water
showing.

HOW MUCH WATER IS INSIDE THE PROTEIN?
Click FirstView: Reset View, return to QuickViews, DISPLAY Spacefill (for all

atoms). Color water green to distinguish water oxygens from nonwater oxygens.
SELECT Water, COLOR Green. Press the Slab button. Rotate the molecule, looking
carefully for water that is buried in the inside of the protein.

WHAT KINDS OF PROTEIN ATOMS CONTACT THE HEME?
Click FirstView: Reset View. In QuickViews, SELECT Ligand, then DISPLAY

Ball + Stick. Now, DISPLAY Contacts, using the step by step option. After you
click the 5th checkbox (Show likely noncovalently-bonded atoms as balls), zoom
in and notice the elements that are noncovalently bonded, and their distribution.
Click checkbox 2 (Show surface as opaque) to uncheck it, making the surface trans-
parent again so you can see the relations between the bonded elements and the heme
elements.

HOW MANY POLAR PROTEIN ATOMS CONTACT THE HEME?
Click the 8th checkbox (skipping the 6th and 7th checkboxes). Scroll down in the

middle frame until you see the Controls for Contact Surfaces. At the bottom of the
block of control links, click Water: Magenta.

Now you can tell water oxygens from protein oxygens. To count the contacting
protein atoms, enter select protein and balled in the command entry slot (pressing
the Enter/Return key). The report of the number of atoms selected appears in the
message box so that the atoms display as small spheres.) To verify that this com-
mand selected the correct atoms, COLOR Black. To restore the color scheme,
COLOR Element (CPK). To confirm the number of protein carbon atoms contact-
ing the heme, enter the command select protein and balled and carbon.

Lipase
One type of lipase cleaves fatty acids from triacylglycerol. Such lipases are used

both in digestion of food and for harvesting of fatty acids in fat cells, i.e., adipocytes.
They are also used by microbes, a fungus Candidia rugosa. Load the lipase 1LPM
into Protein Explorer. Complete the QuickTour, and answer the generic questions
(linked under “Lesson Plans”) before proceeding.
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Lipase-Specific Questions
IS THE ENTIRE SURFACE OF LIPASE POLAR? HOW DOES

THIS RELATE TO THE FUNCTION OF THIS ENZYME?

IS THIS LIPASE MONOMERIC OR OLIGOMERIC?
Open the Molecule Information Window and check the report at the Probable Qua-

ternary Structures (PQS) website. (If you need help, click on the circled green question
mark at the top, to access the Help/Index/Glossary.) When you have answered the ques-
tion, close the PQS windows, returning to the Polarity2-colored lipase.

IS WATER EXCLUDED FROM THE HYDROPHOBIC SURFACE PATCH?
Use the Water button to display water. Do you see any bound to hydrophobic

areas? If you do, try the Polarity3 color scheme to find out if such water is in fact
bound to the polar backbone within stretches of hydrophobic side chains. You may
also try Polarity5 to see whether charges occur in the hydrophobic patch. Then return
to Polarity2.

WHERE IS THE CATALYTIC SITE (PART 1)?
SELECT Ligand, COLOR Green. (Click the Ligand button if nothing green is

visible.) Four green items are on the surface. More interestingly, one green molecule
is centered in the hydrophobic patch, in a depression. Hide it by clicking the Ligand
button, and you will see that it is inserted into a tunnel extending deep into the core of
the protein. This molecule is an inhibitor of the enzyme that binds to the catalytic site.
It has a fatty acid-like tail, but a phosphonate where the ester bond would be. What
does “MPA” stand for? (Hint: consult the HET records in the PDB file header.)

WHERE IS THE CATALYTIC SITE (PART 2)?

With protein selected, DISPLAY Hide Selected, so the protein disappears. Now
DISPLAY, Surface, and make it transparent. With the green inhibitor showing, you
can see how it penetrates into the core of the protein. Lipases are serine esterases with
a catalytic triad of amino acids, in this case, Ser209, Glu341, and His449. Use Seq3D
to highlight these three residues. (Help finding or using Seq3D can be found in the
Help/Index/Glossary.)

WHICH ATOM OF WHICH MEMBER OF THE CATALYTIC TRIAD IS COVALENTLY BONDED

TO THE PHOSPHONATE (BASED ON A DISTANCE OF LESS THAN 1.6 Å)?
 SELECT Ligand, COLOR Element. Because the enzyme cannot hydrolyze the

inhibitor, it cannot be released. (This enabled it to be crystallized in the active site!)

ARE THE RESIDUES OF THE CATALYTIC TRIAD IN ALPHA HELICES OR BETA STRANDS?
Interestingly, some of the crystals of this lipase formed in a closed conformation,

with the hydrophobic patch and catalytic site obscured, e.g., 1TRH. Thus, the enzyme
may be closed when soluble, and may open to engage a fat droplet at the catalytic site.
At Protein Explorer’s FrontDoor, click on the small animated EF hand image at the
top left. On this page about Animations, one of the examples near the bottom is a
morph from the closed form of lipase to the open form. To look at it, click on the link
to Lipase on this Animations page.
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Identifying Conserved Regions

Choose a molecule of interest and follow the tutorial in Protein Explorer’s MSA3D
to construct a multiple protein sequence alignment using Biology Workbench. Use the
resulting alignment in MSA3D to identify conserved regions of your protein. Note:
This project will take several hours to complete.

Answers to Questions

Myoglobin file 1MBO is a single protein chain of 153 amino acids with no gaps.
Bound to the protein are 334 water molecules, one heme molecule to which is bound
molecular oxygen and one sulfate ion. The protein has no disulfide bonds and no
cysteine residues. The other 19 amino acids are present. The secondary structure is all
alpha, with most helices contacting the heme. The amino and carboxy termini are on
the surface, and over 20 Å apart. The protein surface is largely polar and the core is
entirely hydrophobic except for two histidines that contact the iron of the heme. The
surface appears to have more positively charged amino acids than negatively charged.
This is confirmed by the isoelectric point of 9.3 (charge of +3 at pH 7.0).

Myoglobin-Specific Questions

Heme is an amphipathic molecule because one end is made entirely of carbon,
while the other end has two organic acid groups. Each heme molecule contains a single
iron atom (Fe+++), held into place by the lone electron pairs of four nitrogens. The
hydrophobic end of heme is buried in the hydrophobic protein core, while the hydro-
philic carboxyls protrude from the protein surface and contact water. There are only a
few water molecules buried in the protein. For example, HOH305 is bound to the
oxygen molecule that is bound to the heme iron. The vast majority (51 of 56) of the
protein atoms that contact heme are carbons that form van der Waals interactions with
the carbon predominant in heme; there are also one oxygen and four nitrogens, three
of which are in separate histidine side-chains.

Lipase

Triacylglycerol hydrolase 1LPM consists of a single protein chain of 534 amino
acids with no gaps. There are two disulfide bridges, plus one cysteine. There are two
carbohydrate adducts on the surface consisting entirely of NAG (N-acetyl-D-glu-
cosamine). They are covalently linked to Asn 314 and 351. These linkages can be seen
by displaying the ligand contact surfaces. Although the covalent bonds between the
Asn nitrogen and sugar carbon are not shown due to a technicality, their positions can
be confirmed by the inter-atomic distances of less than 1.5 Å. Two calcium ions are
bound to the protein surface, one to the side chain of Asp260 and one to the oxygen of
Gly326. Of greatest interest, one ligand molecule is buried deeply within the protein.
It is the inhibitor, a substrate analog, menthyl hexyl phosphonate. The protein has an
alpha plus beta secondary structure, with most beta strands in a single large beta sheet.
The amino and carboxy termini are on the surface at opposite sides of the protein. The
carboxy terminus is near the inhibitory ligand (5.4 Å). The core of the protein is largely
hydrophobic, but includes a number of polar and even charged side chains. Consistent
with this, there are quite a few water molecules distributed about the interior. The
protein has a largely polar surface, except for a large hydrophobic pocket, in the bot-
tom of which sits the inhibitor. The protein surface appears to have more negatively
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charged side chains than positively charged. This is confirmed by the pI of 4.5, with a
charge of -19 at pH 7.0.

LIPASE-SPECIFIC QUESTIONS:
The hydrophobic surface pocket fits with function, because the substrate (fat) is

hydrophobic and needs a surface region suitable for binding. Probable Quaternary
Structures confirms that lipase is monomeric. The hydrophobic surface pocket has
no water bound (except to protein backbone), and no charged side chains. The sur-
face ligands were identified earlier, as was MPA. The side-chain oxygen of Ser209
is covalently bound to the phosphonate of the inhibitor. The catalytic triad residues
are in neither helices nor strands. The catalytic site is centered at the edge of the
large beta sheet, surrounded on the other side by loops without secondary structure,
outside of which are alpha helices.
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33Multiple Sequence
Alignment and Analysis
The SeqLab Interface: A Practical Guide

Steven M. Thompson

Introduction

SeqLab is based on Steve Smith’s (1994) GDE (Genetic Data Environment) and is
a part of Accelrys’ Genetics Computer Group Wisconsin Package. This comprehen-
sive package of sequence analysis programs is used worldwide and is an industry-
standard. The GCG Package only operates runs on server computers running the UNIX
operating system but it can be accessed from any networked terminal. Specialized
X-server graphics communications software is required to display GCG’s SeqLab GUI.
X server emulation software needs to be installed separately on personal style
Microsoft Windows/Intel or Macintosh machines but genuine X Windowing comes
standard with most UNIX operating systems. Wintel machines are often set up with
either XWin32 or eXceed to provide this function; Macintoshes are often loaded with
either MacX or eXodus software.

The details of X and of connecting to a GCG server are briefly described in Chap-
ters 13 and 17. They are machine-specific, however, there are a few useful hints that
are common to all machines. X-windows are only active when the mouse cursor is in
that window and buttons are turned on when they are pushed in and shaded. Rather
than holding mouse buttons down, to activate items, just click on them. Do not close
windows with the X-server software’s close icon in the upper right- or left-hand
window corner, rather, always use GCG’s Close or Cancel or OK button located
near the bottom of the window.

After logging on to your UNIX GCG user account, issue the command gcg to ini-
tialize the software suite. This initialization process activates all of the programs within
the package and displays the current version of both the software and all of its accom-
panying databases. Issue the command seqlab & in your terminal window to start the
SeqLab interface. The ampersand, &, instructs the command to launch SeqLab as a
background process so that you can retain control of your initial terminal window.
This should produce two new windows, the first, an introduction with an OK box;
check OK. You should now be in SeqLab’s List mode. Before beginning any analy-
ses, go to the Options menu and select Preferences . . . A few of the options should be
verified to insure that SeqLab runs in its most intuitive manner. The defaults are usu-
ally fine, but changes can be made. Remember, buttons are turned on when they are
pushed in and shaded.
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First notice that three different Preferences settings can be changed: General,
Output, and Fonts; start with General. The Working Dir . . . setting will be the
directory from which SeqLab was initially launched. This is where all SeqLab’s
working files will be stored. It can be changed in your accounts if desired. Be sure
that the Start SeqLab in: choice has Main List selected and that Close the window
is selected under the After I push the Run button: choice. Next select the Output
Preference. Be sure that Automatically display new output is selected. Finally,
take a look at the Fonts menu. If you are analyzing very large alignments, then
selecting a smaller Editor font point size may be desirable in order to view more of
your alignment on the screen at once. Click OK to accept any changes.

LookUp a Protein in the Database
Given interest in a particular biological molecular sequence, you can use any text

string searching tool, such as NCBI’s Network Entrez or EMBL’s SRS on the World
Wide Web, to find that entry’s name in a sequence database. GCG’s LookUp, an SRS
derivative, was used to retrieve the Elongation Factor 1α dataset. After an entry has
been identified, the next step is to use a sequence similarity searching program to help
prepare a list of sequences to be aligned. One of the challenges in creating a multiple
alignment is knowing what sequences should align. Any list from any program should
be restricted to only those sequences that actually should be aligned. To generate a
meaningful alignment, make sure that the group of sequences that you align belong to
the same gene or related gene family.

To use entries of interest in the GCG sequence databases we need to know their
proper database names or accession codes. There are several methods. The NCBI
Entrez program either over the Web or installed locally in the network client/server
mode is one of the more powerful. GCG’s LookUp program can also be used, creat-
ing an output file that can be used as an input list file to other GCG programs. To
start be sure that the Mode: Main List choice is selected in your main window and
then launch LookUp through the Functions Database Reference Searching menu.
In the new LookUp window be sure that Search the chosen sequence libraries is
checked and then select SwissProt as well as SPTREMBL for the libraries to
search. The representative set of elongation factor entries are all from primitive
Eukaryotes, i.e., any Eukaryote excluding Fungi, Metazoans, and true Plants. There-
fore, under the main query section of the window, type the words and symbols elon-
gation & factor & alpha following the category Definition and the words and
symbols eukaryota ! ( fungi | metazoa | viridiplantae ) in the Organism category;
next press the Run button. You need to use the Boolean operator symbols to con-
nect the individual query strings because the databases are indexed using individual
words for most fields. The Organism field is an exception, it will accept Genus
species designations as well as any other single word supported level of taxonomy,
e.g., fungi. The Boolean operators supported by LookUp are the ampersand, & ,
meaning AND, the pipe symbol, | , to denote the logical OR, and the exclamation
point, ! , to specify BUT NOT. Other LookUp query construction rules are case
insensitivity, parenthesis nesting, * and ? wildcard support, and automatic wildcard
extension. This query should find most of the elongation factor alpha’s from the
lower eukaryotes in the SwissProt and SPTREMBL databases and will provide a
reasonable and interesting starting dataset for the chapter. The LookUp window
should look similar to Fig. 1.
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The program will display the results of the search. Scroll through the output and
then Close the window. The beginning of the LookUp output file from the example
follows in Table 1. Be careful that all of the proteins included in the output from any
text searching program are appropriate. All may look correct here, but improper
nomenclature and other database inconsistencies can cause problems. If you find
inappropriate proteins upon reading the output, you can either edit the output file to
remove them, or CUT them from the SeqLab Editor display after loading the list.
If you use an editor, you can comment out the undesired sequences by placing an
exclamation point,  ! , in front of the unwanted lines.

Select the LookUp output file in the SeqLab Output Manager. This is a very
important window and will contain all of the output from your current SeqLab session.
Files may be displayed, printed, saved in other locations with other names, and deleted
from this window. Press the Add to Main List button in the SeqLab Output Man-
ager and Close the window afterwards. Next, be sure that the LookUp output file is
selected in the SeqLab Main Window and then switch the Mode: to Editor. This will
load the file into the SeqLab Editor to permit further analyses. Notice that all of the
sequences now appear in the Editor window with the amino acid residues color-coded.
The nine color groups are based on a UPGMA clustering of the BLOSUM62 amino
acid scoring matrix, and approximate physical property categories for the different
amino acids. Expand the window to an appropriate size by grabbing the bottom-left
corner of its frame and pulling it out as far as desired. Use the vertical scroll bar to

Fig. 1. The GCG Package SeqLab LookUp window. LookUp is an SRS derivative that allows one to
construct complex text-based sequence database queries. It produces GCG list file format output.
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view the entire collection. Any portion of, or the entire alignment loaded, is now avail-
able for analysis by any of the GCG programs (see Fig. 2).

Alternatively, one can import sequences into SeqLab using the Add sequences
from Sequence Files. . . choice under the File menu. Only GCG format compatible
sequences or list files are accessible through this route. Using SeqLab’s Editor File
menu Import function, one can directly load GenBank sequences or ABI binary
trace files. You can also directly load sequences from the online GCG databases
with the Databases. . . choice under the Add sequences menu if you know their
proper identifier name or accession code. The Add Sequences window’s Filter box
is very important! By default files are filtered such that only those that end with the
extension .seq are displayed. To view all files, delete the .seq extension in the Filter
box (including the period); be sure to leave the  *  wild card. Press the Filter button
to display all of the files in your working directory. Select the file that you want
from the Files box, and then check the Add and then Close buttons on the bottom of
the window to put the desired file into your current list, if you’re in List Mode, or
directly into the Editor, if you’re in Editor Mode.

Each protein sequence is listed by its official SwissProt or SPTREMBL entry name
(ID identifier). The scroll bar at the bottom allows you to move through the sequences
linearly. The side scroll bar allows you to scroll through all of your entries vertically.

Table 1
LookUp Output Filea

!!SEQUENCE_LIST 1.0
LOOKUP in: swissprot,sptrembl of: “([SQ-DEF: elongation* & factor* & alpha*] &
[SQ-ORG: eukaryota* ! ( fungi* | metazoa* | viridiplant* )])”
 79 entries May 10, 2001 16:08 ..
SWISSPROT:EF11_EUPCR ! ID: ef470001
! DE ELONGATION FACTOR 1-ALPHA 1 (EF-1-ALPHA-1).
! GN EFA1.
SWISSPROT:EF12_EUPCR ! ID: f8470001
! DE ELONGATION FACTOR 1-ALPHA 2 (EF-1-ALPHA-2).
! GN EFA2.
SWISSPROT:EF1A_BLAHO ! ID: 0d480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
SWISSPROT:EF1A_CRYPV ! ID: 14480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
SWISSPROT:EF1A_DICDI ! ID: 16480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA) (50 KDA ACTIN-BINDING PROTEIN)
! DE (ABP-50).
! GN EFAA.
SWISSPROT:EF1A_EIMBO ! ID: 17480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA) (FRAGMENT).
SWISSPROT:EF1A_ENTHI ! ID: 18480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
SWISSPROT:EF1A_EUGGR ! ID: 19480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
! GN TEF.
SWISSPROT:EF1A_GIALA ! ID: 1a480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA) (14 NM FILAMENT-ASSOCIATED
! DE PROTEIN) (FRAGMENT).
! GN TEF1.
SWISSPROT:EF1A_PLAFK ! ID: 2a480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
! GN MEF-1.
SWISSPROT:EF1A_STYLE ! ID: 35480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
! GN EFAA.
SWISSPROT:EF1A_TETPY ! ID: 38480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA) (14 NM FILAMENT-ASSOCIATED
! DE PROTEIN).
SWISSPROT:EF1A_TRYBB ! ID: 3d480001
! DE ELONGATION FACTOR 1-ALPHA (EF-1-ALPHA).
! GN TEF1.
SWISSPROT:EF1C_PORPU ! ID: 54480001
! DE ELONGATION FACTOR 1-ALPHA C (EF-1-ALPHA).
! GN TEF-C.
/////////////////////////////////////////////////////////////////////////

aAbridged screen trace of GCG’s LookUp output file. Notice the list file format that can be read by Wisconsin Package
interfaces and programs, such as SeqLab and PileUp.

See
companion CD
for color Fig. 2
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Double-clicking on the various entry names or a single click on the INFO icon with
the sequence entry name selected will provide the database and documentation. This is
the same information that you can get with the GCG command typedata -ref at the
command line. You can also change the sequences’ names and add any documentation
that you want in this window. Change the Display: box from Residue Coloring to
Feature Coloring and then to Graphic Features. The display will show a schematic
of the feature information from each entry with colors based on the information from
the database Feature Table for the entry. Graphic Features present features using the
same colors but in a cartoon fashion. Double-click on one of the various colored
regions of the sequences (or use the Features choice under the Windows menu) to
produce a new window that describes the features located at the cursor. Selecting the
feature will show the detailed entry. All the features are fully editable through the Edit
check box in this panel and new features can be added with desired shapes and colors
through the Add check box.

Nearly all GCG programs are accessible through the Functions menu. To perform
different analyses, select the entry of interest and then go to the Functions menu. You
can select sequences in their entirety by clicking on their names or you can select any
position(s) within sequences by capturing them with the mouse. You can select a range
of sequence names by <shift><clicking> the top-most and bottom-most name desired,
or <ctrl><click> sequence entry names to select noncontiguous entries. The pos: and
col: indicators show you where the cursor is located on a sequence without including
gaps and with including gaps respectively. The 1:1 scroll bar near the upper right-
hand corner allows you to zoom in or out on the sequences; move it to 2:1 and beyond
and notice the difference in the display.

Fig. 2. The SeqLab Editor window with a LookUp dataset loaded and ready to analyze.
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It is a good idea to save the sequences in the display at this point and multiple times
as you work on an alignment. Do this occasionally while you are in SeqLab just in
case there is an interruption of service. Go to the File menu and choose Save As.
Accept the default .rsf extension but give it any file name and directory specification
you choose. Rich Sequence Format (RSF) contains all the aligned sequence data as
well as all the reference and feature annotations associated with each entry. It is Richer
than many other multiple sequence formats and is SeqLab’s default format.

Similarity Searching to Increase (or Decrease) Dataset Size
A logical next step to preparing a multiple sequence alignment can be a similarity

search to add similar sequences from the database to the dataset. Similarity searching
can be carried out within SeqLab several ways. The BLAST and FastA family of
programs are some of the more frequently used programs. An advantage to running
any similarity search within the context of GCG is the results are immediately avail-
able for further analyses without the need for any sequence downloading or reformat-
ting. This is achieved by virtue of the GCG list file format and the fact that all of the
databases are mounted locally.

Database similarity searching can also be helpful by allowing one to sort a collec-
tion of sequences in order of alignment significance. This allows one to remove
undesired sequences from the bottom of a list. But, be warned, on some systems you
cannot run FastA in GCG on too small of a dataset without causing core dumps! To
avoid this problem you can add another small database such as NRL_3D to your Search
List Set as well as the list file that you would like to sort. This provides the necessary
background randomization for normalization. Another point to remember, BLAST
programs cannot be used to search against any sequence set that has not been
preformatted into a BLAST compatible database.

In this example, the Giardia sequence will be used as a search query because
many researchers consider Giardia’s most ancient ancestor to be rooted near the
base of the universal tree of life on the eukaryote lineage. This is appropriate when
examining lower eukaryotes. Select the EF1A_GIALA sequence entry name in the
Editor display and launch FastA from the Functions Database Sequence Search-
ing  menu. If a Which selection window pops up asking if you want to use the
selected sequences or selected region, choose selected sequences to execute the
program on the full length of the selected protein. At most sites, the default protein
database to search, Search Set. . . will be Using pir:*. To specify the my LookUp
output list file instead, push the Search Set. . . button, select pir:* in the Build
FastA’s Search Set box that pops up and then Remove from Search Set. Next,
press the Add Main List Selection. . . button and then select your previous LookUp
output list file from the List Chooser window that pops up, press Add to Search
Set. Repeat this process using the Add Database Sequences. . . button and specify
NRL_3D as discussed earlier. Close the List Chooser and the Build Search Set
windows. The other parameters in the main FastA window are usually fine at their
default settings, though you may want to decrease their cutoff Expectation-value to
reduce the output list size. Press the Options. . . button, some of which can be help-
ful. Scroll down the window and notice the Show sequence alignments in the out-
put file button. This toggles the command line option -NoAlign off and on to
suppress the pairwise alignment section. This can be helpful if you are not interested
in the pairwise alignments and wish to produce smaller output files. Restricting your
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search by the database sequence length or by date of their deposition in the database
can also be useful. Close the Options window, be sure that the FastA program win-
dow shows How: Background Job, and then press the Run button. To check on the
progress of the job you can go to SeqLab’s Windows menu and choose Job Man-
ager. Select the FastA entry to see its progress and then close the window.

The output is a GCG list file that can serve as input to other GCG programs such
as PileUp, complete with beginning and ending attributes and complementary strand
attributes when necessary, if using DNA. As in BLAST reports, the Expectation func-
tion, E(), is the most important statistic on the output. It is the likelihood (Expecta-
tions) that the match was observed by chance. Similar to BLAST E-values, the value
in parenthesis describes the number of search set sequences that would be needed to
obtain a z-score greater than or equal to the z-score obtained in any search purely by
chance. The entries are sorted by this z-score parameter based on a normalization of
the opt scores and their distribution from the rest of the database. However, this
z-score is different from a Monte Carlo-style Gaussian distribution Z score. It is calcu-
lated as a simple linear regression against the natural log of the overall search set
sequence length. Just like BLAST E-values, the smaller the number, the better and
more significant the match. As a conservative rule-of-thumb, for a search against a
random protein database of approx 10,000 sequences, as long as optimization is not
turned off, E() scores much less than 0.01 are probably homologous, and scores from
0.01 to 1 may be homologous, whereas scores between 1 to 10 are only perhaps
homologous, and scores above 10 are most probably not homologous. These guide-
lines can be skewed by compositional biases of the query and/or of the database. You
should observe a demarcation where the scores drop off between the significant hits
and background noise. Many significant E values can be seen in the output with scores
of 10–100 or less, then there is a gradual increase in values from 10–99 through 10–75,
and finally many scores not quite as significant are seen with E values of 10–40 and
above. A histogram of the score distribution is also displayed in the FastA outputs.
This can be helpful to understand the statistical significance of the search and to ascer-
tain whether the search list was of sufficient size. For the search statistics to be valid,
the expected distribution, as indicated by the line of asterisks, should approximate the
actual distribution, as shown by the equal signs. You want your list size big enough to
include some random low scores to ascertain the significance of the alignments. The
default FastA Expectation cutoff of 10.0 assures this. Table 2 shows a blowup of
the highly significant score end of the graph—these are the best alignments found by
the program, not the worst! The histogram can be suppressed with the -NoHistogram
option if desired. FastA output also shows a sequence alignment for each pair up to a
set number, unless you suppress this with the -NoAlign option, as in Table 2.

Use the Output Manager to load the dataset into the SeqLab Editor. Select the
FastA output file in the Output Manager window and then press the Add to Editor
button. Specify Overwrite old with new in the Reloading Same Sequence window
when prompted, to take the FastA output and merge it with the sequences already in
the open Editor. Click Interrupt Loading in the Loading sequences window after
thirty or so sequences to prevent the entire file from loading. They are loaded in order
of the FastA file and are, therefore, in order of similarity to your query. You are asked
whether to Modify the sequences or Ignore all attributes in the List file attributes
set window. The answer will depend on the type of alignment you are creating and
the biological questions that you are asking. In many cases, especially if you are
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Table 2
FastA Output List File a

!!SEQUENCE_LIST 1.0
(Peptide) FASTA of: input_25.rsf{ef1a_giala} from: 1 to: 396 May 14, 2001 12:43
Description: Q08046 Giardia lamblia (Giardia intestinalis). elongation factor
 1-alpha (ef-1-a Accession/ID: Q08046
====================General comments====================
ID EF1A_GIALA STANDARD; PRT; 396 AA.
 TO: @/users1/thompson/.seqlab-mendel/fasta_ss1_25.list Sequences: 23,370
Symbols: 4,555,867 Word Size: 2
 Databases searched:
 SWISS-PROT, Release 39.0, Released on 15Jun2000, Formatted on 18Sep2000
 SPTREMBL, Release 14.0, Released on 15Jun2000, Formatted on 20Sep2000
 NRL_3D, Release 27.0, Released on 30Mar2000, Formatted on 2Oct2000
 Scoring matrix: GenRunData:blosum50.cmp
 Variable pamfactor used
 Gap creation penalty: 12 Gap extension penalty: 2
Histogram Key:
 Each histogram symbol represents 39 search set sequences
 Each inset symbol represents 3 search set sequences
 z-scores computed from opt scores
z-score obs exp
 (=) (*)
 20 745 0:====================
 22 0 0:
 24 0 0:
 26 0 0:
 28 1 5:*
 30 6 31:*
 32 92 120:===*
 34 371 325:========*=
 36 571 668:=============== *
 38 1711 1104:============================*===============
 40 1537 1540:=======================================*
 42 1997 1883:================================================*===
 44 1775 2077:============================================== *
 46 1782 2116:============================================== *
 48 2290 2025:===================================================*=======
 50 1475 1848:====================================== *
 52 1702 1625:=========================================*==
 54 1490 1388:===================================*===
 56 948 1159:========================= *
 58 898 952:========================*
 60 935 771:===================*====
 62 708 618:===============*===
 64 365 492:========== *
 66 402 389:=========*=
 68 419 306:=======*===
 70 343 240:======*==
 72 187 187:====*
 74 98 146:===*
 76 87 114:==*
 78 76 88:==*
 80 63 69:=*
 82 42 52:=*
 84 28 42:=*
 86 23 32:*
 88 25 25:*
 90 4 19:*
 92 0 15:* : *
 94 12 12:* :===*
 96 30 9:* :==*=======
 98 12 7:* :==*=
 100 5 5:* :=*
 102 4 4:* :=*
 104 1 3:* :*
 106 4 2:* :*=
 108 3 2:* :*
 110 0 1:* :*
 112 0 1:* :*
 114 0 1:* :*
 116 0 1:* :*
 118 0 1:* :*
>120 103 0:=== *===================================
Joining threshold: 37, opt. threshold: 25, opt. width: 16, reg.-scaled
The best scores are: init1 initn opt z-sc E(22522)..
SWISSPROT:EF1A_GIALA Begin: 1 End: 396
! Q08046 Giardia lamblia (Giardia int... 2696 2696 2696 3151.0 2.4e-169
SP_INVERTEBRATE:Q25166 Begin: 4 End: 399
! Q25166 diplomonad atcc50330. elonga... 2318 2318 2318 2709.5 9.3e-145
SP_INVERTEBRATE:Q25073 Begin: 4 End: 399
! Q25073 hexamita inflata. elongation... 2125 2125 2125 2484.1 3.3e-132
SP_INVERTEBRATE:O36039 Begin: 4 End: 401
! O36039 spironucleus vortens. elonga... 1071 2074 2083 2435.0 1.8e-129
SP_PLANT:O82788 Begin: 21 End: 417
! O82788 blastocystis hominis. elonga... 1017 1825 1830 2138.9 5.6e-113
SP_INVERTEBRATE:O97109 Begin: 4 End: 405
! O97109 naegleria andersoni. elongat... 802 1803 1827 2135.9 8.2e-113
SP_INVERTEBRATE:Q26913 Begin: 1 End: 395
! Q26913 trypanosoma cruzi. elongatio... 1003 1791 1815 2122.1 4.8e-112
SWISSPROT:EF1C_PORPU Begin: 21 End: 419
! P50256 porphyra purpurea. elongatio... 952 1786 1801 2104.8 4.4e-111
///////////////////////////////////////////////////////////////////////////
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SP_INVERTEBRATE:O96975 Begin: 6 End: 398
! O96975 euplotes aediculatus. transl... 935 1618 1693 1979.4 4.3e-104
SP_INVERTEBRATE:O77447 Begin: 21 End: 413
! O77447 plasmodium knowlesi. elongat... 928 1637 1684 1968.3 1.8e-103
SWISSPROT:EF1A_PLAFK Begin: 21 End: 413
! Q00080 plasmodium falciparum (isola... 922 1624 1671 1953.1 1.3e-102
SP_INVERTEBRATE:O77478 Begin: 21 End: 413
! O77478 plasmodium berghei. elongati... 915 1615 1662 1942.6 4.8e-102
SP_INVERTEBRATE:O44031 Begin: 21 End: 397
! O44031 cryptosporidium parvum. elon... 938 1453 1650 1929.2 2.7e-101
SP_INVERTEBRATE:O96976 Begin: 6 End: 398
! O96976 euplotes aediculatus. transl... 850 1578 1635 1911.7 2.5e-100
SP_INVERTEBRATE:Q9UAF6 Begin: 1 End: 346
! Q9uaf6 pyrsonympha grandis. elongat... 959 1518 1520 1778.5 6.6e-93
SP_INVERTEBRATE:Q9UAF5 Begin: 1 End: 346
! Q9uaf5 pyrsonympha grandis. elongat... 959 1515 1517 1775.0 1e-92
SP_INVERTEBRATE:Q9Y1W1 Begin: 1 End: 346
! Q9y1w1 pyrsonympha grandis. elongat... 955 1497 1499 1754.0 1.5e-91
SWISSPROT:EF12_EUPCR Begin: 22 End: 412
! Q27140 euplotes crassus. elongation... 581 1398 1483 1733.6 2.1e-90
///////////////////////////////////////////////////////////////////////////
SP_PLANT:O82555 Begin: 1 End: 290
! O82555 blastocystis hominis. elonga... 894 1233 1244 1457.5 5.1e-75
SP_INVERTEBRATE:O36034 Begin: 1 End: 178
! O36034 hexamita inflata. elongation... 901 901 901 1059.7 7.2e-53
SP_INVERTEBRATE:O36038 Begin: 1 End: 179
! O36038 spironucleus muris. elongati... 466 754 785 925.0 2.3e-45
SP_INVERTEBRATE:Q94839 Begin: 1 End: 406
! Q94839 glugea plecoglossi. elongati... 386 869 780 912.5 1.1e-44
SP_INVERTEBRATE:Q25002 Begin: 21 End: 426
! Q25002 glugea plecoglossi. peptide ... 386 869 780 912.2 1.2e-44
SP_INVERTEBRATE:O15600 Begin: 18 End: 169
! O15600 entamoeba histolytica. elong... 730 756 773 911.1 1.4e-44
SP_INVERTEBRATE:O15601 Begin: 1 End: 157
! O15601 entamoeba histolytica. elong... 699 699 723 853.5 2.2e-41
SWISSPROT:EF1S_PORPU Begin: 21 End: 460
! P50257 porphyra purpurea. elongatio... 492 1281 666 778.3 3.4e-37
SP_INVERTEBRATE:O15584 Begin: 9 End: 166
! O15584 entamoeba histolytica. elong... 582 627 631 745.7 2.3e-35
NRL_3D:1EFT Begin: 50 End: 323
! translation elongation factor EF-Tu... 202 431 508 595.5 5.2e-27
NRL_3D:1TUIC Begin: 42 End: 315
! translation elongation factor EF-Tu... 202 431 507 594.5 5.9e-27
NRL_3D:1TUIA Begin: 42 End: 315
! translation elongation factor EF-Tu... 202 431 507 594.5 5.9e-27
NRL_3D:1TUIB Begin: 42 End: 315
! translation elongation factor EF-Tu... 202 431 507 594.5 5.9e-27
///////////////////////////////////////////////////////////////////////////
SP_INVERTEBRATE:O15581 Begin: 3 End: 107
! O15581 entamoeba histolytica. elong... 407 407 435 518.9 9.7e-23
SP_INVERTEBRATE:O15580 Begin: 1 End: 74
! O15580 entamoeba histolytica. elong... 239 239 281 342.7 6.3e-13
NRL_3D:1D2EC Begin: 29 End: 337
! elongation factor tu (ef-tu), chain... 187 449 255 300.2 1.5e-10
NRL_3D:1D2ED Begin: 29 End: 337
! elongation factor tu (ef-tu), chain... 187 449 255 300.2 1.5e-10
NRL_3D:1D2EB Begin: 29 End: 337
! elongation factor tu (ef-tu), chain... 187 449 255 300.2 1.5e-10
NRL_3D:1D2EA Begin: 29 End: 337
! elongation factor tu (ef-tu), chain... 187 449 255 300.2 1.5e-10
NRL_3D:1DG1H Begin: 41 End: 335
! elongation factor tu, chain H - bac... 168 369 240 282.9 1.3e-09
NRL_3D:1DG1G Begin: 41 End: 335
! elongation factor tu, chain G - bac... 168 369 240 282.9 1.3e-09
NRL_3D:1EFCA Begin: 42 End: 336
! elongation factor, chain A - bacteria 168 369 240 282.9 1.3e-09
NRL_3D:1EFCB Begin: 42 End: 336
! elongation factor, chain B - bacteria 168 369 240 282.9 1.3e-09
NRL_3D:1ETU2 Begin: 1 End: 79
! translation elongation factor EF-Tu... 153 208 208 252.9 6.4e-08
NRL_3D:1EFM2 Begin: 1 End: 78
! elongation factor Tu (trypsin-modif... 148 203 203 247.6 1.2e-07
NRL_3D:1EFUA2 Begin: 16 End: 280
! translation elongation factor EF-Tu... 126 327 192 228.0 1.5e-06
NRL_3D:1EFUC2 Begin: 16 End: 280
! translation elongation factor EF-Tu... 126 327 192 228.0 1.5e-06
\End of List
! Distributed over 1 thread.
! Start time: Mon May 14 12:43:00 2001
! Completion time: Mon May 14 12:43:39 2001
! CPU time used:
! Database scan: 0:00:11.4
! Post-scan processing: 0:00:03.0
! Total CPU time: 0:00:14.4
! Output File: /users1/thompson/seqlab/ef1a_giala_25.fasta

aAn abridged output list file from GCG’s implementation of FastA. A histogram of score distributions is plotted preced-
ing the list portion of the file where hits are ranked statistically by Expection-value. Normally a pairwise alignment section
would follow the list, but that was turned off in this run with the -NoAlign option.

Table 2 (continued)
FastA Output List File a
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asking phylogenetic questions, you will not want to modify the sequences. Load their
full length to maximize the available signal. However, if you are using extremely
diverse sequences and/or domains of sequences, then trimming the sequences to the
most conserved portions identified by FastA can be very helpful. Figure 3 shows
the Editor display after loading the top part of my FastA file. At this juncture go to
the File menu and save the RSF file. Overwrite in the File exists box if you have
used the same name for this file earlier. RSF files are quite large and there is no need
to save all the versions of the data.

MEME
 A powerful de novo motif discovery algorithm can be run before actually perform-

ing multiple sequence alignment. The Expectation Maximization algorithm uses Baye-
sian probabilities and unsupervised learning to identify conserved motifs among a
group of unaligned, ungapped sequences. The motifs do not have to be in congruent
order among the different sequences, i.e., it has the power to discover unalignable
motifs between sequences. This characteristic differentiates MEME from most other
profile building techniques. It is implemented as the MEME program and it produces
output containing a multiple profile file as well as a readable report file. The profile
output serves as input to MotifSearch.

Fig. 3. The SeqLab Editor loaded with sorted FastA output. FastA can be used as a tool to sort a list
into ranked order based on similarity to a particular query. Any desired portion of this output can
then be loaded into the SeqLab editor for further analysis.

See
companion CD
for color Fig. 3
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Select all of the sequences in the Editor window to run MEME. Several methods are
available for selecting multiple sequence entry names. Either drag the mouse through
them all if they are all visible at once in the display, or <shift><click> on the top- and
bottom-most entries (select nonadjacent entries with <ctrl><clicks>), or select Select
All from the Edit menu. Launch MEME from the Functions Multiple Comparisons
menu. A Which selection window may pop up, asking whether you want to use either
the selected sequences or selected region; choose selected sequences to run the pro-
gram on the entire set of sequences. The algorithm can be sped up at the cost of sensi-
tivity by decreasing the number of motifs to be found, by restricting the number of
motifs found to exactly one in each sequence, and/or by decreasing the allowable motif
window size.

MEME output consists of two files; a .meme readable text file and a .prf multiple
profile text file. MotifSearch will scan any dataset specified with the multiple pro-
file file that MEME produced. Scanning the original training dataset will annotate
those regions that MEME discovered in your SeqLab Editor RSF file. After align-
ment the MEME motifs that are alignable will all line up. Go to the Database
Sequence Searching menu and select MotifSearch. . . Specify your query
profile(s), the one you just made, and change the Search set to the RSF dataset that
is loaded in the Editor. Be sure to activate Save motif features to the RSF file. The
output will return a .rsf file on top. This file contains the SeqLab format feature data
discovered by MEME in your dataset. The .ms file contains the readable results of
the search in list file format with the Expectation-value statistics and the number of
motif hits for each hit. After the list file portion a Position diagram schematically
describes the hits in each sequence. This can be viewed by pressing the Display
button in the Output Manager.

The Output Manager can be used to merge the motifsearch.rsf feature file with the
existing data already open in the SeqLab Editor. This will add the feature annotation
created with the MotifSearch-RSF option. The location of each motif will be
included in the Editor sequence display. Use the Add to Editor Output Manager func-
tion. As noted earlier, specify Overwrite old with new in the next window when
prompted. Close the Output Manager after loading the new RSF file. Change Dis-
play: to Graphic Features and check out the additional annotation. Figure 4 illus-
trates Graphic Features display at a 4:1 zoom ratio.

Searching PROSITE—GCG’s Motifs

Many features have been described and catalogued in biological sequences over the
years. Most have consensus patterns that allow one to screen an unknown sequence for
their occurrence. One database of catalogued structural, regulatory, and enzymatic
consensus patterns is Amos Bairoch’s protein signature database, the PROSITE Dic-
tionary of Protein Sites and Patterns. It is one of the quickest and easiest databases to
search with a peptide sequence. The GCG program Motifs performs this search. The
program can tolerate mismatches with a -MisMatch option and it displays an abstract
with selected references for each motif signature found. In many cases this can be a
tremendous aid that can suggest the function of an unknown peptide sequence. It can
often lead to immediate answers and routes of investigation.

Start the Motifs program by selecting all of the protein entry names in SeqLab, then
go to the Functions Protein Analysis menu and select Motifs. . .. The Motifs pro-
gram window will be displayed. Check the Save results as features in file motifs.rsf

See
companion CD
for color Fig. 4
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button in the Motifs program window. This file contains annotation discovered by the
program. After running the program, the motifs.rsf file displayed. Close it and use the
Output Manager to display the file with the .motifs extension. Notice the sites in
the Motifs output file in Table 3 that have been characterized in these sequences and
associated bibliography. This information can save a tremendous amount of work!
Each site is shown with its sequence location below each consensus pattern. Post-
translational modification sites found in many proteins, such as glycosylation, phos-
phorylation, amidation, and myristylation, will only be listed if the -Frequent option is
specicifed. Realize that sites may be false positives. This is always a danger with
simple consensus style searches. Notice that Motifs discovered the truly positive GTP-
binding elongation factor signature and the ATP/GTP-binding P-loop site, yet it
also found two probable false positives, the Prokaryotic membrane lipoprotein lipid
attachment site and the FGGY family of carbohydrate kinases signature.

Close the Motifs output window, then load the motifs.rsf file into SeqLab. This will
add the feature annotation created with the RSF option. The location of the PROSITE
signatures will now be included in the Editor sequence display. Again use the SeqLab
Output Manager. Select the file motifs.rsf, then press the Add to Editor button and
specify Overwrite old with new to take the new motifs.rsf feature file and merge it
with the old RSF file in the open Editor. Close the Output Manager after loading the
RSF file. To display the new annotation, use Features Coloring or Graphic Features.
Figure 5 shows the dataset using Features Coloring now annotated with its original
database features as well as MEME discoveries and Motifs patterns.

Fig. 4. Graphic Features display, MEME results. SeqLab can use cartoons to graphically display the
feature annotation contained in sequence database entries and produced by programs such as
MotifSearch. SeqLab merges this annotation with existing datasets with the Add to Editor and Over-
write old with new function. It also allows the user to zoom in or out on a dataset to see its entire
length at once.

See
companion CD
for color Fig. 5
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Table 3
Abridged Motifs Outputa

MOTIFS from: @/users1/thompson/.seqlab-mendel/motifs_54.list

Mismatches: 0 May 17, 2001 10:25 ..

input_54.rsf{GIARDIA_L} Check: 6084 Length: 475 ! In situ PileUp of: @/users
1/thompson/.seqlab-mendel/pileup_36.list
__________________________________________________________________________________________________________________
Efactor_Gtp D(K,R,S,T,G,A,N,Q,F,Y,W)x3E(K,R,A,Q)x(R,K,Q,D)(G,C)(I,V,M,K)(S,T)(I,V)x2(G,S,T,A,C,K,R,N,Q)
            D(Q)x{3} E(R)x(R)(G)(I)(T)(I)x{2} (A)
  64: YAWVL DQLKDERERGITINIA LWKFE
********************************************
* GTP-binding elongation factors signature *
********************************************
Elongation factors [1,2] are proteins catalyzing the elongation of peptide chains in protein biosynthesis. In both
prokaryotes and eukaryotes, there are three distinct types of elongation factors, as described in the following
table:
-----------------------------------------------------------------------------------------------------------------
Eukaryotes  Prokaryotes  Function
-----------------------------------------------------------------------------------------------------------------
EF-1alpha   EF-Tu        Binds GTP and an aminoacyl-tRNA; delivers the latter to the A site of ribosomes.
EF-1beta    EF-Ts        Interacts with EF-1a/EF-Tu to displace GDP and thus allows the regeneration of GTP-EF-1a.
EF-2        EF-G         Binds GTP and peptidyl-tRNA and translocates the latter from the A site to the P site.
-----------------------------------------------------------------------------------------------------------------

The GTP-binding elongation factor family also includes the following proteins:

 - Eukaryotic peptide chain release factor GTP-binding subunits (3). These proteins interact with release factors
that bind to ribosomes that have encountered a stop codon at their decoding site and help them to induce release
of the nascent polypeptide. The yeast protein was known as SUP2 (and also as SUP35, SUF12 or GST1) and the human
homolog as GST1-Hs.

 - Prokaryotic peptide chain release factor 3 (RF-3) (gene prfC). RF-3 is a class-II RF, a GTP-binding protein
that interacts with class I RFs (see ERROR[Unused arguments - too many, or wrong type] in:<PDOC00607>) and
enhance their activity (4).

 - Prokaryotic GTP-binding protein lepA and its homolog in yeast (gene GUF1) and in Caenorhabditis elegans
(ZK1236.1).

 - Yeast HBS1 (5).
 - Rat statin S1 (6), a protein of unknown function which is highly similar to EF-1alpha.
 - Prokaryotic selenocysteine-specific elongation factor selB (7), which seems to replace EF-Tu for the insertion

of selenocysteine directed by the UGA codon.
 - The tetracycline resistance proteins tetM/tetO (8,9) from various bacteria such as Campylobacter jejuni, En-

terococcus faecalis, Streptococcus mutans and Ureaplasma urealyticum. Tetracycline binds to the prokaryotic
ribosomal 30S subunit and inhibits binding of aminoacyl-tRNAs. These proteins abolish the inhibitory effect of
tetracycline on protein synthesis.

 - Rhizobium nodulation protein nodQ (10).
 - Escherichia coli hypothetical protein yihK (11).

In EF-1-alpha, a specific region has been shown (12) to be involved in a conformational change mediated by the
hydrolysis of GTP to GDP. This region is conserved in both EF-1alpha/EF-Tu as well as EF-2/EF-G and thus seems typical
for GTP-dependent proteins which bind non-initiator tRNAs to the ribosome. The pattern we developed for this family
of proteins include that conserved region.

 -Consensus pattern: D-[KRSTGANQFYW]-x(3)-E-[KRAQ]-x-[RKQD]-[GC]-[IVMK]-[ST]- [IV]-x(2)-[GSTACKRNQ]
 -Sequences known to belong to this class detected by the pattern: ALL, except for 11 sequences.
 -Other sequence(s) detected in SWISS-PROT: NONE.
 -Last update: November 1997 / Text revised.

[ 1] Concise Encyclopedia Biochemistry (1988) 2nd ed., Walter de Gruyter, Berlin, NY.
[ 2] Moldave, K. (1985) Annu. Rev. Biochem. 54, 1109–1149.
[ 3] Stansfield, I., Jones, K. M., Kushnirov, V. V., et al. (1995) EMBO J. 14, 4365–4373.
[ 4] Grentzmann, G., Brechemier-Baey, D., Heurgue-Hamard, V., Buckingham, R. H. (1995) J. Biol. Chem. 270,
     10,595–10,600.
[ 5] Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M., Craig, E.A. (1992) Cell 71, 97–105.
[ 6] Ann, D. K., Moutsatsos, I. K., Nakamura, T., et al. (1991) J. Biol. Chem. 266, 10,429–10,437.
[ 7] Forchammer, K., Leinfeldr, W., Bock A. (1989) Nature 342, 453–456.
[ 8] Manavathu, E. K., Hiratsuka, K., Taylor, D. E. (1988) Gene 62, 17–26.
[ 9] Leblanc, D. J., Lee, L. N., Titmas, B. M., Smith, C. J., Tenover, F. C. (1988) J. Bacteriol. 170, 3618–3626.
[10] Cervantes, E., Sharma, S. B., Maillet, F., Vasse, J., Truchet, G., Rosenberg, C. (1989) Mol. Microbiol. 3,
     745–755.
[11] Plunkett, III, G., Burland, V. D., Daniels, D. L., Blattner, F. R. (1993) Nucleic Acids Res. 21, 3391–3398.
[12] Moller, W., Schipper, A., Amons, R. (1987) Biochimie 69, 983–989.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
input_54.rsf{CRYPTOSPORIDIUM_P} Check: 6774 Length: 475 ! In situ PileUp of:
 @/users1/thompson/.seqlab-mendel/pileup_36.list
__________________________________________________________________________________________________________________

Atp_Gtp_A                (A,G)x4GK(S,T)
                          (G)x{4} GK(S)
              17: NLVVI     GHVDSGKS     TTTGH

*****************************************
* ATP/GTP-binding site motif A (P-loop) *
*****************************************

From sequence comparisons and crystallographic data analysis it has been shown [1,2,3,4,5,6] that an appreciable
proportion of proteins that bind ATP or GTPshare a number of more or less conserved sequence motifs. The best conserved
of these motifs is a glycine-rich region, which typically forms a flexible loop between a beta-strand and an alpha-
helix. This loop interacts with one of the phosphate groups of the nucleotide. This sequence motif is generally
referred to as the ‘A’ consensus sequence [1] or the ‘P-loop’ [5].

(continued)
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There are numerous ATP- or GTP-binding proteins in which the P-loop is found. We list below a number of protein
families for which the relevance of the presence of such motif has been noted:

 - ATP synthase alpha and beta subunits (see <PDOC00137>).
 - Myosin heavy chains.
 - Kinesin heavy chains and kinesin-like proteins (see <PDOC00343>).
 - Dynamins and dynamin-like proteins (see <PDOC00362>).
 - Guanylate kinase (see <PDOC00670>).
 - Thymidine kinase (see <PDOC00524>).
 - Thymidylate kinase (see <PDOC01034>).
 - Shikimate kinase (see <PDOC00868>).
 - Nitrogenase iron protein family (nifH/frxC) (see <PDOC00580>).
 - ATP-binding proteins involved in ‘active transport’ (ABC transporters) [7] (see <PDOC00185>).
 - DNA and RNA helicases [8,9,10].
 - GTP-binding elongation factors (EF-Tu, EF-1alpha, EF-G, EF-2, etc.).
 - Ras family of GTP-binding proteins (Ras, Rho, Rab, Ral, Ypt1, SEC4, etc.).
 - Nuclear protein ran (see <PDOC00859>).
 - ADP-ribosylation factors family (see <PDOC00781>).
 - Bacterial dnaA protein (see <PDOC00771>).
 - Bacterial recA protein (see <PDOC00131>).
 - Bacterial recF protein (see <PDOC00539>).
 - Guanine nucleotide-binding proteins alpha subunits (Gi, Gs, Gt, G0, etc.).
 - DNA mismatch repair proteins mutS family (See <PDOC00388>).
 - Bacterial type II secretion system protein E (see <PDOC00567>).

Not all ATP- or GTP-binding proteins are picked-up by this motif. A number of proteins escape detection because the
structure of their ATP-binding site is completely different from that of the P-loop. Examples of such proteins are the
E1-E2 ATPases or the glycolytic kinases. In other ATP- or GTP-binding proteins the flexible loop exists in a slightly
different form; this is the case for tubulins or protein kinases. A special mention must be reserved for adenylate
kinase, in which there is a single deviation from the P-loop pattern: in the last position Gly is found instead of Ser
or Thr.

- Consensus pattern: [AG]-x(4)-G-K-[ST]
- Sequences known to belong to this class detected by the pattern: a majority.
- Other sequence(s) detected in SWISS-PROT: in addition to the proteins listed above, the ‘A’ motif is also found
  in a number of other proteins. Most of these proteins probably bind a nucleotide, but others are definitively
  not ATP- or GTP-binding (as for example chymotrypsin, or human ferritin light chain).
- Expert(s) to contact by email: Koonin E.V.; koonin@ncbi.nlm.nih.gov
- Last update: July 1999 / Text revised.

[ 1] Walker, J. E., Saraste, M., Runswick, M. J., Gay, N. J. (1982) EMBO J. 1, 945–951.
[ 2] Moller, W., Amons, R. (1985) FEBS Lett. 186, 1–7.
[ 3] Fry, D. C., Kuby, S. A., Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. USA 83, 907–911.
[ 4] Dever, T. E., Glynias, M. J., Merrick, W. C. (1987) Proc. Natl. Acad. Sci. USA 84, 1814–1818.
[ 5] Saraste, M., Sibbald, P. R., Wittinghofer, A. (1990) Trends Biochem. Sci. 15, 430–434.
[ 6] Koonin, E. V. (1993) J. Mol. Biol. 229, 1165–1174.
[ 7] Higgins, C. F., Hyde, S. C., Mimmack, M. M., Gileadi, U., Gill, D. R., Gallagher, M. P. (1990) J. Bioenerg.
     Biomembr. 22, 571–592.
[ 8] Hodgman, T. C. (1988) Nature 333, 22–23, Nature (Errata) 333, 578–578.
[ 9] Linder, P., Lasko, P., Ashburner, M., et al. (1989) Nature 337, 121–122.
[ 10] Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., Blinov, V. M. (1989) Nucleic Acids Res. 17, 4713–4730.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////

input_54.rsf{BLASTOCYSTIS_H} Check: 172 Length: 475 ! In situ PileUp of: @/users1/thompson/.seqlab-mendel/
pileup_36.list

Atp_Gtp_A              (A,G)x4GK(S,T)
                        (G)x{4} GK(S)
            17: NLVVI     GHVVAGKS     TTTGH

Find reference above under sequence: input_54.rsf{CRYPTOSPORIDIUM_P} , pattern: Atp_Gtp_A.
__________________________________________________________________________________________________________________

Prokar_Lipoprotein ~(D,E,R,K)6(L,I,V,M,F,W,S,T,A,G)2(L,I,V,M,F,Y,S,T,A,G,C,Q) (A,G,S)C
                   ~(D,E,R,K){6} (L,I){2} (Y)(A)C
            24: VVAGK                      STTTGHLIYAC
         GGIDK

**********************************************************
* Prokaryotic membrane lipoprotein lipid attachment site *
**********************************************************
In prokaryotes, membrane lipoproteins are synthesized with a precursor signal peptide, which is cleaved by a specific
lipoprotein signal peptidase (signal peptidase II). The peptidase recognizes a conserved sequence and cuts upstream
of a cysteine residue to which a glyceride-fatty acid lipid is attached [1].

Some of the proteins known to undergo such processing currently include (for recent listings see [1,2,3]:

 - Major outer membrane lipoprotein (murein-lipoproteins) (gene lpp).
 - Escherichia coli lipoprotein-28 (gene nlpA).
 - Escherichia coli lipoprotein-34 (gene nlpB).
 - Escherichia coli lipoprotein nlpC.
 - Escherichia coli lipoprotein nlpD.
 - Escherichia coli osmotically inducible lipoprotein B (gene osmB).
 - Escherichia coli osmotically inducible lipoprotein E (gene osmE).
 - Escherichia coli peptidoglycan-associated lipoprotein (gene pal).
 - Escherichia coli rare lipoproteins A and B (genes rplA and rplB).
 - Escherichia coli copper homeostasis protein cutF (or nlpE).
 - Escherichia coli plasmids traT proteins.
 - Escherichia coli Col plasmids lysis proteins.
 - A number of Bacillus beta-lactamases.

Table 3 (continued)
Abridged Motifs Outputa
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 - Bacillus subtilis periplasmic oligopeptide-binding protein (gene oppA).
 - Borrelia burgdorferi outer surface proteins A and B (genes ospA and ospB).
 - Borrelia hermsii variable major protein 21 (gene vmp21) and 7 (gene vmp7).
 - Chlamydia trachomatis outer membrane protein 3 (gene omp3).
 - Fibrobacter succinogenes endoglucanase cel-3.
 - Haemophilus influenzae proteins Pal and Pcp.
 - Klebsiella pullulunase (gene pulA).
 - Klebsiella pullulunase secretion protein pulS.
 - Mycoplasma hyorhinis protein p37.
 - Mycoplasma hyorhinis variant surface antigens A, B, and C (genes vlpABC).
 - Neisseria outer membrane protein H.8.
 - Pseudomonas aeruginosa lipopeptide (gene lppL).
 - Pseudomonas solanacearum endoglucanase egl.
 - Rhodopseudomonas viridis reaction center cytochrome subunit (gene cytC).
 - Rickettsia 17 Kd antigen.
 - Shigella flexneri invasion plasmid proteins mxiJ and mxiM.
 - Streptococcus pneumoniae oligopeptide transport protein A (gene amiA).
 - Treponema pallidium 34 Kd antigen.
 - Treponema pallidium membrane protein A (gene tmpA).
 - Vibrio harveyi chitobiase (gene chb).
 - Yersinia virulence plasmid protein yscJ.
 - Halocyanin from Natrobacterium pharaonis (4), a membrane associated copper-binding protein. This is the first
   archaebacterial protein known to be modified in such a fashion).

From the precursor sequences of all these proteins, we derived a consensus pattern and a set of rules to identify this
type of post-translational modification.

-Consensus pattern: {DERK} (6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C [C is the lipid attachment site]
 Additional rules: 1) The cysteine must be between positions 15 and 35 of the sequence in consideration.
                   2) There must be at least one Lys or one Arg in the first seven positions of the sequence.
-Sequences known to belong to this class detected by the pattern: ALL.
-Other sequence(s) detected in SWISS-PROT: some 100 prokaryotic proteins. Some of them are not membrane
 lipoproteins, but at least half of them could be.
-Last update: November 1995 / Pattern and text revised.

[1] Hayashi, S., Wu, H. C. (1990) J. Bioenerg. Biomembr. 22, 451–471.
[2] Klein, P., Somorjai, R. L., Lau, P. C. K. (1988) Protein Eng. 2, 15–20.
[3] von Heijne, G. (1989) Protein Eng. 2, 531–534.
[4] Mattar, S., Scharf, B., Kent, S. B. H., Rodewald, K., Oesterhelt, D., Engelhard M. (1994) J. Biol. Chem. 269,
    14,939–14,945.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////

input_54.rsf{PHYTOPHTHORA_I} Check: 9509 Length: 475 ! In situ PileUp of: @/users1/thompson/.seqlab-mendel/
pileup_36.list

Atp_Gtp_A            (A,G)x4GK(S,T)
                      (G)x{4} GK(S)
           17: ...VI    GHVDAGKS    TTTGH

Find reference above under sequence: input_54.rsf{CRYPTOSPORIDIUM_P} , pattern: Atp_Gtp_A.

Efactor_Gtp           D(K,R,S,T,G,A,N,Q,F,Y,W)x3E(K,R,A,Q)x(R,K,Q,D)(G,C)(I,V,M,K)(S,T)(I,V)x2(G,S,T,A,C,K,R,N,Q)
                      D(N)x{3} E(R)x(R)(G)(I)(T)(I)x{2} (A)
            64: YAWVL DNLKAERERGITIDIA LWKFE

Find reference above under sequence: input_54.rsf{GIARDIA_L} , pattern: Efactor_Gtp.
______________________________________________________________________________

Fggy_Kinases_1       (M,F,Y,G,S)x(P,S,T)x2K(L,I,V,M,F,Y,W)xW(L,I,V,M,F)x(D,E,N,Q,T,K,R)(E,N,Q,H)
                     (G)x(T)x{2} K(Y)xW(V)x(D)(N)
            53: EAAEL GKTSFKYAWVLDN LKAER

**************************************************
* FGGY family of carbohydrate kinases signatures *
**************************************************

It has been shown [1] that four different type of carbohydrate kinases seem tobe evolutionary related. These
enzymes are:

 - L-fucolokinase (EC 2.7.1.51) (gene fucK).
 - Gluconokinase (EC 2.7.1.12) (gene gntK).
 - Glycerokinase (EC 2.7.1.30) (gene glpK).
 - Xylulokinase (EC 2.7.1.17) (gene xylB).
 - L-xylulose kinase (EC 2.7.1.53) (gene lyxK).

These enzymes are proteins of from 480 to 520 amino acid residues. As consensus patterns for this family of kinases
we selected two conserved regions, one in the central section, the other in the C-terminal section.

-Consensus pattern: [MFYGS]-x-[PST]-x(2)-K-[LIVMFYW]-x-W-[LIVMF]-x-[DENQTKR]- [ENQH]
-Sequences known to belong to this class detected by the pattern: ALL, except for lyxK.
-Other sequence(s) detected in SWISS-PROT: 5.
-Consensus pattern: [GSA]-x-[LIVMFYW]-x-G-[LIVM]-x(7,8)-[HDENQ]-[LIVMF]-x(2)-[AS]-[STAIVM]-[LIVMFY]-[DEQ]
-Sequences known to belong to this class detected by the pattern: ALL.
-Other sequence(s) detected in SWISS-PROT: 11.
-Expert(s) to contact by email: Reizer J.; jreizer@ucsd.edu
-Last update: November 1997 / Patterns and text revised.

[1] Reizer, A., Deutscher, J., Saier, Jr., M. H., Reizer, J. (1991) Mol. Microbiol. 5, 1081–1089.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//////////////////////////////////////////////////////////////////////////////

aPROSITE patterns found by the GCG Motifs program in the example elongation factor dataset.

Table 3 (continued)
Abridged Motifs Outputa
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Performing the Alignment Using the PileUp Program
To align all of these protein sequences, select all of the entries in the Editor win-

dow using one of the methods discussed. Once all of the sequences are selected, go
to the Functions menu and select Multiple comparison. Click on PileUp. . . to
align the entries. A new window will appear with the parameters for running PileUp.
Be sure that the How: box indicates a Background Job. Often you’ll accept all of
the program defaults on a first run by pressing the Run button. As a default this
would use the BLOSUM62 scoring matrix. However, the BLOSUM30 matrix can
be helpful for aligning more divergent sequences. Depending on the level of diver-
gence in a data set, better multiple sequence alignments can often be generated with
alternate scoring matrices (the -Matrix option, specifies the desired matrix from the
GCG logical directory GenMoreData) and/or different gap penalties. Beginning with
GCG version 9.0, the BLOSUM62 matrix file, blosum62.cmp, is used as the default
symbol comparison table. Furthermore, appropriate gap creation and extension pen-
alties are now coded directly into the matrix, though they can still be adjusted within
the program if desired. This is greatly improved over the normalized Dayhoff PAM
250 table and the program encoded penalty values formerly used. The BLOSUM
series ranges from BLOSUM30 being appropriate for the most divergent datasets,
to the BLOSUM100 table for the conserved datasets.

Fig. 5. Motifs RSF annotation displayed by SeqLab. Motifs can create an RSF file with the location of
PROSITE patterns annotated by color and shape. The display now shows annotation from the database,
from the program pair MEME/MotifSearch, and from the program Motifs using Features Coloring.
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Click on the Options button. To specify the BLOSUM30 matrix select the check
button next to and click on the Scoring Matrix . . . box in the Pileup Options win-
dow. This will launch a Chooser for Scoring Matrix window from which you can
select the BLOSUM30 matrix file, blosum30.cmp. Double-click the matrix’s name to
see what it looks like; click OK to close both windows. Scroll through the rest of the
PileUp Options window to see all the available options. Close it when finished and
press Run in the PileUp window to launch the program.

The program first compares every sequence with every other one. This pairwise
comparison will progressively merge the sequences into an alignment in order of
similarity, from most to least similar. The window will disappear and then, depend-
ing on the complexity of the alignment and the load on the server, display a series of
new output windows. The top window will be the Multiple Sequence Format (MSF)
output from your PileUp run. Notice the BLOSUM30 matrix specification and the
default gap introduction and extension penalties associated with that matrix, 15 and
5 respectively. As mentioned above, in most cases the default gap penalties will
work fine with their respective matrices, though they can be changed if desired. As
shown in the example in Table 4, notice the interleaved character of the sequences.
They all have unique identities, addressable through their MSF filename together
with their own name in braces, {name}.

The listing of sequence names near the top of the file contains the checksum. All
GCG sequence programs use this number as a unique sequence identifier. There is a
checksum line for the alignment as well as individual checksum lines for each member
of the alignment. If any two of the checksum numbers are the same, then those
sequences are identical. If they are, an editor can be used to place an exclamation
point,  !  at the start of the checksum line in the duplicate sequence. Exclamation
points are interpreted by GCG as remark delineators, therefore, the duplicate sequence
will be ignored in subsequent programs. Or the sequence could be CUT from the
alignment with the SeqLab Editor. Similarly, the Weight designation determines how
each sequence contributes to the alignment profile. Sometimes it is worthwhile to
adjust these values so that the contribution of a collection of very similar sequences
does not overwhelm the signal from the more divergent sequences.

Use the Output Manager, Add to Editor, and Overwrite old with new to take the
new MSF output and merge it with the old RSF file in the open Editor. This will keep
all of the database feature annotation intact, yet renumber all of the reference locations
based on the gaps in the alignment. Close the Output Manager after loading the new
alignment. The next window will contain PileUp’s cluster dendrogram, in the EF-1α
example, as shown in Fig. 6.

PileUp automatically creates this dendrogram of clustering similarity between the
sequences. It can be very helpful for adjusting the sequence Weight values, to aver-
age the contribution of each sequence to a profile. The lengths of the vertical lines are
proportional to the differences in similarity between the sequences. This tree is not an
evolutionary tree, and it should never be presented as one. It is akin to an uncorrected
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) tree, prone to all
the same UPGMA errors. If the rates of evolution for each lineage were exactly the
same, then it could represent a true phylogenetic tree, but this is seldom the case
in nature. No phylogenetic inference optimization criteria algorithm, such as maxi-
mum likelihood, least-squares fit, or parsimony, nor any molecular substitution, mul-
tiple hit correction models, such as Jukes-Cantor, Kimura, or any other subset of the

See
companion CD
for color Fig. 6
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Table 4
GCG PileUp Output, Abridgeda

!!AA_MULTIPLE_ALIGNMENT 1.0
PileUp of: @/users1/thompson/.seqlab-mendel/pileup_28.list

 Symbol comparison table: /usr/gcg/gcgcore/data/moredata/blosum30.cmp CompCheck: 8599

               GapWeight: 15
         GapLengthWeight: 5

 pileup_28.msf MSF: 472 Type: P May 14, 2001 14:35 Check: 2476 ..

 Name: ef1a_giala Len: 472 Check: 8631 Weight: 1.00
 Name:     q25166 Len: 472 Check: 6209 Weight: 1.00
 Name:     q25073 Len: 472 Check: 2914 Weight: 1.00
 Name:     o36039 Len: 472 Check: 7560 Weight: 1.00
 Name:     o96981 Len: 472 Check: 3858 Weight: 1.00
 Name:     o96980 Len: 472 Check: 3082 Weight: 1.00
 Name:     o44031 Len: 472 Check: 851 Weight: 1.00
 Name: ef1a_crypv Len: 472 Check: 2406 Weight: 1.00
 Name:     o77447 Len: 472 Check: 9210 Weight: 1.00
 Name:     o77478 Len: 472 Check: 1123 Weight: 1.00
 Name: ef1a_plafk Len: 472 Check: 1436 Weight: 1.00
//////////////////////////////////////////////////////////////
 Name:     o96978 Len: 472 Check: 6796 Weight: 1.00
 Name: ef1c_porpu Len: 472 Check: 6199 Weight: 1.00
 Name:     o46335 Len: 472 Check: 7668 Weight: 1.00
 Name:     o97108 Len: 472 Check: 5669 Weight: 1.00
 Name:     o97109 Len: 472 Check: 6457 Weight: 1.00

//
           1                                                   50
ef1a_giala ~~~~~~~~~~ ~~~~~~~~~~ ~~~STLTGHL IYKCGGIDQR TIDEYEKRAT
    q25166 ~~~~~~~~~~ ~~~~~~~~~~ NGKSTLTGHL IYKCGGIDQR TLDEYEKRAN
    q25073 ~~~~~~~~~~ ~~~~~~~~~~ NGKSTLTGHL IYKCGGIDQR TLEDYEKKAN
    o36039 ~~~~~~~~~~ ~~~~~~~~~~ NGKSTLTGHL IFKCGGIDQR TLDEYEKKAN
    o96981 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIDER TIEKFEKEAK
    o96980 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIDER TIEKFEKEAK
    o44031 ~~~MGKEKTH INLVVIGHVD SGKSTTTGHL IYKLGGIDKR TIEKFEKESS
ef1a_crypv ~~~MGKEKTH INLVVIGHVD SGKSTTTGHL IYKLGGIDKR TIEKFEKESS
    o77447 ~~~MGKEKTH INLVVIGHVD SGKSTTTGHI IYKLGGIDRR TIEKFEKESA
    o77478 ~~~MGKEKTH INLVVIGHVD SGKSTTTGHI IYKLGGIDRR TIEKFEKESA
ef1a_plafk ~~~MGKEKTH INLVVIGHVD SGKSTTTGHI IYKLGGIDRR TIEKFEKESA
    o96975 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTTGHL IYKLGGTDAR TIEKFEKESA
    o96976 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTTGHL IYKCGGIDAR TIEKFEKESA
ef11_eupcr ~~~MGKEKEH LNLVVIGHVD SGKSTTTGHL IYKLGGIDAR TIEKFEKESA
    o82788 ~~~MGKEKPH INLVVIGHVD SGKSTTTGHL IYACGGIDKR TIERFEEGGQ
ef1a_blaho ~~~MGKEKPH INLVVIGHVV AGKSTTTGHL IYACGGIDKR TIERFEEGGQ
    o96982 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTIGHL IYKCGGIDKR TIDKFDKDAS
    o96983 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIDKR TIEKFEKEAS
    o96972 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSCGHL IYKCGGIDKR TIEKYEKEAK
    o96973 ~~~~~~~~~~ ~~~~~~GHVD SGKSTSCGHL IYKCGGIDKR TIEKYEKEAN
ef1a_enthi ~~~MPKEKTH INIVVIGHVD SGKSTTTGHL IYKCGGIDQR TIEKFEKESA
    o35994 ~~~~~~~~~~ ~~~~~~~~~~ ~~~STTTRHL IYKCGGIDQR TLDRFQKESE
    o35993 ~~~~~~~~~~ ~~~~~~~~~~ ~~~STTTGHL IYKCGGIDER TIKKFEQESE
    q26913 ~~~~~~~~~~ ~~~~~~~~~~ ~~~STATGHL IYKCGGIDKR TIEKFEKEAA
    o00819 ~~~MGKEKVH MNLVVVGHVD AGKSTATGHL IYKCGGIDKR TIEKFEKEAA
ef1a_trybb ~~~MGKEKVH MNLVVVGHVD AGKSTATGHL IYKCGGIDKR TIEKFEKEAA
    o96977 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIDKR TIEKFDKEAA
ef1a_euggr ~~~MGKEKVH ISLVVIGHVD SGKSTTTGHL IYKCGGIDKR TIEKFEKEAS
    o35997 ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~CGGIDKR TIEKFEKEAK
    o35996 ~~~~~~~~~~ ~~~~~~~~~~ AGKSTTTGHL IYKCGGIDKR TIEKFEKEAK
ef1a_dicdi MEFPESEKTH INIVVIGHVD AGKSTTTGHL IYKCGGIDKR VIEKYEKEAS
    o15722 ~~~~~~~~~~ ~~~~~~~~~~ AGKSTTTGHL IYKCGGIDKR TIEKFEKEAA
    q9zsw2 ~~~MGKQKTH INIVVIGHVD SGKSTTTGHL IYKCGGIDKR TIEKFEKEAA
    q9sc52 ~~~~~~~~~~ ~~~~VIGHVD AGKSTTTGHL IYKCGGIDKR TIEKFEKEAA
    o96984 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIDKR TIEKFEKEPA
ef1a_style ~~~MPKEKNH LNLVVIGHVD SGKSTSTGHL IYKCGGIDKR TIEKFEKEAA
    o96979 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTTGHL IYKCGGIDKR VIEKFEKESA
ef1a_tetpy ~~MARGDKVH INLVVIGHVD SGKSTTTGHL IYKCGGIDKR VIEKFEKESA
    o96985 ~~~~~~~~~~ ~~~~~~GHVD SGKSTSTGHL IYKCGGIDKR TLEKFEKEAA
    q9u9p4 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTTGHL IYKLGGIDER TIKKFEDEAN
    q9u9c6 ~~GTRKDKLH VNLVVIGHVD SGKSTTTGHL IYKLGGIDER TIKKFEDEAN
    o96974 ~~~~~~~~~~ ~~~~~~~~VD SGKSTSTGHL IYKCGGIHKR TIEKFEKEAN
    o96978 ~~~~~~~~~~ ~~~~~~~~VD SGKSTTTGHL IYKCGGIDKR TIEKFEKESA
ef1c_porpu ~~~MGKEKQH VSIVVIGHVD SGKSTTTGHL IYKCGGIDKR AIEKFEKEAA
    o46335 ~~~~~~~~~~ ~~~~~~~~~~ ~~~STTTGHL IYKCGGLDKR KLAAMEKEAE
    o97108 ~~~~~~~~~~ ~~~~~~~~VD AGKSTTTGHL IYKCGGLDKR KLAAIEKEAE
    o97109 ~~~~~~~~~~ ~~~~~~~~~~ AGKSTTTGHL IYKCGGIDKR VIEKFEKEAA

           51                                                 100
ef1a_giala EMGKGSFKYA WVLDQLKDER ERGITINIAL WKFETKKYIV TIIDAPGHRD
    q25166 EMGKGSFKYA WVLDQLKDER ERGITINIAL WKFETKKFTV TIIDAPGHRD
    q25073 EIGKGSFKYA WVLDQLKDER ERGITINIAL WKFETKKFIV TIIDAPGHRD
    o36039 ELGKGSFKYA WVLDQLKDER ERGITINIAL WKFETKKFIV TIIDAPGHRD
    o96981 QIGKESFKYA WVLDKLKAER ERGITIDIAL WKFESQKYSF TIIDAPGHRD
    o96980 QIGKESFKYA GLLDILKAER ARGITIDIAL WKFESQKYSF TIIDAPGHRD
    o44031 EMGKGSFKYA WVLDKLKAER ERGITIDIAL WQFETPKYHY TVIDAPGHRD
ef1a_crypv EMGKGSFKYA WVLDKLKAER ERGITIDIAL WQFETPKYHY TVIDAPGHRD
    o77447 EMGKGSFKYA WVLDKLKAER ERGITIDIAL WKFETPRYFF TVIDAPGHKD
    o77478 EMGKGSFKYA WVLDKLKAER ERGITIDIAL WKFETPRYFF TVIDAPGHKH
ef1a_plafk EMGKGSFKYA WVLDKLKAER ERGITIDIAL WKFETPRYFF TVIDAPGHKD
    o96975 EMGKGTFKYA WVLDKLKAER ERGITIDIAL WKFETTNRFY TIIDAPGHRD
    o96976 EMGKGSFKYA FVLDNLKAER ERGITIDIAL WKFETPKRFY TIIDAPGHRD
ef11_eupcr EMGKASFKYA WVLDKLKAER ERGITIDIAL WKFETENRHY TIIDAPGHRD
    o82788 RIGKGSFKYA WVLDKMKAER ERGITIDISL WKFQTEKYFF TIIDAPGHRD
ef1a_blaho RIGKGSFKYA WVLAKMKAER ERGITIDISL WKFETRKDFF TIIDAPGHRD
///////////////////////////////////////////////////////////////////

aAn abridged GCG PileUp output MSF file. The format holds the file name, type, date, and checksum, sequence names,
checksums, lengths, and weights, and the aligned sequence data in an interleaved fashion.
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Fig. 6. PileUp’s similarity dendrogram. The PileUp program automatically plots a cluster dendro-
gram of the similarities between the sequences of your dataset. The lengths of the vertical lines are
proportional to those similarities.

General Time Reversible (GTR) model, nor any site rate heterogeneity models such
as a Gamma correction, are used in its construction. PileUp’s dendrogram merely
indicates the relative similarity of the sequences based on the scoring matrix used
and, is the clustering order used to create the alignment.

If desired, you can directly print from a SeqLab graphics Figure window to a
PostScript file by selecting Print . . . Be sure that the Output Device: is [Encapsu-
lated] PostScript File. You can rename the output file. Click Proceed to create an
EPS file output in your current directory. To actually print this file you may need to
transfer the file to a local machine attached to a PostScript printer unless you have
direct access to the UNIX system printer and it is PostScript compatible. All Macintosh
compatible laser printers use PostScript by default. Carefully check any laser printer
connected to a Wintel system to be sure that it is PostScript compatible. Close the
dendrogram window to return to the Editor.

After loading the MSF file using Residue Coloring and a 1:1 zoom ratio, the
Editor display looks like Fig. 7 with the residues aligned by color. The columns of
color represent columns of aligned residues. By changing the Display: box from
Residue Coloring to Graphic Features, the display shows a schematic of the fea-
ture information from each entry, as well as all of the motifs discovered by the pro-
grams Motifs and MotifSearch, as in Fig. 8. Quick double-clicks on any of the
color-coded feature regions in the Editor display will produce a Features window.
Selecting the Feature entry in the new window reveals more information for that
particular feature. Clicking once in the colored region and then using the Features
option from the Windows menu will also produce the Features window. You should
save this work as an updated RSF file!

See
companion CD

for color
Figs. 7 and 8
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Visualizing Conservation in Multiple Sequence Alignments
The most conserved portions of an alignment are those most resistant to evolution-

ary change, which often arise from structural constraint. The graphics program
PlotSimilarity can be used to visualize positional conservation of a multiple sequence
alignment. The program draws a graph of the running average similarity along with a
group of aligned sequences (or of a profile with the -Profile option). The PlotSimilarity
peaks of a protein alignment represent the areas that are most conserved and most
resistant to evolutionary change. PlotSimilarity can also be helpful for ascertaining
alignment quality by noting changes in the overall average alignment similarity and in
those regions of conservation within the alignment, as it is adjusted and refined.

As before, select all of the sequence names and then go to the Functions menu
and select Multiple comparison PlotSimilarity . . .. Check Save SeqLab colormask
to and Scale the plot between: the minimum and maximum values calculated
from the alignment. The first option’s output file will be used in the next step. The
second specification launches the program’s command line -Expand option. This
scales the plot, between the maximum and minimum similarity values observed, so
that the entire graph is used, rather than just the portion of the Y axis that the align-
ment occupies. The Y-axis of the resulting plot uses the similarity values from the
scoring matrix that was used to create the alignment unless you specify an alterna-

Fig. 7. Elongation Factor alignment displayed by the SeqLab Editor. The PileUp alignment loaded
into the SeqLab Editor, displayed using Residue Coloring and a 1:1 zoom ratio.
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Fig. 8. The PileUp aligned dataset visualized with SeqLab’s Graphic Features annotation and a 4:1
zoom ratio. Aligned annotation now includes database features, plus Motifs and MotifSearch patterns.

tive. The default matrix, BLOSUM62, begins its identity value at 4 and ranges up to
11 with mismatches as low as –4. Close the Options window; the Command Line:
box now reflects updated options. Click the Run box to launch the program. The
output will quickly return as shown in Fig. 9. Close the plotsimilarity.cmask display
and the Output Manager.

Strong peaks of sequence similarity are seen centered around positions 30, 100,
and 375. The dashed line across the middle shows the average similarity value for the
entire alignment, approx 4.4. As before, to print a SeqLab graphics Figure to a
PostScript file: select Print . . . from the Figure window, choose Output Device:
[Encapsulated] PostScript File, and click Proceed, to create EPS file output. Take
note where the similarity significantly falls off. In this example, the deepest valleys
are the least similar regions of the alignment. They lay in the first 25 residues, a
region around 190 and 220, around 390, and about the last 25 residues. Close the
PlotSimilarity window. Go to the File menu and click on Open Color Mask Files.
This will produce another window from which to select the new plotsimilarity.cmask
file; click on Add and Close the window. This will produce a gray scale overlay on
the sequences that describes their regional similarity where darker gray corresponds
to higher similarity values as shown in Fig. 10. Notice the strong conservation peak
near column 100 in the alignment, one of EF-1α’s GTP binding regions.

See
companion CD
for color Fig. 9
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Improving Alignments within SeqLab
You can now select those regions of low similarity to try to improve their align-

ment using the -InSitu option that realigns regions within an alignment. Be sure
that all of your sequences are selected, then zoom back in your alignment to 1:1 so that
you can see individual residues and scroll to the carboxy end. It is best to start at the
carboxy termini so that the low similarity regions do not become skewed as you pro-
ceed. Select a region of low similarity across the complete sequence set. This can be
accomplished using the mouse if it’s all on the screen. Otherwise, use the Edit Select
Range function. Determine the positions by placing your cursor at the beginning and
end of the range to be selected and noting the column number in the lower left-hand of
the Editor display. Once all of the sequences and the region that you wish to improve
are selected, go to the Functions menu and again select Multiple comparison. Click
on PileUp . . . to realign all of the sequences within that region. The Windows menu
also contains a shortcut listing of all of the programs that have been accessed in the
current session. You will be asked whether you want to use the Selected sequences
or Selected region. It is very important to specify Selected region. This will produce
a new window with the parameters for running PileUp. Next, be sure to click on
Options . . . to change the way that PileUp will perform the alignment. In the Options
window check the gap creation and extension boxes and change their respective val-
ues to much less than the default. Changing them to about a third of the default value
works well. For the BLOSUM30 matrix change the values to 5 and 2. Most impor-

Fig. 9. The GCG PlotSimilarity graphic. PlotSimilarity draws a graph of the running similarity
along the length of a multiple sequence alignment using a window averaging approach. Peaks are
conserved regions; valleys are dissimilar areas.
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tantly, check Realign a portion of an existing alignment. This calls up the com-
mand line -InSitu option. Otherwise only that portion of the selected alignment will
be retained in the output. Furthermore, deselect the Plot dendrogram box. Close the
window and notice the new options in the PileUp Command Line: Run to improve
your alignment. The window will disappear and your results will be returned quickly
since you are only realigning a portion. The top window will be the MSF output from
your PileUp run. Notice the BLOSUM30 matrix specified (others available through
the Options menu) and the lowered gap introduction and extension penalties of 5 and
2. Scroll through the alignment then Close the window. The next window will be the
Output Manager. Just as before, click on Add to Editor and then specify Overwrite
old with new in the new Reloading Same Sequences window to merge the new align-
ment with the old alignment and retain all feature annotation. This feature information
may help guide your alignment efforts in subsequent steps. Close the Output Man-
ager window after loading the new alignment.

The alignment should now be a bit better within the specified region. Repeat this
process in all areas of low similarity, working from the carboxy termini toward the
amino end. Notice that all of the options that were specified are retained by the
program. You can also save these run parameters so that they will come up in subse-
quent sessions by clicking on the Save Settings box in any of the program run win-
dows. You may want to periodically go to the File menu to save your work using the

Fig. 10. PlotSimilarity Color Mask on an alignment. PlotSimilarity can produce a Color Mask that
can be superimposed over an open alignment in the Editor. Dark regions now correspond to con-
served peaks, whereas valleys are represented with white areas.
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Save as . . . function in case of a computer or network problem. It is also a good idea
to reperform the PlotSimilarity and color mask procedure after going through the
entire alignment to see how things have improved after you have finished the vari-
ous InSitu PileUps. If you discover an area that you cannot improve through this
automated procedure, then it is time to either manually correct it or throw it away.
Note those problem areas, then switch back to Residue Coloring. This will ease
manual alignment by allowing your eyes to work with columns of color.

Other tools that can help manual alignment are GROUPing and Protections.
The GROUP function allows you to manipulate families of sequences as a whole.
Any change in one will be propagated throughout all. To GROUP sequences, select
those that you want to behave collectively and then click on the GROUP icon right
above your alignment. You can have as many groups as required. The space bar will
introduce a gap into the sequence and the delete key will take a gap away. However,
you can not delete a sequence residue without changing that sequence’s or the entire
alignment’s Protections. Click on the padlock icon to produce a Protections win-
dow. Notice that the default protection allows you to modify Gap Characters and
Reversals only. Check All other characters to allow you to CUT regions out of
your alignment and/or delete individual residues and then click OK to close the
window. This very powerful manual alignment function can be thought of as the
abacus function. To take advantage of this function select the region that you want
to slide and then press the shift key as you move the region with the right or left
arrow key. You can slide residues greater distances by prefacing the command key-
strokes with the number of spaces that you want them to slide.

Make subjective decisions regarding your alignment. Is it satisfactory? Do the
sequences line up the way that they should? If, after all else, you decide that you just
cannot align some region, or even an entire sequence, then perhaps get rid of it with
the CUT function. Cutting out an entire sequence may leave some columns of gaps in
the alignment. If this is the case, then reselect all of your sequences and go to the
Edit menu and select Remove Gaps . . . Columns of gaps. Amino and carboxy
termini seldom align properly and are often jagged and uncertain. This is common in
multiple sequence alignments and subsequent analyses should probably not include
these regions. If loading sequences from a database search, then allowing SeqLab to
trim the ends automatically based on beginning and ending constraints considerably
improves this situation. Overall, consider strongly conserved residues such as tryp-
tophans, cysteines, and histidines; important structural amino acids such as prolines,
tyrosines, and phenylanines, and the conserved isoleucine, leucine, valine triumvi-
rate; make sure they all align. After tweaking, evaluating, and readjusting the align-
ment, change back to Feature Coloring Display. Those features that are annotated
should now align perfectly. This is another way to assure that your alignment is as
biologically correct as possible. Everything you do from this point on, e.g., if you
use alignments to ascertain molecular phylogenies, is absolutely dependent on the
quality of the alignment! You need a very clean, unambiguous alignment with a very
high confidence level in a truly biologically meaningful alignment. Each column of
symbols must actually contain homologous characters.

Many other alignment editors are available. However, using a GCG compatible
editor like SeqLab, assures that the format will not be corrupted. If you do make any
changes to a GCG sequence data file with a non-GCG compatible editor, you must
reformat the alignment. Reformatting GCG MSF or RSF files requires a certain level
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of expertise. If you do need to do this for any reason, you must use the appropriate
Reformat option (either -MSF or -RSF, respectively), and you must specify all the
sequences within the file using the brace specifier, i.e.,{*} , for example:

> reformat -msf your_favorite.msf{*}

SeqLab Editor On-Screen Annotation
Adding text annotation to the display and changing the names of the entries for

presentation purposes may be helpful. Double-click on an entry’s name to reveal the
Sequence Information window and directly edit the name. Selecting the entry name
and then pressing the INFO icon can also be used. To put text lines directly into
your display go to the SeqLab File menu New sequence . . . entry and select the
Text button to the What type of sequence? question. This will put a NewText line at
the bottom of the Editor display allowing the annotation to be inserted. You can also
add customized Graphic Features and Features Coloring annotation with the Win-
dows Features window. Select a desired region across an alignment and launch the
Features window. Press Add to get a Feature Editor window where you can desig-
nate the feature’s Shape: Color: and Fill: as well as giving the region a Keyword:
and Comments:. You can add feature annotation to a region across an entire align-
ment, but you cannot delete or edit the annotation from the whole region afterwards.
You can only edit or delete feature annotation from an RSF file with the SeqLab
Editor one sequence feature at a time!

Profile Analysis: Position-Specific,
Weighted Score Matrices of Multiple Sequence Alignments

After refining the alignment as much as possible, a powerful approach to suggest-
ing function of distantly related proteins and structural motifs is the Profile suite.
This strategy works best when one has prepared and refined a multiple sequence
alignment of significantly similar sequences or regions within sequences. A good
plan is to identify similar sequences in a newly sequenced section of DNA using
traditional database searching techniques and then align all of the significantly simi-
lar sequences or domains. Next, run the aligned sequences through the Profile pack-
age to generate a profile of the family, a very sensitive probe for further analysis.
Searching sequence databases with this probe is tremendously powerful.

Profile methods enable the researcher to recognize features that may otherwise be
invisible to individual sequence members. Profile analysis uses the full information
content of an alignment. Compared to that of individual sequences, this enhanced
information content has the potential to find similar motifs in sequences that are
only distantly related. All other methods of describing an alignment such as consen-
sus or pattern description either through away too much information or become too
ambiguous. Profiles achieve additional sensitivity with a two-dimensional weight
matrix approach, in which conserved areas of the alignment receive the most impor-
tance and variable regions the least.

A distinct advantage is that further manipulations and database searches consider
evolutionary issues by virtue of their Profile algorithms. The creation of gaps is
highly discouraged in conserved areas and occurs easily in variable regions in sub-
sequent profile alignments and searches. This occurs because gaps are penalized
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more heavily in conserved areas than in variable regions. Furthermore, the more
highly conserved a residue, the greater its position-specific matrix score. These two
factors give the profiles power. The matrix and its associated consensus sequence
are not based merely on the positional frequency of particular residues, but rather
utilize the evolutionary conservation of amino acid substitutions within the align-
ment based on the specified scoring matrix. The BLOSUM62 table is used by
default although other substitution matrices can also be specified. Therefore, the
resultant consensus residues are the most evolutionarily conserved, rather than just
the most statistically frequent.

 Traditional Profiles, ala Michael Gribskov
A profile, and its inherent consensus, is created with the GCG program ProfileMake.

When a profile is created, all of its members should be appropriately weighted to evenly
distribute each contribution. The profile refinement procedure, including repeatedly
searching the databases and including or excluding members and adjusting their weights
as well as adjusting the profile’s length, is known as validating the profile. If you use
Profile analysis in your own research, the validation procedures outlined in the GCG
Program Manual in the ProfileScan description is prudent. A motif style profile library
based on the PROSITE Dictionary of Protein Sites and Patterns has been prepared by
Gribskov and made available within the GCG system. The program ProfileScan searches
the query protein sequence against this library. The present version of GCG has 629
validated profiles in its ProfileScan library.

To run ProfileMake be sure that all of your aligned sequences are selected. Based on
your previous observations and your experimental objectives, select the longest, most
conserved, sequence length available. Restrict the length of the profile so that the jagged
ends in the alignment are excluded. In SeqLab use the Edit Select Range . . . menu.
Select and then Close the box. Another effective strategy is to develop multiple shorter
profiles centered about the peaks of similarity. These most likely correspond to func-
tional or structural domains. After the range is selected use the Functions Multiple
Comparison ProfileMake menu and reply Selected region in the Which selection
dialog box. You can also use the Options. . . menu from the ProfileMake dialog box
to specify the -SeqOut command option by checking Write the consensus into a
sequence file, giving it an appropriate name. This will generate a consensus sequence
file and a profile file. After running ProfileMake, the top window returned will display
the profile consensus sequence. All positions will be filled, because the Profile algo-
rithm selects the most conserved residue for each position. The header contains infor-
mation relating to the sequence’s creation through ProfileMake. Close the consensus
window. The Output Manager will also list a .prf file. This is the profile itself which
other programs can read and interpret to perform very sensitive database searches
and further alignments, using the information within the matrix that penalizes
misalignments in conserved areas more than in variable regions. Save As . . . the profile
giving it an appropriate name that you can recognize and retain the .prf extension.
Close the Output Manager.

ProfileSearch is launched from SeqLab with the Functions menu; select Database
Sequence Searching ProfileSearch. Specify the Query profile. . . in the File
Chooser and click OK. Search whichever protein database you prefer. Profile-
Segments can be run separately after ProfileSearch. The ProfileSearch output file can
then be delimited so that ProfileSegments only makes pairwise or multiple alignments
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of the sequences of interest. Therefore, uncheck ProfileSegments. . . to prevent
ProfileSearch’s output from automatically being passed to ProfileSegments. Under
Options. . . . use the -MinList option by changing Lowest Z score to report in out-
put list from 2.5 to 3.5 or higher. -MinList sets a list Z score cut-off value providing a
means to limit the output list size. Close the Options window and be sure that How:
Background Job is selected and then click Run.

As in BLAST and FastA searches, ProfileSearch estimates a significance param-
eter. In this case it is a Z score based on the distance, that is the number of standard
deviations, from the rest of the insignificant database matches. ProfileSearch Z scores
are normalized and reflect the significance of the results. Rather than randomizing
sequences to evaluate a Z score, as in Monte Carlo approaches, it is calculated based
on all of the nonsimilar sequences from the database search. As with Monte Carlo
approaches, Z scores below 3 are probably not worth considering, from around 4 to 7
may be interesting, and above 7 are most probably significant and should definitely be
examined. You can find remote similarities that all other methods will miss using
Profile analysis.

Interpreting Profile Analysis
 ProfileSearches do require some work to setup and run. They are CPU intensive,

and together with HmmerSearch they are some of the most intensive in the GCG pack-
age. Be sure to submit them as a batch job as early as possible. If launched from the
command line, use the -Batch option. When you examine a ProfileSearch output, take
a careful look, there is a good chance that other search algorithms will have missed
some of the sequences listed as significant matches. If launched from SeqLab, the
output will be located in your working directory and it will have a cryptic name of the
form profilesearch_some-number.pfs.

In this example, ProfileSearch finds all of the Elongation Factors in the PIR/
NBRF protein database plus other interesting nucleotide binding proteins near the
end of the list, all with Z Scores >4. The nucleotide binding motifs in the EF-1α
profile are among the most highly conserved portions of the alignment; therefore,
greater importance is placed on them by the search. This strategy helps to identify
other proteins with similar domains. An abridged screen trace of this ProfileSearch
output is shown in Table 5.

The program ProfileSegments constructs BestFit alignments of the results of a
ProfileSearch. The MSF option in ProfileSegments allows one to prepare a multiple
sequence alignment of the ProfileSearch segments. This can be very helpful for merg-
ing ever-increasingly distant sequences into an alignment. The full information con-
tent of the profile including the importance of the conserved portions of the alignment
is used in this alignment procedure. When running ProfileSegments be sure to set the
list size large enough to include all of the relevant sequences in the ProfileSearch
output.  The -Global option will force full-length alignments, which may be more
informative if you are trying to construct a multiple sequence alignment. Figure 11
shows a screen snapshot centered about the t-RNA binding region of a ProfileSegments
-MSF -Global alignment, made from the remaining entries in the example in Table 5
aligned against the EF-1α profile.

Notice the difference between this alignment and examples seen with other algo-
rithms. Profile alignments often include more gaps than those from other programs.
The conserved portions of the profile do not allow the corresponding portion of align-
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Table 5
ProfileSearch Output, Abridgeda

!!SEQUENCE_LIST 1.0
(Peptide) PROFILESEARCH of: /users1/thompson/seqlab/primitive.prf Length: 428 to: pir:*

         Scores are not corrected for composition effects

                 Gap Weight: 60.00
          Gap Length Weight: 0.67
         Sequences Examined: 188196
         CPU time (seconds): 2713

*    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *

Profile information:
(Peptide) PROFILEMAKE v4.50 of:
 @/users1/thompson/.seqlab-mendel/profilemake_63.list Length: 428
 Sequences: 38 MaxScore: 1798.78 July 11, 2001 20:11
                        Gap: 1.00             Len: 1.00
                   GapRatio: 0.33        LenRatio: 0.10
     input_63.rsf{GIARDIA_L} From: 19 To: 446 Weight: 1.00
 input_63.rsf{DIPLOMONAD_SP} From: 19 To: 446 Weight: 1.00 . . .

*    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *

Normalization:                        July 11, 2001 21:21

         Curve fit using 49 length pools
         0 of 49 pools were rejected

         Normalization equation:

                 Calc_Score = 66.96 * ( 1.0 - exp(-0.0023*SeqLen - 0.6191) )

         Correlation for curve fit: 0.973

         Z score calculation:
         Average and standard deviation calculated using 99616 scores
         384 of 100000 scores were rejected

                 Z_Score = ( Score/Calc_Score - 1.010 ) / 0.164

          Sequence Strd ZScore   Orig Length ! Documentation ..
PIR2:A49171           + 158.30 1454.17    435 ! translation elongation factor e
EF-1 alpha chain - Tetrahymena pyriformis
PIR2:A54760           + 157.48 1458.18    449 ! translation elongation factor e
EF-1 alpha chain - Trypanosoma brucei
PIR2:S11665           + 156.90 1458.53    456 ! translation elongation factor e
EF-1 alpha chain - slime mold (Dictyostelium discoid
PIR2:S16308           + 156.81 1449.85    446 ! translation elongation factor e
EF-1 alpha chain - Stylonychia lemnae
PIR2:JC5117           + 155.73 1442.59    449 ! translation elongation factor e
EF-1 alpha - Trypanosoma cruzi
PIR2:T43890           + 154.38 1385.87    395 ! translation elongation factor e
EF-1 alpha [similarity] - Dinenympha exilis (fragmen
PIR2:T43892           + 154.08 1383.28    395 ! translation elongation factor e
EF-1 alpha [similarity] - unidentified Oxymonadida A
PIR2:A60491           + 152.65 1425.02    462 ! translation elongation factor e
EF-1 alpha chain - African clawed frog
PIR2:JU0133           + 152.61 1424.67    462 ! translation elongation factor e
EF-1 alpha chain - Chinese hamster
PIR2:S21055           + 152.61 1424.67    462 ! translation elongation factor e
EF-1 alpha chain - rat
PIR2:I50226           + 152.35 1422.28    462 ! translation elongation factor e
EF-1 alpha - chicken
PIR2:S50143           + 152.24 1421.33    462 ! translation elongation factor e
EF-1 alpha chain - zebra fish
PIR1:EFHU1            + 152.17 1420.67    462 ! translation elongation factor e
EF-1 alpha-1 chain - human
////////////////////////////////////////////////////////////////////////////////
PIR2:S37283           +   9.80 154.03     639 ! tetracycline resistance protein
tetM - Neisseria meningitidis
PIR2:S03268           +   9.80 154.03     639 ! tetracycline resistance protein
tetM - Ureaplasma urealyticum
PIR2:A24333           +   9.69 153.00     639 ! tetracycline resistance protein
tetM - Enterococcus faecalis transposon Tn1545
PIR2:E70827           +   9.66 155.56     701 ! probable fusA protein - Mycobact
erium tuberculosis (strain H37RV)
PIR2:G83052           +   9.66 160.60     840 ! translation initiation factor IF
-2 PA4744 [imported] - Pseudomonas aeruginosa (stra
PIR2:H81430           +   9.44 159.24     871 ! translation initiation factor IF
-2 Cj0136 [imported] - Campylobacter jejuni (strain
PIR2:F70556           +   9.35 149.14     628 ! hypothetical protein Rv1165 - My
cobacterium tuberculosis (strain H37RV)
PIR2:S75863           +   9.28 151.39     691 ! translation elongation factor EF
-G.sll1098 - Synechocystis sp. (strain PCC 6803)
////////////////////////////////////////////////////////////////////////////////
PIR2:S53707           +   4.99 110.33     727 ! translation initiation factor eI
F-2 - bovine
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ment to gap; yet gaps are easily placed in the nonconserved regions of the alignment.
Clustering is more Profile analyses than other methods, because of these variable gap
penalties. This can be a very useful strategy for pregapping new sequences when
introducing them into existing alignments.

Table 5 (continued)
ProfileSearch Output, Abridgeda

PIR2:T21621           +   4.98 113.85     878 ! hypothetical protein F32A7.5 - C
aenorhabditis elegans
PIR2:E83344           +   4.98 90.86      317 ! probable adhesion protein PA2407
 [imported] - Pseudomonas aeruginosa (strain PAO1)
PIR2:C69308           +   4.97 93.48      355 ! immunogenic protein (bcsp31-1) h
omolog - Archaeoglobus fulgidus
PIR2:I40701           +   4.97 89.04      294 ! glyceraldehyde-3-phosphate dehyd
rogenase (EC 1.2.1.12) - Citrobacter freundii (frag
PIR2:T38897           +   4.96 82.42      216 ! hypothetical protein SPAC513.02
- fission yeast (Schizosaccharomyces pombe)
PIR2:C75581           +   4.96 105.14     580 ! malate oxidoreductase - Deinococ
cus radiodurans (strain R1)
PIR2:I40603           +   4.96 82.02      212 ! hypothetical protein A - Clostri
dium acetobutylicum
PIR2:T17237           +   4.96 85.14      247 ! hypothetical protein DKFZp434P10
6.1 - human (fragment)
PIR2:S65758           +   4.96 110.29     737 ! nitrate reductase (EC 1.7.99.4)
chain A narB - Oscillatoria chalybea
PIR2:A46241           +   4.95 87.60      277 ! interferon response element-bind
ing factor IREBF-2 - mouse (fragment)
////////////////////////////////////////////////////////////////////////////////

aA greatly abridged GCG ProfileSearch output list file. Most of the known elongation factors have been edited from the
file; several distant homologues are left intact.

Fig. 11. ProfileSegments -MSF -Global output loaded into SeqLab. The t-RNA binding region of a
ProfileSegments -MSF -Global alignment of selected near and distant EF-1α homologues aligned
against my example EF-1α profile.
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HMMER: Hidden Markov Modeling and Profiles
As powerful as the heuristics based Gribskov profiles are, they require a lot of time

and skill to prepare and validate. An excess of subjectivity and a lack of formal statis-
tical rigor contribute to their limitations. To address these concerns, GCG incorpo-
rated the HMMER (pronounced “hammer”) package into GCG version 10.2. HMMER
uses Hidden Markov modeling, with a formal probabilistic basis and consistent gap
insertion theory, to build and manipulate HMMER profiles and profile databases, to
search sequences against HMMER profile databases, and to easily create multiple
sequence alignments using HMMER profiles as a seed. HMMER profiles are much
easier to build than traditional profiles and they do not require as many sequences in
their alignments to be effective. They offer a statistical rigor not available in Gribskov
profiles and they have all the sensitivity of any profile technique.

Like Gribskov profiles, HMMER profiles are constructed from a set of pre-aligned
sequences. However, it is not as important that the alignment be as comprehensive
and perfect. To construct a SeqLab HMMER profile alignment, select all of the rel-
evant sequences and perhaps a region within them to exclude, e.g., jagged,
unalignable ends. Do not select a Mask sequence, as profiles need to include all of
the ambiguity of the alignment within the region being used. Go to the Functions
HMMER menu and pick HmmerBuild. Specify Selected region rather than
Selected sequences if restricting the length of the profile. Accept the default create
a new HMM and specify an Internal name for profile HMM. Specify the Type of
HMM to be Built as the default is multiple global. When the profile is built you
need to specify the type of alignment it will be used with, rather than when the align-
ment is run. The HMMER profile will either be used for global or local alignment
and it will occur multiply or singly on a given sequence. Weighting is also consid-
ered differently in HMMER than it is with Gribskov profiles. To use a custom weight-
ing scheme, e.g., if you have modified your RSF file weight values for ProfileBuild,
select the -Weighting=N option. Otherwise HmmerBuild’s internal weighting algo-
rithm will calculate the best weights based on a cluster analysis of sequence similari-
ties. It again becomes important to understand the types of biological questions that
you are asking to rationally set many of the program parameters.

HmmerCalibrate is checked by default. The completion of HmmerBuild auto-
matically launches a calibration procedure that increases the speed and accuracy of
subsequent analyses with the resultant profile. Other HmmerBuild options can be
explored, but first read the Program Manual. For now accept the default HmmerBuild
parameters and press Run. The output is an ASCII text profile representation of a
statistical model, a Hidden Markov Model, of the consensus of a sequence family,
deduced from a multiple sequence alignment. A utility program, HmmerConvert, can
change HMMER style profiles into Gribskov profiles, but information is lost. In most
cases the new HMMER profile is used as either a search probe for extremely sensi-
tive database searching or as a template upon which to build ever-larger multiple
sequence alignments.

To use the HMMER profile as a search probe go to the Functions menu and select
HMMER, then HmmerSearch. Specify the new HMMER profile by clicking Profile
HMM to use as query . . . and using the File Chooser window to select the correct
HMMER profile. Either accept the default Sequence search set . . . PIR:* specifica-
tion or choose other sequences to search. HmmerSearch has similar cutoff parameters
as other GCG database searches. You can restrict the size of the output based on sig-
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nificance scores to limit the number of pairwise alignments displayed. HmmerSearch
is very slow because it is, as a ProfileSearch, a comprehensive, non-heuristic, dynamic
programming implementation. So run this program in the background when using
SeqLab or, if at a terminal session, use the -Batch command line option. If the server
has multiple processors, HmmerSearch supports the multithreading -Processors=x
option. Run the program when you have the appropriate options selected. The output
is extensive and informative, based on significance Expectation-value scores. The top
portion is a list of best hits on all domains, the second section is the GCG list file
portion of the best domain hits, next pairwise alignments are given, and finally a score
distribution is plotted. Since it is a GCG list file, it can be read by other GCG pro-
grams, like HmmerAlign.

HmmerAlign can help when working with very large multiple alignments and
when adding newly found sequences to an existing alignment regardless of size.
Somewhat similar in concept to the -MSF option of ProfileSegments, it takes a speci-
fied profile, in this case a HMMER profile, and aligns a specified set of sequences to
it, to produce a multiple sequence alignment based on that profile. Unlike Pro-
fileSegments, HmmerAlign takes any GCG sequence specification as input, not just
the output from its own database searching program. It is much faster to create very
large multiple alignments this way, rather than using PileUp over and over. The ratio-
nale being, take the time to make a good small alignment and HMMER profile, then
use that to build upon the original. The alignment procedure used by HmmerAlign is
a recursive, dynamic programming implementation. It compares the profile’s matrix
individually against every sequence, until an entire alignment is constructed.
HmmerAlign can also use its profile to align one multiple alignment to another and
produce a merged result of the two. A heuristic solution is provided in those cases
where the original alignment is not one of the two, although optimalization is not
guaranteed. To use this option choose Combine output alignment and . . . , then
another alignment in the SeqLab HmmerAlign Options window. This will launch
the command line -Heuristic=some.msf{*} option. Aligning the original alignment
that was used to construct the profile with another sequence set is very fast and
non-heuristic though, using the -MapAlignment=some.rsf{*} option. Launch
HmmerAlign from the Functions HMMER menu by selecting HmmerAlign.
Specify the correct HMMER profile with the profile HMM to use . . .  button and
pick the sequences that you want to align to the profile with the Sequences to align . . .
button. For example, 1EFT is one of the most similar Elongation Factor 1α homolog
to the lower eukaryote EF-1α profile example that has a solved structure. Therefore,
an alignment of its primary sequence with structural annotation against this sample
dataset should allow the inference of secondary structure across the entire alignment.
This is the basis of homology modeling. The inferred alpha helices are highlighted in
red as shown on the accompanying CD. Figure 12 illustrates the inferred secondary
structure based on an alignment of 1EFT, the EF-Tu structure from Thermus
aquaticus, against the EF-1α HMMER profile.

HmmerPfam
As with Motifs and MotifSearch, HmmerPfam can supplement annotations of an

RSF file. This program scans sequences against a library of HMMER profiles, by
default the Pfam library (A database of protein domain family alignments and HMMs,
1996–2000 The Pfam Consortium). Its output lists Pfam domain matches ranked by
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Expectation-values and with the -RSF option writes the domain identification and
Expectation-value as a feature in an RSF file. The screen snapshot in Fig. 13 shows a
sample alignment over the same span as Fig. 12, but includes additional HmmerPfam
annotation using Graphic Features Display: mode.

Consensus and Masking Issues
Consensus methods are another powerful way to visualize similarity within an

alignment. The SeqLab Edit menu allows one to easily create several types of con-
sensus representations. To create a standard protein sequence consensus select all
sequences and use the Edit Consensus . . . menu and specify Consensus type:
Protein Sequence. When constructing a sequence consensus of a protein alignment
you can generate figures with black highly similar residues, gray intermediate simi-
larities, and white non-similar amino acids. The default mode is to create an identity
consensus at the two-thirds plurality level (percent required for majority) with a
threshold of 5 (minimum score that represents a match). Different plurality and
threshold values as well as different scoring comparison matrices can be used to
highlight the difference in the alignment. Be sure that Shade based on similarity to
consensus is checked to generate a color mask overlay on the display to help in the

Fig. 12. EF-1α primitive dataset aligned to the Thermus aquaticus EF-Tu sequence by HmmerAlign.
Inferred alpha helices based on the Thermus structure are gray in this Features Coloring display. Text
annotation lines have also been added to the display.
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visualization process. Figure 14 illustrates a region near the carboxy termini using
the BLOSUM30 matrix, a Percent required for majority (plurality) of 33%, and a
minimum score that represents a match (threshold) cutoff value of 4.

When you have identified an optimum plurality combination, select the File Print
. . . command and change the Output Format: to PostScript to prepare a PostScript
file of your SeqLab display. Whatever color scheme is displayed by the Editor will
be captured by the PostScript file. As you change the font size the number of pages
to be printed varies. In the Print Alignment menu specify Destination . . . File and
give it an appropriate filename and then click OK. This command will produce a
PostScript language graphics file in the directory from which SeqLab was launched.
This PostScript file can be sent to a color PostScript printer, or to a black and white
laser printer that will simulate the colors with gray tones, or it can be imported into
a PostScript compatable graphics program for further manipulation.

In addition to standard consensus sequences using various similarity schemes,
SeqLab also allows one to create consensus Masks that screen specified areas of your
alignment from further analyses by specifying 0 or 1 weights for each column. A
SeqLab Mask allows the user to differentially weight different parts of alignment to
reflect confidence. Masks can be modified by hand or they can be created manually

Fig. 13. Screen snapshot of the sample alignment showing the same region as Figure 12 but now
including additional HmmerPfam annotation and displayed with Graphic Features. Inferred alpha
helices are now seen as transparent medium gray coils.
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using the New Sequences menu. They can have position values up to 9. Masking is
helpful for phylogenetic analysis as it can exclude less reliable columns in the align-
ment without actually removing the data. Once a Mask has been created in SeqLab,
most of the programs available through the Functions menu will use that Mask, if the
Mask is selected along with the desired sequences, to weight the columns of the align-
ment data matrix appropriately. This only occurs through the Functions menu.

To create a Mask style sequence consensus select all sequences and then use the
Edit Consensus . . . menu and specify Consensus type: Mask Sequence. As noted
earlier, the default mode uses an identity consensus at the two-thirds plurality level
with a threshold of 5. These stringent values will likely mask much of the phyloge-
netically informative data. One can try using lower pluralities, threshold values, and
scoring comparison matrices. Figure 15 illustrates the carboxy terminal end using a
weight Mask generated from the BLOSUM30 matrix, a plurality of 15%, and a thresh-
old of 4. Few areas are excluded by the Mask in this alignment because of the high
similarity of this group of sequences. Excluding more columns would likely leave
nearly identical sequences. It would be impossible to ascertain how they are related.

Coding DNA Issues
It is often useful to align DNA sequences along with their corresponding proteins.

This is because many investigators prefer to run phylogenetic analyses on DNA rather

Fig. 14. SeqLab Consensus display of a region near the carboxy termini of my EF-1α example
using the BLOSUM30 matrix, a 33% Percent required for majority (plurality), and a cutoff value of 4
for the Minimum score that represents a match (threshold).
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than protein, as the multiple substitution models are more robust for DNA. In fact,
many phylogenetic inference algorithms do not even take advantage of amino acid
similarity when comparing protein sequences; they only consider identities! However,
the more diverged a dataset becomes, the more random third and eventually first codon
positions become. This introduces noise and error into the analysis. Therefore, often
third positions and sometimes first positions are masked. One is always balancing
signal against noise. Too much noise or too little signal both degrade the analysis to
the point of nonsense.

The logic to this paired protein and DNA alignment approach is as follows:

1. Directly align the DNA. If the DNA sequences are quite similar, then merely
create your DNA alignment. Next use the Edit menu Translate function and
the align translations option to create the corresponding alignment of the
protein sequences. Select the region to translate based on the CDS reference as
per each DNA annotation. Be careful of CDS entries that do not begin at posi-
tion 1; the GenBank CDS feature annotation /codon_start= identifies the start
position within the first codon listed. You may also have to trim the sequences
to contain only the relevant gene, especially if they are genomic. This can be
accomplished with appropriate protections (padlock icon). Group each protein
with its corresponding DNA sequence so that subsequent manipulations will
keep them together.

Fig. 15. SeqLab Consensus Mask display of the carboxy terminal region of my EF-1α example
using a weight Mask generated from the BLOSUM30 matrix, a plurality of 15%, and a threshold of 4.
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2. Use the protein sequences to create the alignment if the DNA alignment is not
obvious. In this case the protein sequences are first used to create an alignment.
The corresponding DNA sequences are then loaded. You can find the DNA
sequence accession codes in the annotation of the protein sequence entries. Next
translate the unaligned DNA sequences into new protein sequences with the Edit-
Translate function using the align translations option and Group these with
their corresponding DNA sequences, just as noted earlier. The DNA along with
their translated sequences will not be aligned as a set, just the other protein set is
aligned. Group all of the aligned protein dataset together, but separately from
the DNA/aligned translation set. Rearrange your display to place the DNA, its
aligned translation and the original aligned protein sequence side-by-side and
then manually slide one set to match the other. Use the CUT and PASTE buttons
to move the sequences. When pasting, remember the Sequence clipboard
contains complete sequence entries, whereas the Text clipboard only contains
sequence data, amino acid residues or DNA bases. The translated sequence
entries can be CUT away after they are aligned to the set. Merge the newly
aligned sequences into the existing alignment Group. It sounds difficult, but you
are matching two identical protein sequences, the DNA translation, and the origi-
nal aligned protein. The Group function keeps everything together so that you
do not lose your original alignment as you space residues apart to match their
respective codons. Some codons may become spaced apart in this process and
will require adjustment. Figure 16 shows a sample dataset in an intermediary
stage of alignment. The complete sample data RSF file with all annotation, pro-
tein sequences, and DNA sequences is available in the accompanying CD.

Multiple Alignment Format and Phylogenetics
Multiple sequence alignment is a necessary prerequisite for biological sequence

based phylogenetic inference, and phylogenetic inference guides our understanding of
molecular evolution. The famous Darwinian Theodosius Dobzhansky summed it up
succinctly in 1973. It is provided as an inscription on the inner cover of the classic
organic evolution text Evolution: “Nothing in biology makes sense except in the light
of evolution.” These words ring true. Evolution provides the single, unifying, cohe-
sive force that can explain all life. It is to the life sciences what the long sought holy
grail of the unified field theory is to astrophysics.

GCG Interface to PAUP*
GCG implements David Swofford’s PAUP* (usually pronounced “pop star”) phylo-

genetic analysis package with the paired programs PAUPSearch and PAUPDisplay.
These interface programs provide an easy to use access to  PAUP*. However, you may
want to consider running PAUP* exterior to GCG by getting the latest version, contain-
ing many bug fixes and enhancements, directly from Sinauer Associates (see Website:
http://www.sinauer.com/Titles/frswofford.htm), and installing it on your own machine.
Version 4.0.0d55 PAUP* is included in GCG version 10.3 and runs in native mode or
through the PAUPSearch and PAUPDisplay programs. Use the following command in a
terminal window to read the license agreement with GCG, if you are curious:

> typedata paup-license.txt

The PAUP package was originally written to only perform parsimony analysis with
either DNA sequences or morphological character data using a Macintosh computer.
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The package’s name changed in version 4.0 by adding the asterisk which means and
other methods, referring to the incorporation of the minimum evolution distance
method and the maximum likelihood method. It was also expanded to a portable pack-
age capable of being run on many different platforms using a command line interface
in addition to its original Macintosh graphical user interface. PAUP* does not include
any protein models of evolution other than a crude like/not-like model. Sophisticated
protein models can be used by embedding the necessary commands and matrices in
the NEXUS file used as input to the package. PAUP*’s DNA models are perhaps the
most sophisticated available in any molecular phylogenetic inference software.

NEXUS Format

Within the context of GCG, NEXUS format files are most easily and reliably built
from alignments with GCG’s own interface to the PAUP* package. PAUPSearch
within SeqLab can be used to generate NEXUS format files that can then be directly
fed to any version of PAUP*.

Begin NEXUS conversion by selecting all relevant sequences and weight Mask, in
the Main Window display. Select PAUPSearch. . . from the Functions Evolution
menu to launch the dialogue box. To generate a NEXUS file, run PAUPSearch in its
fastest mode without performing a search. Accept the default Tree Optimality Crite-
rion . . . maximum parsimony and the heuristic tree search (fast) . . . Method for
Obtaining Best Tree(s). Be sure that the perform bootstrap replications. . . button is
not pressed and then launch the Options menu by pressing the appropriate button. In
the PAUPSearch Options menu check the top box to save the PAUPscript file. This is
not required for running the programs but is essential to generate a NEXUS file. You

Fig. 16. Using SeqLab to align a set of DNA sequences against an already aligned dataset of their
translational products.
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can change or leave the file name as you wish. The PAUPscript output file results from
the automatic conversion of the alignment to NEXUS format and contains all the PAUP
commands as well as their alignment. If needed, the PAUPlog file keeps track of all
that happened during the program run and is a good place to look for any error mes-
sages. Uncheck the next box, Perform the analysis. The program does the conversion
and generates the NEXUS script but is prevented from performing the heuristic search
for the best tree. This is equivalent to the command line option -NoRun. Scroll through
the options menu, leaving the rest of the options at their default settings. Close the
options menu. Normally PAUP-Search and PAUPDisplay are linked to each other when
they are run from the SeqLab interface. Therefore, uncheck the PAUPDisplay. . .
button in PAUPSearch’s main window to turn PAUPDisplay off. Be sure that How:
Background Job is specified on the main PAUPSearch menu and then press Run
there. After a moment the output PAUPscript file will be displayed. An abridged pro-
tein dataset example is shown in Table 6.

The PAUPscript file contains the NEXUS format file that was generated by GCG
to run PAUP*. Notice that the masked columns of the alignment contain zeroes and
are excluded from the NEXUS alignment. This file can be used to run the latest ver-
sion of PAUP*, if it is available. Using a Macintosh may be desirable in order to take
advantage of PAUP*’s very friendly Macintosh interface. GCG automatically creates
this file, correctly encoding all of the required format data. When using this file as
input to native PAUP*, remove any inappropriate commands within the command
block near the end of the file with a simple text editor.

PHYLIP Format
Joseph Felsenstein’s PHYLogenetic Inference Package (PHYLIP) from the Univer-

sity of Washington (see Website: http://evolution.genetics.washington.edu/phylip.html)
is a comprehensive freeware suite of thirty different programs for inferring phylog-
enies that can handle molecular sequence, restriction digest, gene frequency, and mor-
phological character data. Methods available in the package include parsimony,
distance matrix, and likelihood, as well as bootstrapping and consensus techniques. A
menu controls the programs and asks for options to set and start the computation. Data
is automatically read into the program from a text file in a unique PHYLIP format
called infile. If it is not found, the user types in the proper data file name. Output is
written to special files with names like outfile and treefile. Trees written into treefile
are in the Newick format, an informal standard agreed to in 1986 by authors of a
number of phylogeny packages.

To generate PHYLIP format input from GCG alignments in SeqLab, a combination
approach of GCG’s ToFastA and Don Gilbert’s ReadSeq will be used. First, go to the
SeqLab Main Window File Export menu; click Format and notice that MSF,
GenBank, and GDE2.2 are all available for saving a copy of an RSF file in an alterna-
tive format. At this point do not export any of these formats. Cancel the window. This
export routing does not use the Mask data option that would include or exclude col-
umns from your alignment. To take advantage of the Mask data for subsequent phylo-
genetic analyses, export your alignment using another method. Make sure that all of
the relevant sequences, as well as any Mask that you wish to test, are selected. Next,
go to the Functions menu, where all choices will be affected by the Mask that you
have chosen and select Importing/Exporting ToFastA. . .. Press Run to convert the
portion of the alignment that is not masked in the FastA format. FastA is a good inter-

WWW
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Table 6
An Abridged NEXUS File from PAUPSearch NoRuna

#NEXUS

[! Aligned sequences from GCG file(s) ‘@/users1/thompson/.seqlab-mendel/paupsear ch_51.list’ ]

[Length: 441  Type: P May 15, 2001 15:07]

[ Name: GIARDIA_L       Len: 441 Check: 2966 Weight: 1.00]
[ Name: DIPLOMONAD_SP   Len: 441 Check: 4608 Weight: 1.00]
[ Name: HEXAMITA_I      Len: 441 Check: 9530 Weight: 1.00]
[ Name: SPIRONUCLEUS_V  Len: 441 Check: 2245 Weight: 1.00]
[ Name: SPATHIDIUM_SP   Len: 441 Check: 2937 Weight: 1.00]
[ Name: CRYPTOSPORIDIUM_P Len: 441 Check: 7665 Weight: 1.00]
[ Name: PLASMODIUM_K    Len: 441 Check: 9956 Weight: 1.00]
[ Name: PLASMODIUM_B    Len: 441 Check: 9937 Weight: 1.00]
[ Name: PLASMODIUM_F    Len: 441 Check: 796 Weight: 1.00]
[ Name: EUPLOTES_A      Len: 441 Check: 8831 Weight: 1.00]
[ Name: EUPLOTES_C      Len: 441 Check: 8653 Weight: 1.00]
[ Name: BLASTOCYSTIS_H  Len: 441 Check: 9014 Weight: 1.00]
[ Name: STENTOR_C       Len: 441 Check: 5386 Weight: 1.00]
[ Name: BLEPHARISMA_J   Len: 441 Check: 7915 Weight: 1.00]
[ Name: ENTAMOEBA_H     Len: 441 Check: 8365 Weight: 1.00]
[ Name: OXYMONADIDA_SP  Len: 441 Check: 8531 Weight: 1.00]
[ Name: DINENYMPHA_E    Len: 441 Check: 5471 Weight: 1.00]
[ Name: TRYPANOSOMA_C   Len: 441 Check: 9945 Weight: 1.00]
[ Name: TRYPANOSOMA_B   Len: 441 Check: 960 Weight: 1.00]
[ Name: KENTROPHOROS_SP Len: 441 Check: 1567 Weight: 1.00]
[ Name: EUGLENA_G       Len: 441 Check: 492 Weight: 1.00]
[ Name: PLANOPROTOSTELIUM_A Len: 441 Check: 8843 Weight: 1.00]
[ Name: DICTYOSTELIUM_D Len: 441 Check: 6233 Weight: 1.00]
[ Name: PHYSARUM_P      Len: 441 Check: 320 Weight: 1.00]
[ Name: CYANOPHORA_P    Len: 441 Check: 4176 Weight: 1.00]
[ Name: PHYTOPHTHORA_I  Len: 441 Check: 804 Weight: 1.00]
[ Name: STYLONYCHIA_M   Len: 441 Check: 2825 Weight: 1.00]
[ Name: STYLONYCHIA_L   Len: 441 Check: 1254 Weight: 1.00]
[ Name: PARANOPHRYS_C   Len: 441 Check: 196 Weight: 1.00]
[ Name: TETRHYMENA_P    Len: 441 Check: 4061 Weight: 1.00]
[ Name: TELOTROCHIDIUM_H Len: 441 Check: 1239 Weight: 1.00]
[ Name: PARAMECIUM_T    Len: 441 Check: 3452 Weight: 1.00]
[ Name: COLPODA_I       Len: 441 Check: 8135 Weight: 1.00]
[ Name: NAXELLA_SP      Len: 441 Check: 6970 Weight: 1.00]
[ Name: PORPHYRA_P      Len: 441 Check: 1559 Weight: 1.00]
[ Name: TRICHOMONAS_T   Len: 441 Check: 6212 Weight: 1.00]
[ Name: TRICHOMONAS_V   Len: 441 Check: 6532 Weight: 1.00]
[ Name: NAEGLERIA_A     Len: 441 Check: 7736 Weight: 1.00]

begin data;
     dimensions ntax=38 nchar=441;
     format datatype=protein interleave gap=.;
     matrix
[                      1                                                   50]
            GIARDIA_L  .......... .......... STLTGHLIYK CGGIDQRTID EYEKRATEMG
        DIPLOMONAD_SP  .......... .......NGK STLTGHLIYK CGGIDQRTLD EYEKRANEMG
           HEXAMITA_I  .......... .......NGK STLTGHLIYK CGGIDQRTLE DYEKKANEIG
       SPIRONUCLEUS_V  .......... .......NGK STLTGHLIFK CGGIDQRTLD EYEKKANELG
        SPATHIDIUM_SP  .......... .....VDSGK STSTGHLIYK CGGIDERTIE KFEKEAKQIG
    CRYPTOSPORIDIUM_P  MGKEKTHINL VVIGHVDSGK STTTGHLIYK LGGIDKRTIE KFEKESSEMG
         PLASMODIUM_K  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
         PLASMODIUM_B  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
         PLASMODIUM_F  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
           EUPLOTES_A  .......... .....VDSGK STTTGHLIYK LGGTDARTIE KFEKESAEMG
           EUPLOTES_C  MGKEKEHLNL VVIGHVDSGK STTTGHLIYK LGGIDARTIE KFEKESAEMG
       BLASTOCYSTIS_H  MGKEKPHINL VVIGHVVAGK STTTGHLIYA CGGIDKRTIE RFEEGGQRIG
            STENTOR_C  .......... .....VDSGK STTIGHLIYK CGGIDKRTID KFDKDASDMG
        BLEPHARISMA_J  .......... .....VDSGK STSCGHLIYK CGGIDKRTIE KYEKEAKEMG
          ENTAMOEBA_H  MPKEKTHINI VVIGHVDSGK STTTGHLIYK CGGIDQRTIE KFEKESAEMG
       OXYMONADIDA_SP  .......... .......... STTTRHLIYK CGGIDQRTLD RFQKESEAMG
         DINENYMPHA_E  .......... .......... STTTGHLIYK CGGIDERTIK KFEQESEAMG
        TRYPANOSOMA_C  MGKEKVHMNL VVVGHVDAGK STATGHLIYK CGGIDKRTIE KFEKEAAEIG
        TRYPANOSOMA_B  MGKEKVHMNL VVVGHVDAGK STATGHLIYK CGGIDKRTIE KFEKEAADIG
      KENTROPHOROS_SP  .......... .....VDSGK STSTGHLIYK CGGIDKRTIE KFDKEAAEMG
            EUGLENA_G  MGKEKVHISL VVIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEASEMG
  PLANOPROTOSTELIUM_A  .......... .......AGK STTTGHLIYK CGGIDKRTIE KFEKEAKEIG
      DICTYOSTELIUM_D  MESEKTHINI VVIGHVDAGK STTTGHLIYK CGGIDKRVIE KYEKEASEMG
           PHYSARUM_P  .......... .......AGK STTTGHLIYK CGGIDKRTIE KFEKEAAEMG
         CYANOPHORA_P  MGKQKTHINI VVIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEAAEIG
       PHYTOPHTHORA_I  .......... .VIGHVDAGK STTTGHLIYK CGGIDKRTIE KFEKEAAELG
        STYLONYCHIA_M  .......... .....VDSGK STSTGHLIYK CGGIDKRTIE KFEKEPAEMG
        STYLONYCHIA_L  MPKEKNHLNL VVIGHVDSGK STSTGHLIYK CGGIDKRTIE KFEKEAAEMG
        PARANOPHRYS_C  .......... .....VDSGK STTTGHLIYK CGGIDKRVIE KFEKESAEMG
         TETRHYMENA_P  M.GDKVHINL VVIGHVDSGK STTTGHLIYK CGGIDKRVIE KFEKESAEQG
     TELOTROCHIDIUM_H  .......... ...GHVDSGK STSTGHLIYK CGGIDKRTLE KFEKEAAEMG
         PARAMECIUM_T  G.KDKLHVNL VVIGHVDSGK STTTGHLIYK LGGIDERTIK KFEDEANKLG
            COLPODA_I  .......... .....VDSGK STSTGHLIYK CGGIHKRTIE KFEKEANELG

      (continued)
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           NAXELLA_SP  .......... .....VDSGK STTTGHLIYK CGGIDKRTIE KFEKESAEQG
           PORPHYRA_P  MGKEKQHVSI VVIGHVDSGK STTTGHLIYK CGGIDKRAIE KFEKEAAEMG
        TRICHOMONAS_T  .......... .......... STTTGHLIYK CGGLDKRKLA AMEKEAEQLG
        TRICHOMONAS_V  .......... .....VDAGK STTTGHLIYK CGGLDKRKLA AIEKEAEQLG
          NAEGLERIA_A  .......... .......AGK STTTGHLIYK CGGIDKRVIE KFEKEAAEMG
/////////////////////////////////////////////////////////////////////////////
[                      401                                       441]
            GIARDIA_L  CCETFNDYAP LGPFAVR... .......... .......... .
        DIPLOMONAD_SP  SCESFNDYAA LGRFAVR... .......... .......... .
           HEXAMITA_I  CVESFEQYPA LGRFAVR... .......... .......... .
       SPIRONUCLEUS_V  SAESYELYPA LGRFAVR... .......... .......... .
        SPATHIDIUM_SP  VCETFAGYPP LGRFAVRDMK QTVAV..... .......... .
    CRYPTOSPORIDIUM_P  CVEAFTDYPP LGRFAVRDMK QTVAVGVIKS VKKE....KK K
         PLASMODIUM_K  VVETFTEYPP LGRFAIRDMR QTIAVGIIKA VKKEAAKNAK K
         PLASMODIUM_B  VVETFTEYPP LGRFAIRDMR QTIAVGIIKS VKKEAAKAAK K
         PLASMODIUM_F  VVETFTEYPP LGRFAIRDMR QTIAVGIINQ LRKNAAKAAK K
           EUPLOTES_A  CIENFSRYAP LGRFAVRDMK QTVAVG.... .......... .
           EUPLOTES_C  CVETFATYAP LGRFAVRDMR QTVAVGVIQE IKKKE.KKKK K
       BLASTOCYSTIS_H  CVETFSDYPP LGRFAVRDMR QTVAVGIIKS TRAK...... .
            STENTOR_C  CVETFTEYPP LGRFAVRDMK QTVAV..... .......... .
        BLEPHARISMA_J  CVEPFTEYPP LGRFAVRDMR QTVAV..... .......... .
          ENTAMOEBA_H  CVEEFAKFPP LGRFAVRDMK QTVAVGVVKA V.TP...... .
       OXYMONADIDA_SP  VVETFVEYPP LGRFAVR... .......... .......... .
         DINENYMPHA_E  VVETFVEYPP LGRFAVR... .......... .......... .
        TRYPANOSOMA_C  CVEVFNDYAP LGRFAVRDMR QTVAVGIIKA VKKDAAAAAK K
        TRYPANOSOMA_B  CVEVFNDYAP LGRFAVRDMR QTVAVGIIKA VKKDGAAVSK K
      KENTROPHOROS_SP  CVESFSDYPP LGRFAVHDMR QTVAV..... .......... .
            EUGLENA_G  CVESFTDYPP LG.VSCGDMR QTVAVGVIKS VKKE.TKAKK K
  PLANOPROTOSTELIUM_A  CVETFTEYPP LGRFAVRDMR .......... .......... .
      DICTYOSTELIUM_D  CVESFTEYPP LGRFAVRDMR QTVAVGVIKS TKKAAAAAKK K
           PHYSARUM_P  CVESFTDFPP LGRFAVRDMR .......... .......... .
         CYANOPHORA_P  CVEAFTNYPP LGRFAVRDMR QTVAVGVIKE VKKEAGKAGK K
       PHYTOPHTHORA_I  TVESFQEYPP LGRFAVRDMR QTVAVGVIKS VKKEG.GGKK K
        STYLONYCHIA_M  CVEAFNQYPP LGRFAVRDMK QTVAVG.... .......... .
        STYLONYCHIA_L  CVEAFNQYPP LGRFAVRDMK QTVAVGVIKE VKKEGTKAKK K
        PARANOPHRYS_C  CVEVFSEYPP LGRYAVRDMK QTVAV..... .......... .
         TETRHYMENA_P  CVEVFQEYPP LGRYAVRDMK QTVAVGVIKK VKKD...... K
     TELOTROCHIDIUM_H  CVESFAEYPP LGRFAVRDMK QTVAVG.... .......... .
         PARAMECIUM_T  CVEIFSEYPP LGRFAVRDMK QTVAVGVIKV VKKE....KK K
            COLPODA_I  CVEAFSDYPP LGRFAVRDMK QTVAVG.... .......... .
           NAXELLA_SP  CVEIFNEYPP LGRFAVRDMK QTVAV..... .......... .
           PORPHYRA_P  CVEAFTSYPP LGRFAVRDMR QTVAVGVIKS VKKEGTKSAK K
        TRICHOMONAS_T  VVESFQEYPP LGRFAIR... .......... .......... .
        TRICHOMONAS_V  VVESFQEYPP LGRFAIRDMK QTVAVGVIRS VKKP....PI K
          NAEGLERIA_A  CVEGFTEYPP LGRFAVR... .......... .......... .

     ;
endblock;

begin paup;
set errorstop;
set criterion=parsimony;
set increase=no;
pset collapse=maxbrlen;
hsearch start=stepwise addseq=simple swap=tbr;
savetrees /brlens file=’/users1/thompson/seqlab/paupsearch_51.pauptrees’ replace;
quit;
endblock;

aThe PAUPSearch program can reliably and quickly extract NEXUS format from GCG multiple sequence alignments
using the -NoRun option. Zero Mask weighted columns are excluded from the file.

Table 6 (continued)
An Abridged NEXUS File from PAUPSearch NoRuna

mediate format on the way to PHYLIP’s required format. The new file will be dis-
played by SeqLab. The very first part of the protein dataset FastA format output file is
shown in Table 7. Notice that it excludes those positions that were masked with zero
and that it now follows all FastA format conventions including the automatic conver-
sion of all GCG style gap periods and tildes to the more universal gap hyphen repre-
sentation. This circumvents the common dot to dash problem that is often encountered
in sequence format conversion. Close the ToFastA output window. You may want to
use the Output Manager to save the file under a name you recognize using the Save
As . . . menu.
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Next, ReadSeq is used to convert this FastA format file to a PHYLIP compatible
format. Exit SeqLab with the File menu Exit choice, or temporarily switch to your
background terminal window. If you exit, you will probably be asked if you want to
save your RSF file and any changes in your list. Accept the suggested changes with
appropriate names and SeqLab will close. This will return you to your terminal win-
dow, formerly behind the SeqLab display, where ReadSeq can be run. This program
can be used to change your FastA format file into a PHYLIP formatted file. ReadSeq
does not allow you to only choose a portion of an alignment, nor does it automatically
convert dots and tildes to hyphens. These issues were resolved in SeqLab. Begin
ReadSeq by typing readseq at your command prompt in the terminal window.
ReadSeq first prompts you for an appropriate output file name, not an input file. Do
not make a mistake in this step by giving the name of your input file first. If you do,
you will overwrite the input file while running the program, and then when it tries to
read the input, there will be nothing left to read! Next choose the current PHYLIP
format and then designate the input sequence. Do not use the GCG {*} designator; this
is not a GCG program. After the program has read all of the input sequences, specify

Table 7
GCG ToFastA Outputa

>GIARDIA_L In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
--------------------STLTGHLIYKCGGIDQRTIDEYEKRATEMGKGSFKYAWVL
DQLKDERERGITINIALWKFETKKYIVTIIDAPGHRDFIKNMITGTSQADVAILVVAAGQ
GEFEAGISKDGQTREHATLANTLGIKTMIICVNKMDDGQVKYSKERYDEIKGEMMKQLKN
IGWK-EEFDYIPTSGWTGDNIMEKSDKMPWYEGPCLIDAIDGLKAPKRPTDKPLRLPIQD
VYKISGVGTVPAGRVETGELAPGMKVVFAPTS-QSEVKSVEMHHEELKKAGPGDNVGFNV
RGLAVKDLKKGYVVGDVTNDPPVGCKSFTAQVIVMNHPKKIQ-PGYTPVIDCHTAHIACQ
FQLFLQKLDKRTLKP-EMENPPDAR-GD-CIVKMVPQKPLCCETFNDYAPLGPFAVR—-
-------------------
>DIPLOMONAD_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
-----------------NGKSTLTGHLIYKCGGIDQRTLDEYEKRANEMGKGSFKYAWVL
DQLKDERERGITINIALWKFETKKFTVTIIDAPGHRDFIKNMITGTSQADVAILVIASGQ
GEFEAGISKEGQTREHATLAHTLGIKTLIVCVNKMDDPQVNYSEARYKEIKEEMQKNLKQ
IGYK-DEFDFIPTSGWTGDSIMEKSPNMPWYSGPCLIDAIDGLKAPKRPTDKPLRLPIQD
VYKINGVGTVPAGRVESGLLIPNMTVVFAPST-TAEVKSVEMHHEELPQAGPGDNVGFNV
RGIAAKDIKKGYVVGDTKNDPPVGCKSFTAQVIIMNHPKKIQ-PGYSPVIDCHTAHIACK
FDAFLQKLNARTLKP-EMENPTEAR-GE-CIVRMVPSKPLSCESFNDYAALGRFAVR—-
-------------------
>HEXAMITA_I In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
-----------------NGKSTLTGHLIYKCGGIDQRTLEDYEKKANEIGKGSFKYAWVL
DQLKDERERGITINIALWKFETKKFIVTIIDAPGHRDFIKNMITGTSQADVAILVVAAGQ
GEFEAGISSEGQTREHATLANTLGIKTMIVAVNKMDDPQVNYSEARYTEIKTEMQKTFKQ
IGFK-EEFDFVPLSGWTGDNIMEASPKTPWYKGKCLIECIDGLKAPKRPNDKPLRLPIQD
VYKINGVGTVPAGRVESGELIPGMMVVFAPAG-ETEVKSVEMHHEQLAKAGPGDNVGFNI
KGLSAKDIKKGYVVGDVNNDAPKGCEYFKANVIIMNHPKKI-NPGYTPVLDCHTSHLAWK
FDKFLAKLNSRTFKV-EIENPTEAR-GE-CVMQIVPTKPLCVESFEQYPALGRFAVR—-
-------------------
>SPIRONUCLEUS_V In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
-----------------NGKSTLTGHLIFKCGGIDQRTLDEYEKKANELGKGSFKYAWVL
DQLKDERERGITINIALWKFETKKFIVTIIDAPGHRDFIKNMITGTSQADVAILVVAAGQ
GEFEAGISKEGQTREHATLANTLGIKTIILCINKMDDPNVNYSKDRYNEIKTEMTKTLVA
IGYK-PEFNYIPTSGWTGLNIMEKTEKTGWYDGPCLIEAIDSLKPPKRPTDKCLRLPIQD
VYKINGVGTVPAGRVESGCLKPNTLAVFAPTN-TAEVKSVEMHHEELPQAEPGDNVGFNV
RGIAAKDIKKGYVVGDSKSDPPGRVKSFEAQVIIMNHPKKIQ-PGYTPVVDCHTNHMACE
FTKFLQKLNSRTLKP-EQENPTEAR-GE-CIAKITPTKEFSAESYELYPALGRFAVR—-
-------------------
>SPATHIDIUM_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
----------------VDSGKSTSTGHLIYKCGGIDERTIEKFEKEAKQIGKESFKYAGLL
DILKAERARGITIDIALWKFESQKYSFTIIDAPGHRDFIKNMITGTSQADVAILVISAGQ
GEFEAGIGKDGQTREHALLAYTMGIKQVVVAINKMD—AVQYNEERFTDIKKEVIDYLKK
MGSKKKMLMSLPISGFMGDNLIEKSDKMPWYKGDTILEALDRVERPKRPVAKPLRLPLQD
VYKITGVGTVPVGRVETGVIKPGTLVTFAPVNITTECKTVEMHHQQLEEAIPGDNVGFNV
KNISIKDIRRGNVVGDSKNDPPKEAVSFNAQVIVLNHPNKIQA-GYCPVLDCHTSHIACK
FEKLLIKIDRRSGKEIESE-PKEIKNQEAAIVQMVPQKIMVCETFAGYPPLGRFAVRDMK

aThe GCG ToFastA program reliably converts GCG multiple sequence alignments into Pearson FastA format. This
conversion takes advantage of the Mask sequence and changes gap periods to hyphens.
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Table 8
A ReadSeq Screen Tracea

> readseq
readSeq (1Feb93), multi-format molbio sequence reader.

Name of output file (?=help, defaults to display):
EF1A.phy

         1. IG/Stanford           10. Olsen (in-only)
         2. GenBank/GB            11. Phylip3.2
         3. NBRF                  12. Phylip
         4. EMBL                  13. Plain/Raw
         5. GCG                   14. PIR/CODATA
         6. DNAStrider            15. MSF
         7. Fitch                 16. ASN.1
         8. Pearson/Fasta         17. PAUP/NEXUS
         9. Zuker (in-only)       18. Pretty (out-only)

Choose an output format (name or #):
12

Name an input sequence or -option:
EF1A.tfa
Sequences in EF1A.tfa (format is 8. Pearson/Fasta)
  1) GIARDIA_L In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  2) DIPLOMONAD_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  3) HEXAMITA_I In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  4) SPIRONUCLEUS_V In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  5) SPATHIDIUM_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  6) CRYPTOSPORIDIUM_P In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  7) PLASMODIUM_K In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  8) PLASMODIUM_B In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  9) PLASMODIUM_F In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  10) EUPLOTES_A In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  11) EUPLOTES_C In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  12) BLASTOCYSTIS_H In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  13) STENTOR_C In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  14) BLEPHARISMA_J In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  15) ENTAMOEBA_H In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  16) OXYMONADIDA_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  17) DINENYMPHA_E In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  18) TRYPANOSOMA_C In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  19) TRYPANOSOMA_B In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  20) KENTROPHOROS_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  21) EUGLENA_G In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  22) PLANOPROTOSTELIUM_A In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  23) DICTYOSTELIUM_D In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  24) PHYSARUM_P In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  25) CYANOPHORA_P In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  26) PHYTOPHTHORA_I In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  27) STYLONYCHIA_M In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  28) STYLONYCHIA_L In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  29) PARANOPHRYS_C In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  30) TETRHYMENA_P In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  31) TELOTROCHIDIUM_H In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  32) PARAMECIUM_T In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  33) COLPODA_I In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  34) NAXELLA_SP In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  35) PORPHYRA_P In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  36) TRICHOMONAS_T In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  37) TRICHOMONAS_V In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list
  38) NAEGLERIA_A In situ PileUp of: @/users1/thompson/.seqlab-mendel/pileup_36.list

Choose a sequence (# or All):
all

Name an input sequence or -option:<rtn>

aA ReadSeq sample screen trace with user responses highlighted in bold.

All the sequences by typing the word all. When the program again asks for an input
sequence, press return and the file conversion will begin. Table 8 illustrates a sample
terminal session screen trace.

The . . . padded to fit error message is not cause for concern. However, if a GCG
MSF file was used as the input, then an essential change would be required before it
would be correct for PHYLIP. The periods and tildes would need to be changed to
hyphens (dashes). To make these changes the following UNIX command works well:

>  tr  \ ~\ .  \ -  < infile.phy >  outfile.phy
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The first part of the example PHYLIP output file is displayed in Table 9.
Notice that the file begins with two numbers. The first shows the number of

sequences in the matrix and the second lists the length of the matrix including any
gaps and ambiguities. The next section lists the names of the sequences truncated to

Table 9
PHYLIP Formata

 38 439
GIARDIA_L   ---------- ---------- STLTGHLIYK CGGIDQRTID EYEKRATEMG
DIPLOMONAD  ---------- -------NGK STLTGHLIYK CGGIDQRTLD EYEKRANEMG
HEXAMITA_I  ---------- -------NGK STLTGHLIYK CGGIDQRTLE DYEKKANEIG
SPIRONUCLE  ---------- -------NGK STLTGHLIFK CGGIDQRTLD EYEKKANELG
SPATHIDIUM  ---------- -----VDSGK STSTGHLIYK CGGIDERTIE KFEKEAKQIG
CRYPTOSPOR  MGKEKTHINL VVIGHVDSGK STTTGHLIYK LGGIDKRTIE KFEKESSEMG
PLASMODIUM  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
PLASMODIUM  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
PLASMODIUM  MGKEKTHINL VVIGHVDSGK STTTGHIIYK LGGIDRRTIE KFEKESAEMG
EUPLOTES_A  ---------- -----VDSGK STTTGHLIYK LGGTDARTIE KFEKESAEMG
EUPLOTES_C  MGKEKEHLNL VVIGHVDSGK STTTGHLIYK LGGIDARTIE KFEKESAEMG
BLASTOCYST  MGKEKPHINL VVIGHVVAGK STTTGHLIYA CGGIDKRTIE RFEEGGQRIG
STENTOR_C   ---------- -----VDSGK STTIGHLIYK CGGIDKRTID KFDKDASDMG
BLEPHARISM  ---------- -----VDSGK STSCGHLIYK CGGIDKRTIE KYEKEAKEMG
ENTAMOEBA_  MPKEKTHINI VVIGHVDSGK STTTGHLIYK CGGIDQRTIE KFEKESAEMG
OXYMONADID  ---------- ---------- STTTRHLIYK CGGIDQRTLD RFQKESEAMG
DINENYMPHA  ---------- ---------- STTTGHLIYK CGGIDERTIK KFEQESEAMG
TRYPANOSOM  MGKEKVHMNL VVVGHVDAGK STATGHLIYK CGGIDKRTIE KFEKEAAEIG
TRYPANOSOM  MGKEKVHMNL VVVGHVDAGK STATGHLIYK CGGIDKRTIE KFEKEAADIG
KENTROPHOR  ---------- -----VDSGK STSTGHLIYK CGGIDKRTIE KFDKEAAEMG
EUGLENA_G   MGKEKVHISL VVIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEASEMG
PLANOPROTO  ---------- -------AGK STTTGHLIYK CGGIDKRTIE KFEKEAKEIG
DICTYOSTEL  MESEKTHINI VVIGHVDAGK STTTGHLIYK CGGIDKRVIE KYEKEASEMG
PHYSARUM_P  ---------- -------AGK STTTGHLIYK CGGIDKRTIE KFEKEAAEMG
CYANOPHORA  MGKQKTHINI VVIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEAAEIG
PHYTOPHTHO  ---------- -VIGHVDAGK STTTGHLIYK CGGIDKRTIE KFEKEAAELG
STYLONYCHI  ---------- -----VDSGK STSTGHLIYK CGGIDKRTIE KFEKEPAEMG
STYLONYCHI  MPKEKNHLNL VVIGHVDSGK STSTGHLIYK CGGIDKRTIE KFEKEAAEMG
PARANOPHRY  ---------- -----VDSGK STTTGHLIYK CGGIDKRVIE KFEKESAEMG
TETRHYMENA  M-GDKVHINL VVIGHVDSGK STTTGHLIYK CGGIDKRVIE KFEKESAEQG
TELOTROCHI  ---------- ---GHVDSGK STSTGHLIYK CGGIDKRTLE KFEKEAAEMG
PARAMECIUM  G-KDKLHVNL VVIGHVDSGK STTTGHLIYK LGGIDERTIK KFEDEANKLG
COLPODA_I   ---------- -----VDSGK STSTGHLIYK CGGIHKRTIE KFEKEANELG
NAXELLA_SP  ---------- -----VDSGK STTTGHLIYK CGGIDKRTIE KFEKESAEQG
PORPHYRA_P  MGKEKQHVSI VVIGHVDSGK STTTGHLIYK CGGIDKRAIE KFEKEAAEMG
TRICHOMONA  ---------- ---------- STTTGHLIYK CGGLDKRKLA AMEKEAEQLG
TRICHOMONA  ---------- -----VDAGK STTTGHLIYK CGGLDKRKLA AIEKEAEQLG
NAEGLERIA_  ---------- -------AGK STTTGHLIYK CGGIDKRVIE KFEKEAAEMG

            KGSFKYAWVL DQLKDERERG ITINIALWKF ETKKYIVTII DAPGHRDFIK
            KGSFKYAWVL DQLKDERERG ITINIALWKF ETKKFTVTII DAPGHRDFIK
            KGSFKYAWVL DQLKDERERG ITINIALWKF ETKKFIVTII DAPGHRDFIK
            KGSFKYAWVL DQLKDERERG ITINIALWKF ETKKFIVTII DAPGHRDFIK
            KESFKYAGLL DILKAERARG ITIDIALWKF ESQKYSFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWQF ETPKYHYTVI DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETPRYFFTVI DAPGHKDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETPRYFFTVI DAPGHKHFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETPRYFFTVI DAPGHKDFIK
            KGTFKYAWVL DKLKAERERG ITIDIALWKF ETTNRFYTII DAPGHRDFIK
            KASFKYAWVL DKLKAERERG ITIDIALWKF ETENRHYTII DAPGHRDFIK
            KGSFKYAWVL AKMKAERERG ITIDISLWKF ETRKDFFTII DAPGHRDFIK
            KSSFKYAWVL DKLKAERERG ITIDISLFKF QTDKFYSTII DAPGHRDFIK
            KSSFKYAWVL DKLKAERERG ITIDISLFKF QTDKFYFTII DAPGHRDFIK
            KGSFKYAWVL DNLKAERERG ITIDISLWKF ETSKYYFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETGKYYFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETNKYYFTII DAPGHRDFIK
            KSSFKYAWVL DKLKAEREPG ITIDIALWKF ESPKSVFTII DAPGHRDFIK
            KASFKYAWVL DKLKAERERG ITIDIALWKF ESPKSVFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ESPKCVFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERC ITIDIALWKF ETAKSVFTII DAPGHRDFIK
            KASFKYAWVL DKLKAERERG ITIDIALWKF ETTKYYFTII DAPGHRDFIK
            KQSFKYAWVM DKLKAERERG ITIDIALWKF ETSKYYFTII DAPGHRDFIK
            KGSFKYAWVL DKLKSERERG ITIDIALWKF ETAKYYITII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETPKYYVTII DAPGHRDFIK
            KTSFKYAWVL DNLKAERERG ITIDIALWKF ESPKYFFTVI DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWKF ETAKSVFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDIALWNF ETAKSVFTII DAPGHRDFIK
            KGSFKYAWVL DKLKAERERG ITIDISLWNF ETAKRSYTII DAPGHRDFIK

/////////////////////////////////////////////////////////////////

aThe beginning of the sample dataset in PHYLIP format produced by ReadSeq from a FastA format file. ToFastA
stripped zero weight columns and changed gap periods to hyphens reflected in the PHYLIP file.
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ten characters, if necessary, along with all the sequences printed in an interleaved
fashion. Only the first sequence block lists the names, all others just give the sequence
data itself.

Remember to evaluate the terminal ends of the data matrix. If any of the implied
indels are uncertain (if the sequence lengths were different), then question marks,  ? ,
are usually more appropriate than hyphens. The hyphens represent gaps caused by an
insertion or deletion; this could be misleading. Therefore, edit the output from
ReadSeq to replace leading and trailing hyphens in the alignment with question marks
or the unknowns characters n or x depending on which is appropriate. This is also an
excellent point to verify that the sequence names are exactly as you wish in the final
PHYLIP plots. PHYLIP sequence names can contain very limited punctuation and
mixed capitalization and can be up to ten characters in length. Be very careful with
these edits so that the alignment does not shift out of phase.

One vital point that can not be repeated often enough is the dramatic importance of
your multiple sequence alignments. Subsequent analyses are absolutely dependent upon
them. If you are building multiple sequence alignments for phylogenetic inference, do
not base an organism’s phylogeny on just one gene. Many complicating factors can
make interpretation difficult. Unusual phylogenies can result from bad alignments,
insufficient data, abjectly incorrect models, saturated positions (homoplasy), composi-
tional biases, and/or horizontal gene transfer. Use several genes, e.g., the Ribosomal
Database Project (RDP) (see Website: http://rdp.cme. msu.edu/html/) to provide a good,
largely accepted, alignment and phylogenetic framework from which other phylog-
enies can be compared. The complete RDP can be installed on a local GCG server in
aligned GCG format. Otherwise desired data subsets can be downloaded from RDP
and loaded into SeqLab. Anytime the orthologous phylogenies of organisms based on
two different genes do not agree, there is either some type of problem with the analysis,
or you have found a case of lateral transfer of genetic material. Paralogous gene phy-
logenies are altogether another story and if possible should be based on sequences all
from the same organism.

There are many situations that will present vexing alignment problems and diffi-
cult editing decisions. Most datasets that you will encounter will not have many
homologs or related domains, or you will be working on a paralogous system. These
are the times that you will really have to think.

Gunnar von Heijne in his quite readable but somewhat dated treatise, Sequence
Analysis in Molecular Biology; Treasure Trove or Trivial Pursuit (1987), provides an
appropriate conclusion:

 “Think about what you’re doing; use your knowledge of the molecular system
involved to guide both your interpretation of results and your direction of
inquiry; use as much information as possible; and do not blindly accept every-
thing the computer offers you.”

He continues:

 “. . . if any lesson is to be drawn . . . it surely is that to be able to make a useful
contribution one must first and foremost be a biologist, and only second a theo-
retician . . . . We have to develop better algorithms, we have to find ways to cope
with the massive amounts of data, and above all we have to become better biolo-
gists. But that’s all it takes.”
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Glossary and Abbreviations

Expectation value (E-value)  The likelihood that a particular sequence alignment
is due to chance. The value is dependent on sequence and database composition and
size and on how often a researcher performs database searches. Most modern sequence
database similarity programs such as the BLAST and FastA programs provide this
statistic based on the Extreme Value Distribution. The closer the value is to zero, the
more significant the match.

Mask  In the context of a multiple sequence alignment a mask can be used to create
variants of your dataset that ignore certain columns and/or over emphasize other col-
umns of the data, without having to actually duplicate the original dataset and edit it
into the desired variants.

Motif  A motif is a described and catalogued region of a sequence, usually shorter
than a domain, and often, but not always, associated with some biological structural,
functional, or regulatory role. Motifs are commonly represented as consensus pat-
terns, but are often described by profiles as well.

Profile  A profile is a statistical description of a multiple sequence alignment, com-
monly of a region or a motif within a multiple sequence alignment. Profiles take many
forms associated with the particular programs that create them, e.g. ProfileBuild,
HMMer, MEME, but always increase the importance of conserved residues or bases
and decrease the importance of variable areas.

Rich Sequence Format (RSF)  GCG’s proprietary multiple sequence format con-
tains sequence data, sequence names, and sequence annotation, and is read and dis-
played by their SeqLab Graphical User Interface (GUI). The annotation includes all
database reference information, if the sequences come from a database.

Seed  In the context of multiple sequence alignments and profiles, a seed refers to a
profile that can be used to easily create larger and larger alignments.

Wintel  This is a contraction of Microsoft’s Windows Operating System (OS) and
the Intel brand central processor unit (cpu) that usually exists on computers running
that OS.

X-server  The X display system is the ‘way’ that UNIX OS computers pass graph-
ics back and forth. This standard was established back in the early days of computing
and seems somewhat backwards in that X windows are ‘served’ up on your terminal
from a ‘client’ program on the UNIX server computer. Therefore to display X win-
dows on personal, non-UNIX computers, you need to install emulation software for
the X-server function.

Z-score and z-score   The Z-score is based on a normal Gaussian Distribution and
describes how many standard deviations a particular score is from the distribution’s
mean. This is confusingly in contrast to Bill Pearson’s z-score in the FastA programs
that is a linear regression of the opt score against the natural log of the search set
sequence length. The two values, Z and z, have entirely different magnitudes and
should not be correlated.

Suggested Reading

SeqLab and Multiple Sequence Reading
Etzold, T. and Argos, P. (1993) SRS—an indexing and retrieval tool for flat file data

libraries, Comp. Appl. Biosc. 9, 49–57.
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Medicine, National Institutes of Health, Bethesda, MD.
(For public domain software, see Website: http://www.ncbi.nlm.nih.gov/Entrez)

Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W., and Gillevet, P. M. (1994) The
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Comp. Appl. Biosci. 10, 671–675.
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Similarity Searching
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic

Local Alignment Tool, J. Mol. Biol. 215, 403–410.
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34Overview of the Tools
for Microarray Analysis
Transcription Profiling, DNA Chips, and Differential Display

Jeffrey A. Kramer

Introduction

In the infancy of the computer revolution of the 1960s, Moore’s law, which stated
that personal computer speeds would double every 18–24 mo, was coined. A similar
law of genomic data could be stated today. The genomic revolution has changed the
way that molecular biology is carried out and has necessitated a brand new field of
scientific endeavor, bioinformatics. With the increasing number of whole genome
sequences being completed, including the recent reports of the completion of the
human genome sequence and that of the mouse, it is becoming increasingly possible to
study the effects of multiple perturbations on several complex and interconnected
gene-signaling pathways. As molecular biology moves to this systems approach to
understanding the complex control mechanisms mediating growth, development, and
differentiation, the amount of data generated is staggering. Bioinformatics is, among
other things, the science of building novel approaches and new tools capable of sort-
ing through vast quantities of genomic data and enabling molecular biologists to draw
meaningful conclusions from their data.

The science of genomics can be divided into three main areas, specifically, DNA
sequencing, transcription profiling, and proteomics. DNA sequencing is the corner-
stone upon which the entire genomic revolution is built. Transcription profiling (TxP)
is the study of the response that multiple messenger RNA species present in a given
tissue or cell type to specific conditions or treatments. Proteomics is the study of
changes in part or all of the protein species present in a given tissue or cell type,
including post-translational modifications such as phosphorylation and glycosylation.
The three branches of genomics deal with three different macromolecules: DNA, RNA,
and proteins. Sequencing aims to unravel the genetic information contained within the
genome (DNA). Transcription profiling seeks to understand a tissue or cell’s tran-
scriptional response to its environment by identifying all or many of the individual
species of messenger RNA and how they change as the cell’s environment changes.
Proteomics studies the changes in the protein complement present in a specific tissue
or cell type under a particular set of conditions. As such, each of the three branches
of the science of genomics has specific informatics problems often requiring unique
solutions. An understanding of the biological and technical specifics of the questions
asked and the answers being sought by scientists in each of the three branches of
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genomics is necessary to ensure that bioinformatic solutions are of maximum utility.
This chapter will attempt to describe the theory and the biology underlying some of
the techniques presently being used in transcription profiling.

As detailed earlier, genomic DNA sequencing seeks to identify all of the genes
present in a given organism’s genome. Bioinformatic approaches have been gener-
ated that are capable of predicting genes based solely on genomic sequence data.
However, final verification of each predicted gene relies on the identification of a
transcription product (a messenger RNA molecule) corresponding to the predicted
gene sequence at some point in the lifetime of the organism being studied. Similarly,
changes in the occurrence and level of individual mRNA molecules in a particular
cell will not always directly correlate with the levels of translation products (pro-
teins) present. Finally, the identity and relative levels of individual proteins present
in a cell may not be an adequate predictor of protein activity, as numerous post-
translational modifications and protein interactions may effect the activity and local-
ization of proteins within a tissue or cell. For all these reasons, simply identifying all
of the mRNA species present, and the levels at which they are present at a particular
time, will not yield a complete picture of what is happening inside a particular popu-
lation of cells. Still, elucidating those mRNA species present and identifying those
genes whose expression levels change the most in response to specific conditions or
treatments is a useful way to begin to unravel the cellular mechanisms of disease and
of drug response. As such, TxP holds the promise of identifying new targets for dis-
ease intervention. For this reason the academic community, pharmaceutical and bio-
technology industries have embraced transcription profiling as a vital technology.

Transcription profiling, the identification of a profile or fingerprint of some or all
of the genes present in a given tissue or cell population at a particular time, need not
involve all of the genes in a particular population. Indeed, as the human genome was
only recently completed and since the full complement of human genes remains to be
determined, true profiling of every human gene in any given experiment is impos-
sible, at least for the time being. However, any attempt to study the transcriptional
response of multiple genes can be said to be transcription profiling. As such, there are
several experimental approaches to TxP. In general, the experimental methods can be
divided into two categories, open and closed. Open methods do not rely on previous
knowledge of the sequence or even the identity of the genes that comprise the genome
of the organism being studied. Instead, open methods seek to identify mRNA species
that demonstrate the most striking or the most interesting response to the experimental
conditions utilized and then characterize those species at a sequence level. Closed
systems rely on the previous identification and isolation of each RNA species being
assayed, and as such, only those genes for which sequence information is available
can be studied. Examples of both open and closed methods of transcription profiling
and the bioinformatic issues surrounding these activities will be discussed. Differen-
tial Display, an example of an open transcription profiling methodology is briefly
discussed below. DNA microarrays will be discussed at more length as the primary
example of a closed transcription profiling technique.

Differential Display
Open transcription profiling approaches have a clear advantage over closed meth-

odologies since they do not require extensive knowledge of the sequence of the genes
that make up the genome. However, these technologies tend to be somewhat labor
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intensive and are often quite expensive. Perhaps the most widely used open transcrip-
tion profiling approach is differential display. There are several permutations of dif-
ferential display, including Celera’s Amplified Fragment Length Polymorphism
(AFLP)® and Millennium Pharmaceutical’s Rapid Analysis of Differential Expres-
sion (RADE)™. All differential display methods seek to deconvolute the highly com-
plicated contents of the biological samples being studied in an effort to facilitate the
identification of those species most highly affected by the conditions or treatments
being studied. Differential display techniques begin with the preparation of RNA
from two or more cell populations, such as diseased and normal, or treated and
untreated. The first step is often the preparation of double-stranded cDNA. Upon
preparation of double-stranded cDNA various methods are employed to identify those
species that are differentially expressed. In the differential display technique known
as AFLP ® the double-stranded cDNA molecule is digested with restriction endonu-
cleases, enzymes that cleave double-stranded DNA at specific sequences. Double-
stranded linkers are annealed to the ends of the cDNA molecules and used as priming
sites for amplification using polymerase chain reaction (PCR). By using a PCR primer
that differs in its final 3'-most nucleotide it is possible to separate the complex
mixture of amplified products into four different populations. This tends to reduce
the complexity of the amplified products that are subjected to polyacrylamide gel
for electrophoresis (see Fig. 1). Upon separation by gel electrophoresis, bands that

Fig. 1. Polyacrylamide gel electrophoresis is used in differential display to identify fragments of
regulated genes. Double-stranded complementary DNA is prepared from populations of RNA, then
fragmented with restriction endonucleases. Linkers are attached to the ends of the fragments, then the
fragments are amplified using the polymerase chain reaction (PCR). The PCR products are separated
by polyacrylamide gel electrophoresis. Differentially expressed genes will yield restriction fragments
of different intensity in the treated vs control samples. The primary treated and control samples give
a complex mixture of unaffected and differentially expressed fragments. For this reason, fragments
are often parsed or selectively amplified using one or more degenerate nucleotide at the 3'-position
of one or both PCR primers to deconvolute the mixture of amplified species. Addition of a single
degenerate nucleotide in one of the PCR primers results in a partial deconvolution of the sample,
allowing differentially expressed fragments to be separated and excised more easily.
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correspond to differentially expressed genes (i.e., those that change in intensity on
the gel) are excised, purified, and sequenced. In this way, beginning with no prior
knowledge of the sequence of the genes expressed in the biological samples being
studied, the researcher generates a sequence of only those genes that are of interest
(i.e., those that are differentially expressed). The informatics issues surrounding dif-
ferential display data analysis are largely the same as the issues surrounding DNA
sequencing. That is, the role of the bioinformatician in analyzing differential display
data comes close to the end of the technique, and consists largely of database mining
and repetitive element masking.

DNA Microarrays

Perhaps the most visible transcription profiling methodology is the DNA micro-
array, or gene chip. DNA microarrays consist of an array of oligonucleotides or
complementary DNA molecules of known composition affixed to a solid support,
typically nylon or glass. Gene chips are usually categorized into one of two classes,
based on the DNA actually arrayed onto the support. An oligo array is comprised of
synthesized oligonucleotides, whereas a cDNA array contains cloned or PCR-
amplified complementary DNA molecules. Although the purpose of either type of
array is the same, specifically, to profile changes in the expression level of many
genes in a single experiment, the two types of arrays present unique bioinformatic
challenges. However, most microarray data analysis methods share common themes
and goals. As such, the challenges and approaches to data mining are often common
between all TxP platforms. The bioinformatics tasks required to complete a thor-
ough analysis of even a single DNA microarray experiment are broken down into
four main categories. The four categories are microarray quality control, data visu-
alization and reporting, data analysis, and project organization. Many tools have
been developed that simultaneously address several of these categories. For the sake
of simplicity, each tool is mentioned only once, but the full utility of each tool may
be significantly greater than can be described in a single chapter.

Microarray Quality Control

The two main varieties of microarrays, oligo arrays and cDNA arrays, present
different challenges for data QC. These two general classes of array and their unique
features will be described in detail in the following. However, regardless of what
type of array is used, the data must first pass minimum quality control parameters
before any analysis of TxP results can be performed. Microarray experiments involve
numerous multi-step procedures at the laboratory bench, both in preparing the actual
array and in preparing the labeled probes, as well as hybridizing the probes then wash-
ing and reading the microarrays. As such, there are myriad sources of potential error
and variability in a microarray experiment and microarrays are often prone to high
rates of false-positive and false-negative results. It is therefore vital that all micro-
array data be passed through several quality control steps. Even after extensive mea-
sures are taken to ensure high-quality data, it is imperative that key results be validated
by alternative methods. Failure to address these issues will result in significant loss of
time and resources spent chasing down numerous false leads. However, as an
informatics problem the solution to many of these issues is often trivial. For this rea-
son, the bioinformatician must be adept at applying statistical approaches to ensure
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that suboptimal quality data is omitted from further consideration. The first-quality
control activity after the microarray has been read is to ensure that adequate signal/
background and balance was achieved for each array hybridization experiment. This
involves an inspection of total average signal and total average background, as well as
calculating local signal to background for each element on the array. Elements with
signals outside the linear range of the reader, or elements with a very low signal to
background should be omitted from further consideration. This is vital to ensure that
the resulting data report contains only valid values. Additional quality control metrics
are frequently specific for the type of microarray being used. Therefore, a description
of the differences between oligonucleotide and cDNA arrays is pertinent.

Oligonucleotide arrays contain short, synthesized oligonucleotides affixed to a solid
matrix. Perhaps the best-known commercially available oligonucleotide microarray is
the Affymetrix GeneChip®. Individual Affymetrix arrays typically contain 16–20 oli-
gonucleotides for each of up to ~12,000 genes arrayed onto a glass slide approx the
size of a microscope slide. Oligos are selected from multiple regions of the gene
sequence from which they are derived (see Fig. 2). The oligos are typically 25 nucle-
otides long, and attempts are made in their design to maintain similar GC content,
ensuring similar kinetics of binding to the labeled probe. A theoretical difficulty in
using short oligonucleotides is the potential for cross-hybridization with other mRNA
species. The human genome contains more than 30,000 genes and ~3 billion nucle-
otides. It is therefore difficult to design short oligonucleotides that are specific to their
individual target gene and do not cross hybridize with multiple cDNA probes. To
address this, each gene represented on the Affymetrix GeneChip® has several oligos
designed to be a perfect match to the target gene to address the potential lack of speci-
ficity of short oligonucleotides. Additionally, each perfect match oligo has a paired
oligo designed to be identical to the perfect match oligo except for a single nucleotide
mismatch (see Fig. 2). Many of the mismatched probes and indeed some of the per-
fect-match probes may cross-react with closely related cDNA species. If a mismatched
probe gives a significant signal, both it and its perfect match partner may be excluded
from consideration. With the potential for cross reactivity in mind, oligonucleotides
that are arrayed are designed to regions of low sequence conservation with genes that
are closely related to the target gene. Additionally, Affymetrix array analysis consid-
ers signal intensity and signal to background levels for every perfect match/mismatch
pair spotted onto the array. Pairs of perfect match/mismatch elements that give signifi-
cantly more signal than the mismatch element are considered to have a high average
difference (see Fig. 3). Pairs with approximately the same degree of signal are referred
to as low average difference and a negative average difference refers to pairs in which
the mismatch oligonucleotides signal is greater than that of the perfect match oligo-
nucleotides. Only those perfect match elements with relatively high signal intensities,
and a high average difference are used to make a present or absent call. As well as
investigating each element, data concerning all of the perfect match/mismatch pairs
that correspond to a gene are considered. Minimum requirements with respect to the
positive/negative ratio (pairs where the perfect match is greater than the mismatch
vs those where the mismatch is greater), positive fraction, and log average signal ratio
are considered. Those elements that do not meet minimum signal intensity and cutoffs
are referred to as absent. The signal from these elements is typically not considered in
the subsequent analyses. These elements that meet the requirements can be evaluated
against other arrays, to assess increase, decrease or no change in signal.

See
companion CD
for color Fig. 3
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Because the oligonucleotides are designed to be similar with respect to length, GC
content and melting temperature (TM), the kinetics of binding of the labeled probe are
highly reproducible from one element to the next. For this reason, oligonucleotide
arrays are often referred to as single-channel arrays. That is, a labeled cDNA popula-
tion from a single biological source can be hybridized onto each microarray. Because
the kinetics of hybridization are effectively identical for all of the elements on an
oligonucleotide array, samples hybridized onto separate arrays can be compared with
only minimal mathematical signal balancing. In this way, each individual control
sample, and each treated or affected sample is used to prepare a labeled probe, then
hybridized onto an individual microarray. This means that within each individual
array, it is theoretically possible to compare one element (for example an element
corresponding to acyl CoA oxidase, or ACOX) with each other element (such as one
corresponding to fatty acid synthase, or FAS). The signal at one element relative to
any other element may contain information about the environment and response of
the biological sample from which the probe was generated. For example, a liver from
a rat treated with a novel chemical entity might have an increased level of ACOX and
decreased level of FAS signal relative to an untreated rat liver. The increase in ACOX
and the concomitant decrease in FAS, might suggest something about the new com-
pound to an investigator. Additionally, the values at each element, after some mini-
mal balancing based upon signal intensity of a number of control elements, can be
compared to each matched element on a second microarray. The values that result
from these comparisons can be expressed a number of ways.

Fig. 2. Affymetrix uses several oligonucleotides to get broad coverage of individual genes. Each
gene is represented by oligos designed to be a perfect match to the target sequence, as well as oligos
designed to contain a single mismatch. Pairs of perfect match and single nucleotide mismatch oligo-
nucleotides are designed to different regions of each gene. Typically 16 or 20 oligo pairs are arrayed
for each gene represented on the GeneChip®. The oligonucleotides are typically 25 bases in length.
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Fig. 3. False color images demonstrate signal intensity on an Affymetrix GeneChip®. Signal inten-
sity at each element is indicated by color, with lighter, hotter colors representing greater signal inten-
sities. Many single-channel, oligonucleotide arrays, including Affymetrix arrays, include several
oligonucleotides for each gene. For this reason, there tend to be clusters of elements with similar
signal intensity, representing all the elements that comprise a single gene. In the expanded region of
the array, individual Perfect match/mismatch paired elements can be visualized. Perfect match/mis-
match pairs for which the signal intensity of the perfect match oligo is greater than for the mismatch
oligo (high average difference pairs), are used when comparing arrays to make calls regarding differ-
ential expression.

Unlike oligonucleotide arrays, cDNA array elements contain longer cloned or PCR
amplified cDNAs. Often the length of the cDNA species arrayed onto a cDNA array
varies considerably. Additionally, the GC content varies, and the TM can vary signifi-
cantly from element to element. For this reason, the time required for the hybrid-
ization of a labeled probe onto the microarray to come to a steady state is often greater
than the stability the labeled probes would allow. For this reason cDNA arrays tend
to be hybridized for preset durations according to standard operating procedures. As
a result of the short hybridization times relative to steady state, most species of
labeled cDNA in the probe do not adhere to steady state binding kinetics, and the
binding at each element varies according to the TM of the probe specific for each
element. Because of this, the signal at any element on an individual cDNA microarray
cannot be reliably compared with an other element on that array in a meaningful way.
To continue the previous example, if the signal at the ACOX element is greater than
that for the FAS element, it may be a function of the composition and TM of the two
arrayed elements and not due the amount of each message present in the labeled probe.
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The way to address this issue is through the use of differential or 2-channel hybrid-
ization. Two populations of mRNA (i.e., treated and untreated, diseased vs normal,
and so on) are labeled and hybridized onto an individual cDNA microarray. A con-
trol sample is used to prepare cDNA labeled with one fluorescent label (such as Cy3),
and a treated or affected sample is labeled with an alternate fluor (such as Cy5). Both
labeled cDNA populations are then mixed and applied to the microarray for hybrid-
ization (see Fig. 4). If there was twice as much of a particular RNA species present in
the Cy5 labeled probe as in the Cy3 labeled probe, twice as much of the Cy5 probe
will hybridize to the corresponding element on the array, regardless of the TM of
the arrayed element or the probes. Thus, although the single-channel data in either
the Cy5 or the Cy3 channel on a cDNA array may not be informative, the ratio of
signal intensities in both channels is. For this reason, cDNA array experiments are
often referred to as 2-channel hybridizations.

The main deliverable for the biologist using microarrays is information regarding
the differential expression of genes. This differential expression is determined by
comparing two oligo arrays, or the two channels of a cDNA array. In order to com-
pare the two channels in a 2-channel array, or to compare two single-channel arrays,
the signal intensities must first be balanced. The simplest approach to balancing uses
the total average signal in one channel divided by the total average signal in the other
channel to generate a balance coefficient. This can be demonstrated graphically
using an expression histogram (see Fig. 5), where the two lines on the histogram
represent either the two channels in a cDNA array experiment, or two single-channel
oligo arrays. Slight differences in the amount of probe, or in the labeling reaction
efficiency can result in higher total signal intensities on one channel than on another.

Fig. 4. Experiments using cDNA microarrays require two-channel hybridizations. Two channel
or cDNA arrays contain cloned or PCR amplified fragments of genes. Two separate populations of
RNA are labeled with different fluorescent dyes. The dye-labeled samples are applied to the array,
and differential hybridization is measured by recording fluorescence in both channels at each ele-
ment. Single-channel signal intensity at any element on a cDNA array may not accurately reflect the
amount of the message present in the original biological sample relative to any other message.
Instead, the ratio of Cy5 vs Cy3 labeled cDNA probe at each element contains information regard-
ing differential expression.
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A balancing coefficient will even out such experimentally derived sources of error.
The balance coefficient is used to correct the signal in one channel (or on one array)
at all of the elements on the array. If the total average signal were 2500 in the Cy3
channel, and 2000 in the Cy5 channel, the balance coefficient would be 1.25 (2500/
2000). The Cy5 signal for each element would be multiplied by 1.25 to generate a
balanced Cy5 signal. Alternatively, the Cy3 signal at each element could be corrected
by a factor of 0.8 (2000/2500) to generate a balanced Cy3 signal.

Other more complex methods of balancing 2-channel arrays have been used. One
difficulty with simply using total average signal is that it ignores the biology of the
samples being assayed. For example, if a scientist is comparing an untreated cell popula-
tion with a population of cells treated with a potent transcriptional activator, the treated
cell population may have significant increases in the levels of many genes. The increased
signal in the treated sample may be due to real and significant increases in transcription.
Applying a balance coefficient based solely upon signal intensity may over correct many
of the biologically relevant changes in expression. Additionally, balancing simply by
total average signal fails to account for changes in signal and signal to background across
a microarray. If the signal and the background in both channels are similar and evenly
distributed across the entire array (see Fig. 6), a simple balancing approach is adequate.
However, if the background intensity in the two channels is very different, or not evenly
distributed, other approaches may be needed. For example, it is not unusual to see differ-
ences in signal and background due to different labeling efficiencies and gradient
effects. Figure 7 shows an example of a 2-channel array with both a gradient effect and
a large difference in signal and background between the two channels. Although this
array experiment has significant issues, there may still be some useful data present. How-
ever, care must be taken before trusting any expression data resulting from this array.

Fig. 5. An expression histogram from a two-channel hybridization reveals how well the channels
are balanced. An expression histogram is a convenient way to visualize differences in input material
and/or labeling efficiency for a two-channel hybridization. After balancing the array data using a
balance coefficient, the two lines should largely overlap. Balance coefficients can be determined in
a number of ways. The simplest way to calculate a balance coefficient relies on a ratio of total
average signal in both channels.
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Fig. 6. False color images can be used to demonstrate signal intensity in both channels of a two-
channel array hybridization. Signal intensity at each element in either channel is indicated by
color, with lighter, hotter colors representing greater signal intensities. After balancing, elements
that give greater intensity in one channel than in the other are considered to represent differentially
expressed genes.

Fig. 7. Unacceptable hybridization on a two-channel array is determined by careful examination
of several parameters. In some cases, total average signal intensity, total average background, or both
are very different between the two channels of a two-channel hybridization. If the background is
uniform in each channel or if a gradient is present in both channels, it can often be corrected. If, as in
the example shown, there is a gradient effect in one channel and not the other, it may be very difficult
to achieve reliable expression data from the microarray.

First, note that there appears to be a gradient in the background of the Cy3 channel that is not present
in the Cy5 channel. That is, the background is greater on the left side of the array. Simply balancing
based on the total average signal ignores the fact that the higher background on the left part of the
array may cause the signal intensities of the elements on that portion of the array to be affected
differently than elements on the right side of the array. Balancing elements individually by signal to
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local background may address this problem. An additional problem with this array is
that the balance coefficient will be unusually large. A very large or a very small balance
coefficient may bring seemingly meaningful signals from noise, or mute signals beyond
the linear range of the reader used to read the hybridized array. However, re-running this
experiment may not be an option owing to the prohibitive costs often associated with
running many microarrays. Additionally, there may be some useful and reliable infor-
mation in this experiment. For example, the arrows point to an element that may be
differentially expressed in the Cy5-labeled population when compared to the Cy3-
labeled population. Therefore, new approaches to glean useful data from such an experi-
ment, without providing false or misleading data is a key challenge.

Another type of problem that often occurs on both single and 2-channel array
experiments is caused by imperfections or impurities on the array. Figure 8 shows
several examples. In Fig. 8A, the line running across the array will change the signal
to background of elements along its course. Additionally, elements along the course of
the line may appear to have a signal that is significantly above the global average
background. The array in Fig. 8B appears to contain a bit of dust on the top of the

Fig. 8. Imperfections and impurities that affect hybridization and therefore expression data may
occur on microarrays. (A) Some microarrays may contain imperfections that occur during the fabrica-
tion process. (B) Elements can also be affected by impurities introduced at the time of the hybridization.
The comet-like imperfection seen here is most likely due to a dust particle. (C) It is uncertain what
caused the impurity on the lower portion of this array. It may be an artifact from the scanning process.
Regardless of the cause, the affected elements may need to be discarded from further consideration.
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array. The elements in the tail of the comet-like feature will be affected similarly to
those near the linear imperfection in Fig. 8A. The array in Fig. 8C has an unusual
pattern of unknown cause. The affected elements should be omitted from further con-
sideration. Such impurities may occur on either single-channel or 2-channel arrays. If
they are faint and if they occur similarly in both channels of a 2-channel array, they
might be corrected for. But in general, the elements affected by these features should
usually be discarded from the final data report.

Software Tools for Microarray Analysis
Several proprietary software tools exist that allow scientists to select individual ele-

ments or groups of elements for masking from further analysis. However many of these
tools tend to be designed to work with only one type of array. A general tool capable of
working with all types of arrays that a laboratory might use has yet to be made available.
The Institute for Genome Research (TIGR) (see Website: http://www.tigr.org/), has a
software tool called the TIGR Spotfinder available to academic users at no charge. TIGR
Spotfinder is a PC/Windows compatible software tool written in C/C++. It was designed
for Microarray image processing using 16-bit gray-scale TIFF image files generated by
most microarray scanners. Spotfinder allows for manual and automatic grid drawing,
and spot detection can be adjusted for use with arrays with multiple size spot and spac-
ing. One particularly useful feature of the TIGR Spotfinder software tool is that it allows
the user to adjust the grid to be sure that an entire spot is included in the reference field
(see Fig. 9). It is not uncommon for spots on a microarray to be off center, and spot
finding software using a static grid may often cut off portions of spots. Spotfinder pro-
vides a local background correction for each spot, and calculates ratios using one of
several user-preferred criteria. One other interesting feature of the TIGR Spotfinder soft-
ware is the ability to remove saturated pixels from intensity calculations. This feature
helps calculate accurate differential expression values for extremely abundant messages,
the fluorescent signal for which may be beyond the linear range of the detector. Finally,
Spotfinder allows the data to be exported as an excel file and into a format compatible
with other TIGR software tools.

The National Human Genome Research Institute (NHGRI) microarray project, (see
Website: http://www.nhgri.nih.gov/) is also developing a microarray analysis tool,
called ArraySuite. This suite is a collection of extensions written for IPLab, an image-
processing package by Scanalytics (see Website: http://www.scanalytics.com/). The
NHGRI approach to microarray image analysis is divided into several discreet tasks,
including array segmentation and spot identification, background intensity determina-
tion, target detection and signal-intensity determination, and ratio calculation. The
various capabilities being designed into the ArraySuite tool set will also permit ratio
analysis, a comparison of the intensities of a number of housekeeping genes, as well as
multiple image analysis. The NHGRI is also working on tissue arrays, a method of
arraying up to 1000 fixed tissue samples onto a glass slide for high throughput in situ
analysis of DNA, RNA or protein. This novel approach requires additional new
bioinformatic approaches to data acquisition and analysis.

Data Visualization and Reporting

After the quality of the microarray data has been confirmed, the data must be
reported in a way that facilitates the rapid determination of significant results. This
is a significant challenge, as the amount of data provided by a single microarray
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experiment is very large. Simply reporting the data as a list of signal intensities and
element IDs is inadequate. As microarrays are prone to error, it is often desirable to
verify microarray findings using other molecular biological methodologies. Data
must be expressed in a way that can be compared to results from other molecular
techniques. Typically, the purpose of running microarray experiments is to identify
new targets for intervention into disease; new molecular markers and predictors of
disease, toxicity, or clinical outcome; or a better understanding of molecular mecha-
nisms. In all of these applications, the purpose for the experiment cannot be met by
simply providing a list of regulated genes. However, as a first step, it is necessary to
express the results in a format that is both intuitive and amenable to further analysis.
Most array analysis software packages calculate differential expression values from
the elements that pass quality-control parameters. Several methods of relating dif-
ferential expressions exist. The simplest is a ratio of treated sample intensity divided
by control intensity for each element. If the Cy3 channel of a 2-channel array con-
tained the control sample probe and the Cy5 channel contained the treated sample
probe, the Cy5 signal intensity is divided by the Cy3 signal. One difficulty with the

Fig. 9. The TIGR Spotfinder tool allows the user to adjust the grid to be sure that an entire spot is
included in the reference field. It is not uncommon for spots on a microarray to be off center. Spot
finding software that uses a static grid may often cut off portions of spots, resulting in a loss of useful
information. Additionally, badly off-center spots may result in a portion of one spot appearing in the
grid of an adjacent spot, resulting in false-positive gene expression values.
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expression ratio is obvious when the data is graphed. Down regulated genes tend to
be collapsed between 0 and 1 on the graph, making it difficult to distinguish among
down regulated genes. This is easily alleviated by using a log scale when graphing,
however the degree of down regulation is not as intuitive as using simple ratios.
Some researchers use an arithmetic log of the expression ratio instead of a simple
ratio. A difficulty with this approach is that significantly regulated genes yield
deceptively small log ratio values (see Table 1). Another way to report differential
expressions is with the use of the balanced differential expression value (BDE). The
BDE is calculated using Equation 1, assuming that Cy5 is the treated and Cy3 is the
control sample.

If Cy5  Cy3, then BDE = Cy5/Cy3, else BDE = –1 × (Cy3/Cy5) [Eq. 1]

A difficulty with the BDE value is that it leaves a gap between 1 and –1. That is, it
is impossible to calculate a BDE of 0. This causes a problem when trying to compare
expression values with phenotypes, or when trying to calculate a meaningful average
BDE for a group of similarly affected or similarly treated biological samples. Addi-
tionally, two elements that are effectively identical may appear to be significantly
different from one another (see example genes f and g in Table 1). For this reason,
some bioinformatic scientists use a fractional Balanced Differential Expression
(fBDE) value, essentially is a BDE collapsed by 1. It is calculated using Equation 2
where:

fBDE = (Cy5 – Cy3)/MIN (Cy5, Cy3) [Eq. 2]

the Cy3 (control sample signal intensity) is subtracted from the Cy5 treated sample
intensity), and this value is divided by the smaller of the two values. Table 1 shows
several theoretical control and treated signal intensities, and the values calculated
using these four methods of showing differential expression. The hypothetical data in
Table 1 is first corrected using a balance coefficient of 1.25 to generate a balanced
Cy5 (bCy5) signal intensity.

Another issue that must be considered when reporting microarray data is the sig-
nificance of fold induction values. Simply stating a differential expression value does
not reveal anything about the reliability of that value. For example, genes d and e are
both regulated fivefold. However, the signal intensity for the two channels (or on the

Table 1
Differential Expression

Gene Control Treated Log
ID (Cy3) (Cy5) bCy5 Ratio ratio BDE fBDE

a 500 800 1000 2.00 0.30 2.00 1.00
b 500 200 250 0.50 –0.30 –2.00 –1.00
c 500 100 125 0.25 –0.60 –4.00 –3.00
d 500 80 100 0.20 –0.70 –5.00 –4.00
e 500 2000 2500 5.00 0.70 5.00 4.00
f 500 404 505 1.01 0.00 1.01 0.01
g 505 400 500 0.99 0.00 –1.01 –0.01
h 250 600 750 3.00 0.48 3.00 2.00
i 2500 3800 4750 1.90 0.28 1.90 0.90
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two arrays if this were an oligonucleotide array experiment) for gene e is significantly
higher than for gene d. Similarly, although gene i has a smaller differential expression
value than gene h, the signal intensity at element i is strong, whereas that for element
h is more questionable. This issue can be envisioned by examining a scatter plot from
two microarray experiments (see Fig. 10). In the examples shown, the first scatter plot
shows very tight clustering of elements around the 1 X line. The second scatter plot
shows significant deviation from the 1 X line. This does not mean that useful data
cannot be attained from the second array. However, the cut-off of reliable differential
expression values will be different for the two experiments. The arrow in Fig. 10A
points to a gene with a balanced differential expression value of approx 1.6. This gene
is clearly separated from the background noise of unregulated genes, and the value of
1.6 can be trusted with a good degree of comfort. Statistically, the confidence that this
value represents an actual gene regulation event is strong. In the experiment shown in
Fig. 10B, a BDE of 1.6 is clearly not significant. If a researcher were to give attention

Fig. 10. Scatter plots can be generated from a two-channel hybridization or from any two single-
channel hybridizations, after data is balanced with respect to signal intensity. Signal intensity for each
element from 2 oligo arrays, or from both channels of a cDNA array is graphed on a logarithmic scale.
Genes lying on the slanted line with a slope of one are not regulated. Those elements that demonstrate
differences in signal intensity in the two channels (or on two different oligo arrays) after balancing may
be differentially expressed. The differential expression value for the element marked in (A) may be
reliable, even though it represents only a 1.6-fold difference in the signal intensities of the two samples.
A similar differential expression value in (B) would almost certainly be meaningless.
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to every gene regulated at 1.6-fold or more, the list of regulated genes would be
difficult to manage. Statistical methods to calculate meaningful expression values for
each individual microarray experiment would provide valuable confidence limits for
the expression values. Among the criteria that must be addressed in such a statistical
confidence limit are the signal intensity and the ratio of signal to background. Simply
reporting a BDE does not reveal the strength of the data upon which the expression
value is based. Figure 11 shows a graphical demonstration of one approach to this
issue. Any points within the two lines closest to the diagonal are not considered to be
significantly different. For example, the element marked with a gray arrow is not
considered reliable, due to low signal intensity, even though the BDE is about four-
fold. However, the element marked with a white arrow may reflect a legitimate change
in expression of that gene. Although the BDE is only about 1.8, the high signal inten-
sity suggests a more reliable result. There are several statistical methods to generate
confidence limits. As described earlier and as demonstrated in Fig. 10, it is important
that the methods be flexible, to reflect scatter plots with more or less noise.

Upon calculating meaningful expression values, there is still the problem of visual-
izing all of the data in an intuitive way. Several approaches to this problem exist. One
simple way is to port the data into a spreadsheet and color cells in the spreadsheet
based upon the expression values. A brief inspection of the spreadsheet informs the
viewer of up and down regulated genes (see Fig. 12). The scientist can then zoom in to
see the identity of the gene whose expression pattern stands out. Of course, it is very
difficult to view such a spreadsheet generated on a single page from even a modestly
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Fig. 11. Confidence limits may be placed on microarray data. The lines parallel to the diagonal
represents a reasonable cut-off based upon signal strength and differential expression. Elements
with lower signal intensity must be highly differentially expressed to be considered reliable, owing
to the increased error at the lower edge of the signal range. RNA quality, time since fabrication of
the array, hybridization conditions and numerous other factors can all affect the final outcome of a
microarray experiment. Reproducibility and reliability of differential expression values are affected
by these variables (see Fig. 9). Therefore, confidence limits should be adjusted to reflect better or
worse hybridizations.
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Fig. 12. The application of color gradients to differential expression values aids in rapid visualiza-
tion of differential expression. The use of color gradients also permits the identification of genes that
are differentially regulated by multiple treatments, and may also help identify experimental outliers.
In the example shown, data from several microarrays hybridized with RNA from cells treated with
vehicle (veh) and one of nine compounds (Tx1–9) is used. This approach can be used with a simple
spreadsheet. However, many software tools exist that facilitate this type of data visualization.

sized TxP experiment. For this reason, other commercially available tools such as
Spotfire™ have been created specifically for this purpose (see Fig. 13). Many of these
tools also have data analysis features. However assigning a color gradient, with inten-
sity or brightness corresponding to signal intensity or BDE is essentially the basis of
how these data viewers work.

The TIGR Array Viewer is a software tool designed to accommodate both presen-
tation and analysis of microarray data. Array Viewer has the ability to use data from
flat files or from an array database and provides links between the elements to the
underlying gene information. The software allows for the selection of a subset of
elements, for example differentially expressed genes, or genes from a specific region
of the array. The subset of genes can be visualized independently, or with the rest of
the data but in different colors. This feature is useful if a researcher suspects regional
variations on an array. For example, the elements on the left side of the array shown
in Fig. 6 can be selected and colored differently from the elements on the right side of
the array on a scatter plot. If all or most of the differentially regulated genes are from
one or the other region, it is immediately obvious that there are subarray variations
and that the BDE values may not be reliable. Although simple inspection of the
pseudo color image in Fig. 7 would have revealed this, the subset selection feature of
tools like the TIGR Array Viewer would help identify more subtle discrepancies.
Finally, Array Viewer allows the export of all or a subset of the data to flat files,
databases, or other tools, such as Spotfire. Numerous other similar tools exist. Most
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array platforms provide similar tools with at least some of the basic features provided
by TIGR’s Array Viewer. Many of these are proprietary and must be purchased, or
are only available with purchase of that company’s array products. Still others have
been developed within pharmaceutical and biotechnology companies and are not gen-
erally available.

Data Analysis
Visualization of the data is a useful way to identify those genes that are most highly

regulated. It is also a useful way to quickly discard uninteresting data, in order to
generate a list of regulated genes. However, generating a list of regulated genes is
only the first step in the analysis of TxP data and it is an inadequate use of microarray-
derived experimental data. The purposes for running microarray experiments typi-
cally require advanced analysis of the TxP data. For example, simply asking what
genes are expressed differently in an arthritic knee compared to a normal knee does
little to help advance the effort to treat arthritis. Instead, identifying those genes whose
expression correlates temporally and responds proportionally to the onset and severity
of arthritic symptoms may help to identify a new target for intervention. Simply ask-
ing which genes are expressed in the liver in response to treatment with a pharmaceu-
tical cholesterol lowering agent will do nothing to identify new targets for intervention

Fig. 13. Heat maps aid in the visualization of transcription profiling data. A heat map such as
this one produced by Spotfire™, may be used to visually identify broad patterns of gene expres-
sion. Typically genes above and below user-defined thresholds are colored red (induction) and
green (repression), respectively. Individual microarray experiments are organized on the X-axis,
while individual genes are organized along the Y-axis. Several large groups of similar microarrays
may be observed in this example. One might reasonably infer that similar gene expression patterns
suggest similar mechanisms of action for the compounds used in these studies.
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into hypercholesterolemia. Identifying genes whose expression pattern clusters with
the known targets of a cholesterol lowering drug may help identify mechanistic details
of the body’s cholesterol metabolism pathways. This could lead to the identification of
new genes and gene products whose manipulation may also reduce dangerously high
cholesterol levels. For these reasons, simply preparing a list of genes resulting from a
microarray experiment falls short of the goal of understanding the science behind a
particular signaling pathway of a disease mechanism.

Two general approaches were touched upon in the above paragraph, that of cluster-
ing and correlation. Both approaches can be applied to microarray data. Clustering
expression data can help to identify co-regulated genes likely to be in common bio-
chemical pathways. For example, proinflammatory agents such as tumor necrosis fac-
tor (TNF)-α, interleukin (IL)-1β, and lipopolysaccharide (LPS) are known to increase
the expression of the cyclooxygenase (COX) 2 gene, which encodes a key enzyme
involved in inflammation. The mechanism(s) by which these pro-inflammatory agents
act is not completely understood. All of these agents are typically present outside the
cell. Receptors on the surface of the cell detect their presence and initiate a signaling
pathway that results in transcription factors inducing transcription of COX-2 mRNA.
Even a carefully designed experiment including treatment with proinflammatory
agents at several dose levels and/or time points would likely result in a large list of
genes whose expression was affected. However clustering genes with similar expres-
sion patterns might identify novel genes with expression patterns similar to known
members of the intracellular signaling pathway. Such novel genes may encode pro-
teins that could be valuable points of intervention to block inflammation.

There are a number of approaches to clustering large sets of data. It would be diffi-
cult to describe each and new approaches are being developed regularly. One such
common way to cluster microarray data is to use Euclidean distance in n dimensional
space, where n is the number of variables for each microarray element. A very simple
example will help visualize this approach. Imagine that two microarrays, each contain-
ing 16 elements that have been used to evaluate RNA from the livers of two rats treated
with different carcinogenic compounds. The researcher might wish to cluster elements
into groups of similar genes. Each element on the microarray has two variables, the
signal from experiment or treatment 1, and the signal from experiment or treatment 2
(see Table 2). Simple visualization of the data may help to place the genes into several
clusters, but it is not immediately clear how. However, graphing the data in n dimen-
sional space, where n = 2 (for the number of variables for each element), will make

Table 2
Clustering Expression Data

ID Array 1 Array 2 ID Array 1 Array2

Gene 1 1200 700 Gene   9 630 1140
Gene 2 1050 750 Gene 10 600 470
Gene 3 990 730 Gene 11 540 140
Gene 4 700 500 Gene 12 420 480
Gene 5 690 1200 Gene 13 380 490
Gene 6 660 120 Gene 14 260 220
Gene 7 650 450 Gene 15 200 180
Gene 8 640 1090 Gene 16 190 250
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clustering easier (see Fig. 14). Measuring a simple linear (Euclidean) distance between
each point yields elements that are close to one another in this experimental space.

In this simplified example, one may not have been required. However, suppose a
researcher performs TxP using a microarray with 10,000 elements on liver RNA
from 12 rats fed 3 different diets resulting in different levels of fasted serum triglyc-
erides. Using Euclidean distance, the researcher would graph each microarray ele-
ment in 12-dimensional space. Clearly this must be done in virtual space using a
computer, as the researcher cannot simply measure the linear distance between
10,000 points on a theoretical 12-dimensional graph. For this reason, methods have
been developed to mathematically cluster the data points. One approach is to use a
kth nearest neighbors strategy, where constant k equals a small integer. The com-
puter program begins with a single data point, and finds it’s 3 (if k = 3) nearest
neighbors, that is, those points with the smallest Euclidean distance between them
and the first, randomly selected element. Those 3 elements are the nearest neighbors
of the first element, and they are all placed in the same neighborhood. The program
then goes on finding the 3 nearest neighbors of each of the 3 neighbors it just added
to the neighborhood. Each of these is then added into the neighborhood. The pro-
gram does this iteratively until all of the nearest neighbors identified are already in
that neighborhood. That neighborhood is a cluster. The program then goes on to
another element not in the first neighborhood, and begins building the next neigh-
borhood—the next cluster. In this example, the researcher could identify novel genes
or known genes with no known function that are in the same cluster as genes known
to be related to serum triglyceride levels.

There are several commercially available tools that enable the advanced analysis
of microarray data, including clustering by several methods. As with microarray
data, many visualization and reporting tools are proprietary and are not generally
available. Increasingly, some of these tools are being made available to academic
scientists. The TIGR Multi Experiment Viewer is a tool designed to facilitate the
analysis of microarray data and is freely available to academics. It is a flexible and
expandable tool capable of identifying patterns of gene expression and differen-
tially expressed genes. TIGR Multi Experiment Viewer includes several data nor-
malization, clustering and distance algorithms as well as a variety of graphical
display features. Multi Experiment Viewer is fully compatible with TIGR’s Array
Viewer and represents a higher level of data visualization and analysis.

The European Bioinformatics Institute (EBI) also provides tools for genomic data
analysis. The EBI Expression Profiler is a set of tools for the visualization and analy-
sis of gene expression data. Their aim is to provide a complete and fully integrated set
of analysis methods for expression data as well as sequence data. The value of includ-
ing sequence data analysis capabilities with TxP data analysis tools lies in the fact that
similar expression profiles of a set of genes may lead to the identification of sequence
pattern profiles in the regulatory regions of these genes. Similarly, the relevance of
shared sequence elements found in the promoters of a number of genes can be evalu-
ated by comparing the expression profiles of those genes under multiple experimental
conditions. Expression Profiler also allows for clustering of microarray data from
multiple experiments (see Fig. 15). Genes whose expression patterns most closely
match one another across many experiments cluster more closely than genes whose
expression patterns are not closely matched. A dendogram, much like a phylogenetic
tree is generated for each element, with branch points representing clusters.

See
companion CD

for color
Fig. 15
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Fig. 15. The European Bioinformatics Institute’s Expression Profiler tool allows users to cluster
microarray data from multiple experiments. Genes whose expression patterns most closely match
one another across many experiments cluster more closely than genes whose expression patterns
are not closely matched. A dendogram is generated for each element, with branch points repre-
senting clusters.

Fig. 14. Clustering of microarray data can be performed using a number of different techniques.
Euclidean distance in n-dimensional space applies a variable derived from each microarray (a differ-
ential expression value or signal intensity) to every element present on the microarray. Each point on
this graph represents an element on the microarray utilized. Elements in the same neighborhood are
circled, representing six gene clusters.
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Fig. 16. Self-organizing maps represent to cluster microarray data into groups of similarly regu-
lated genes. Millennium Pharmaceuticals and others provide tools that enable scientists to generate
self-organizing maps from their TxP data.

Another clustering approach that has been taken is the self-organizing map (SOM).
Self-organizing maps were developed by Teuvo Kohonen (1995) as a way to visualize
high-dimensional data. The self-organizing map is an unsupervised learning algorithm
that attempts to reduce the dimensions of data using self-organizing neural networks.
The SOM algorithm finds vectors representative of the input data set. At the same time
the algorithm creates a continuous map from the input space mapped onto a
2-dimensional lattice. The preliminary vectors of the SOM are initialized to random
values. With iteration of each training pattern the winning neurone is found by com-
paring input (data) vectors and weight vectors of the neurones using Euclidean dis-
tance. The weights of the winning neurone and its nearest neighbors are moved toward
the input vector using a learning rate factor. The SOM can also be used as a starting
point for additional analyses. Figure 16 shows an example of a self-organizing map
output generated by Millennium Pharmaceutical’s SOM tool. The data was divided
into four groups of four patterns. The highlighted cluster contains 101 genes, one of
which, acyl CoA oxidase, is highlighted in the right panel. The individual expression
pattern for this gene is overlaid upon the expression patterns of the other members of
the group in the upper middle panel (see Fig. 16).

Higher order statistical analysis of transcription profiling data is another valuable
means to sort through the thousands of data points that result from TxP experiments.

See
companion CD

for color
Fig. 16
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Partek Pro 2000 (see Website: http://www.partek.com/) is a comprehensive data visu-
alization and data-analysis tool for performing statistical analyses on many types of
data. Partek Pro 2000 is not limited to TxP data, but can also be used for high through-
put screening data, proteomic data, and nonbiological data. The software can be
adapted to work with numerous databases and data formats and has been used by many
large pharmaceutical, biotechnology, and bioinformatics companies. Partek Pro
includes modules that permit high-level statistical analysis such as principal compo-
nent analysis, multidimensional scaling, and inferential analysis (see Fig. 17). The
tool can be used to apply statistical rigor to experimental design, normalization, chip-
to-chip scaling, and other activities performed during the analysis. One difficulty in
applying statistics to TxP data lies in the small sample size. That is, due to financial
and biological constraints, it is not uncommon to have only a very small number of
samples subjected to microarray analysis. Statisticians typically require high n, that is
a high number of experimental repetitions to determine statistically significant values
with any precision. If an experiment includes only three animals per treatment group,
only very large differential expression values may be statistically significant. Addi-

Fig. 17. Partek Pro 2000 allows scientists multiple data analysis options. Principal component
analysis, multidimensional scaling, and inferential analysis can all be performed by tools such as
Partek Pro. These higher-order statistical analyses of microarray results are vital to avoid false-
positives and false-negatives. The costs of following up on false results can be staggering. As tran-
scription profiling finds application in medical diagnostics, false results may even endanger patients.

WWW
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tionally, comparing 10,000 elements with only a small number of biological samples
will yield many seemingly significant relationships due to chance alone. Partek Pro
2000 and similar tools can be used to apply rigorous statistical tests to determine
whether seemingly relevant relationships between two or more elements might be
occurring simply by chance.

As well as clustering genes by similar expression patterns, correlating the expres-
sion of genes with one or more relevant phenotypes is another way to identify
important and interesting genes. This approach may be particularly useful for
pharmacogenomic studies, in which one or more genes are sought with a causative
role in a specific measurable response or phenotype within a large population. For
example, if a small but significant population does not respond to a particular pharma-
ceutical agent, transcription profiling may identify a gene or pathway whose regula-
tion is different in the unresponsive population than in the responsive population.
When studying thousands of genes at once using microarrays, such a simple pattern of
expression would be very difficult to identify by simple visual inspection. Further-
more, clustering may not help, as known reference genes may not be available. One
approach to this issue would be to express the phenotypes as a balanced differential
expression, then cluster this value phenotype with the entire microarray dataset. In
this way, identification of those genes that occur in the same cluster as the phenotype
of interest ought to display expression patterns that correlate to the phenotype.

Another approach is to calculate a correlation score based upon a number of
parameters. A simple correlation coefficient can be generated for each microarray
element compared to one or more phenotypic values. This score may be adjusted to
reflect signal intensities and significant differential expression values, to weight the
scores in favor of reliable genes. All of these clustering and correlation approaches
assume that all of the differential expression values are genuine, even those within
the noise (see Fig. 10B). By weighting signal intensity, the correlation score
approach is less likely to identify genes whose expression lies within the more nebu-
lous range of differential expression values. Such an approach will identify genes
that are both highly regulated in at least some of the experimental conditions, and
correlative with the phenotype of interest. It is important to note that, just
because an element has a small BDE that occurs within the noisy region of the scat-
ter plot, does not mean that the value is not an accurate reflection of the expression
of the gene that the element represents. However, owing to the general lack of a
large number of replicates, TxP results should be validated by alternative methods,
such as RT-PCR or the Quantigene™ (Bayer Diagnostics) assay. Genes with large
changes in their expression are more reliably and more easily verified by secondary
methods. Additionally, genes with very small changes in expression will be difficult
to measure and verify without significant experimental repetition, making them poor
choices for markers of efficacy. Since the purpose of TxP experiments is often the
identification of molecular markers of disease or efficacy, or the identification of
new targets for intervention, tracking changes in the expression of the genes identi-
fied will be key to additional experiments.

With these caveats in mind, the ability to identify genes whose expression corre-
lates with a phenotype of interest, and whose expression under at least some of the
experimental conditions is highly regulated is a valuable way to identify interesting
genes. In a theoretical experiment described earlier, TxP was performed using liver
RNA from 12 rats fed three different diets. The dietary regimens resulted in differ-
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ences in fasted serum triglycerides relative to one another. A researcher knowing noth-
ing about gene products involved in the dietary regulation of serum triglycerides might
wish to identify genes whose expression is directly proportional to this phenotype,
which is a risk factor in humans for cardiovascular disease. Figure 18 shows a graphi-
cal representation of three genes and the serum triglyceride phenotype from such an
experiment. The serum triglycerides were first expressed as a Balanced Differential
TriGlyceride (BDTG) value, using Equation 1 detailed earlier. Instead of a treated and
control, the average TG value for the four rats fed the control diet (diet group A) was
used as the control signal intensity. Individual TG values were used as the treated
signal intensities, and compared to the pooled control, much as individual rat liver
RNA samples would be compared to a pooled control sample on the microarray. A
correlation score could be calculated for each element compared to one or more phe-
notype. High scoring genes, such as gene 1 in Fig. 18, would correlate well with the
phenotype. That is, those animals with the lowest serum triglyceride levels relative to
control have the largest decreases in the expression of gene 1 relative to the control
group. Poorly scoring genes, such as genes 2 and 3 (see Fig. 18) correlate poorly with
the phenotype. Without the ability to rapidly generate correlation scores for each ele-
ment on the array, it would have been necessary to graph each element along with
the phenotype until those with similar graphs were identified. Clearly this is not fea-
sible when performing experiments using thousands of arrayed elements. Software
that automates this approach would enable a researcher to rapidly identify genes with
interesting expression patterns.

Fig. 18. Correlation analysis can be used to identify genes whose expression correlates with a
specific phenotype of interest. In the experiment shown, 12 rats were randomly assigned to one of
three diet groups, A, B, or C for 4 wk. Fasted serum triglycerides were measured in individual rats
prior to sacrifice. Liver RNA was used to prepare probes for hybridization onto microarrays. The
triglyceride phenotype was used to calculate a balanced differential triglyceride (BDTG) value, using
the same equation to determine differential expression values for the array elements. The BDTG
value was then compared to each element. In this example, the expression of gene 1 correlates well
with the measured phenotype.
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Project Organization
The final type of informatic task required to maximize the value of microarray

experiments is project organization. Every microarray has many features, many pieces
of associated data that must be stored, linked, and made available to the scientists per-
forming and analyzing the experimental results. There are a number of organizations
currently building data repositories for microarray experimental results. The National
Center for Biotechnology Information (NCBI) has developed a gene expression data
repository and online resource for the retrieval of gene expression data called the gene
expression omnibus (see Website: http://www.ncbi.nlm.nih.gov/geo/). The gene
expression omnibus supports multiple types of expression data, including microarray
data and SAGE (Serial Analysis of Gene Expression) data. Additionally, the Interna-
tional Life Sciences Institute (ILSI) (see Website: http://www.ILSI.org/) in collabora-
tion with the European Bioinformatics Institute (EBI) has developed  both a database
and a standardized reporting format for microarray data. Among the challenges facing
such efforts are ways to ensure that minimal data quality standards are met and the need
to include sufficient experimental information, perhaps including actual .tiff files, with-
out taxing servers to the point of making data downloads prohibitive.

Databases that simply store microarray data are a valuable way of ensuring public
access to a significant body of microarray data. However, many organizations are
developing database and analysis software suites that allow for interactive data analy-
sis on all or a subset of data stored in a database. Links are also included to associated
histopathological images from every tissue for which profiling data has been acquired.
The Phase-1 product is aimed toward the field of toxicogenomics, the use of genomic
and microarray technology in toxicology and preclinical safety assessment, but their
approach to an interactive data repository has clear advantages over a simple data
repository from which information must be exported prior to data analysis.

Another application of informatics to the field of genomics that has not been
fully appreciated by the scientific community is the need for rational, statistically
informed experiment planning. There are many types of microarrays. A complete
statistical analysis of the performance of the type of array being used in a laboratory
is vital. For example, knowing the sensitivity and reproducibility of profiling results
on the array platform being used can inform decisions regarding the number of
samples required, and the reliability of the results of each array experiment are. An
array platform that gives consistently noisy results may require large groups or many
duplicates to provide useful data. Alternatively, if only small amounts of biological
material are available for microarray analysis, the confidence limits may require
that only genes with very large differential expression values are reliable. In such
cases, correlations with phenotypic parameters would be unreliable. These issues
date back to quality control issues. At this time, this author is unaware of any tool
that seeks to address this issue. However tools such as Partek Pro 2000 can allow the
higher-level statistical analysis necessary to evaluate the experimental parameters
of TxP experiments and direct planning of future experiments. There are several
books that detail statistical approaches to experimental design. One such book is
Biostatistics and Experimental Design, by James Zolman (1993). The area of statis-
tical experimental design tends to be overlooked by many biologists, to the detri-
ment of their experiments. With the large number of elements that can be arrayed,
the probability of relationships that may seem significant occurring simply by chance
is very large. The lack of rigorous statistical evaluation of study designs prior to the

WWW
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inception of the studies will result in a significant loss of time and money trying to
validate questionable TxP results.

Glossary and Abbreviations

BDE  Balanced differential expression. A way of expressing fold changes in
expression.

Bioinformatics  A field of study encompassing statistical and computational
approaches to gathering, archiving, annotating, visualizing, analyzing and reporting
genomic data.

cDNA  Complementary DNA. Generated by reverse transcription of RNA.
Cy3  Cyanine 3 dye. A fluorescent dye used to label cDNA or cRNA populations.
Cy5  Cyanine 5 dye. A fluorescent dye used to label cDNA or cRNA populations.
fBDE  Fractional increase balanced differential expression. A way of expressing

changes in gene expression.
Genomics  An emerging scientific field encompassing the large scale study of the

informational content and regulatory mechanisms of entire genomes.
mRNA  Messenger RNA. Typically encodes proteins, often regulated by environ-

mental conditions.
PCA  Principal components analysis. A method of clustering complex data sets.
Proteomics  The study of the content and regulatory mechanisms the entire comple-

ment of proteins encoded by an organism’s genome.
RT-PCR  Reverse transcriptase polymerase chain reaction. A method of evaluat-

ing changes in gene expression.
SOM  Self-organizing map. A method of clustering complex data sets.
Transcription Profiling  A technique whereby changes in the expression of many

genes are measured in a single experiment.

Suggested Readings

Kohonen, T. (1995) Self-Organizing Maps, Springer, NY.
Zolman, J. (1993) Biostatistics and Experimental Design, Oxford University Press,

New York, NY.
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35Microarrays
Tools for Gene Expression Analysis

Sorin Draghici

Introduction

A particular tool that has been shown to be very useful in genomics is the DNA
microarray. In its most general form, the DNA array is a substrate (nylon membrane,
glass, or plastic) on which DNA is deposited in localized regions arranged in a regu-
lar, grid-like pattern. Two main approaches are used for microarray fabrication:
in situ synthesis and deposition of DNA fragments. In situ manufacturing can be
further divided into photolithography, ink jet printing, and electrochemical synthesis.
The photolithographic approach (Affymetrix) is similar to the VLSI fabrication pro-
cess: photolithographic masks are used for each base. If a region should have a given
base, the corresponding mask will have a hole allowing the base to be deposited at
that location. Subsequent masks will construct the sequences base by base. This tech-
nology allows the fabrication of very high-density arrays but the length of the DNA
sequences constructed is limited1. The ink jet technology (e.g., Agilent and
Protogene) is similar to the technology used in ink jet color printers. Four cartridges
are loaded with the A, C, G, and T nucleotides. As the print head moves across the
array substrate, specific nucleotides are deposited where they are needed. The elec-
trochemical synthesis (CombiMatrix) uses small electrodes embedded into the sub-
strate to manage individual reaction sites. Solutions containing specific bases are
washed over the surface and the electrodes are activated in the necessary positions. In
the deposition-based fabrication (e.g., Clontech and Corning), the DNA is prepared
away from the chip. Robots dip thin pins in the solutions containing the desired DNA
and then touch the pins onto the surface of the arrays. Small quantities of DNA are
deposited as spots on the array. Unlike in situ manufacturing, spotted arrays can use
small sequences, whole genes, or polymerase chain reaction (PCR) products.

The DNA array is subsequently probed with complementary DNA (cDNA)
obtained by reverse transcription of mRNA extracted from a tissue sample. This DNA
is fluorescently labeled with a dye and subsequent illumination with an appropriate

1This is because the probability of introducing an error at each step is very small but not zero.
In order to limit the overall probability of an error, one needs to limit the length of the sequences.
To compensate, many short sequences from the same gene can be synthesized on a given array.
The particular sequences must be carefully chosen to avoid cross-hybridization.
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light source will provide an image of the array. The intensity of each spot or the aver-
age difference between matches and mismatches can be related to the amount of
mRNA present in the tissue which in turn is usually correlated with the amount of
protein produced by the gene corresponding to the given region. The labeling can also
be done with a radioactive substance. Figure 1 illustrates the microarray process. In a
multichannel experiment, several probes are labeled with different dyes and used at
the same time in a competitive hybridization process. A large number of expression
values are obtained after processing the image(s) of the hybridized array. Typically,
one DNA chip will provide expression values for thousands of genes.

Although microarrays have been used successfully in a range of applications
including sequencing and single nucleotide polymorphism (SNP) detection, most
applications are related to gene expression. Typical examples include comparing
healthy and malignant tissue, studying cell phenomena over time or studying the
effect of various factors on the global pattern of gene expression.

Challenges
Compared to other molecular biology techniques, microarrays are relatively new

and a number of issues and challenges remain. Such issues include:

Noise
Due to their nature, microarrays tend to be very noisy. Even if an experiment is

performed twice with exactly the same materials and under exactly the same condi-
tions, it is likely that after the scanning and image-processing steps, many of the
same genes will probably be characterized by different quantification values. Noise
is introduced at each step of various procedures2: mRNA preparation (tissues, kits,

Fig. 1. A general overview of the DNA array use. The mRNA extracted from tissue is transformed
into cDNA which is hybridized with the DNA previously spotted on the array.

2Not all steps apply to all types of arrays.
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and procedures vary), transcription (inherent variation in the reaction, enzymes),
labeling (type and age of label), amplification, pin type (quill, ring, ink-jet), surface
chemistry, humidity, target volume (fluctuates even for the same pin), slide imper-
fections (slide production), target fixation, hybridization parameters (e.g., time, tem-
perature, buffering), nonspecific hybridization (labeled cDNAs hybridized to areas
that do not contain perfectly complementary sequences), nonspecific background
hybridization (e.g., bleeding with radioactive materials), artifacts (dust), scanning
(gain settings, dynamic range limitations, inter-channel alignment), segmentation
(feature/background separation), and quantification (mean, median, percentile of the
pixels in one spot).

The challenge appears when comparing different tissues or different experiments.
Is the variation of a particular gene due to the noise or is it a genuine difference
between the different conditions tested? Furthermore, when looking at a specific
gene, how much of the measured variance is due to the gene regulation and how
much to noise? The noise is an inescapable phenomenon and the only weapon that
the researcher seems to have against it is replication.

Normalization
The aim of the normalization is to account for systematic differences across dif-

ferent data sets, e.g., overall intensity and eliminate artifacts, e.g., nonlinear dye
effects. Normalization is crucial if results of different experimental techniques are
to be combined. While there is a general consensus that normalization is required,
there is little if any such consensus regarding how normalization should be accom-
plished. Normalization can be necessary for different reasons such as different quan-
tities of mRNA (leading to different mean intensities), dye nonlinearity, and
saturation toward the extremities of the range.

Experimental Design
The experimental design is a crucial but often neglected phase in microarray

experiments. If the experiments are not adequately designed, no analysis method will
be able to obtain valid conclusions. It is very important to provide data for a proper
comparison for every major source of variation. In a classical example from agricul-
ture, one wishes to compare two strains of corn. If each strain is planted on a different
field, there will be no way to distinguish the effect of the field including more nutri-
ents or more sun, from the effect of the corn strain. This is a typical example of a
confounding experimental design. A better design would have planted opposite halves
of each field with both strains of corn such that an analysis of the results would allow
a distinction between the two effects. Experimental design in the microarray context
has been thoroughly explored.

Large Number of Genes
The fact that microarrays can interrogate thousands of genes in parallel is one of

the features that led to the wide adoption of this technology. However, this charac-
teristic is also a challenge. The classical metaphor of the needle in the haystack can
easily become an accurate description of the task at hand when tens of thousands of
genes are investigated. Furthermore, the sheer number of genes can change the qual-
ity of the phenomenon and the methods that need to be used. The classical example
is that of the p-values in a multiple testing situation.
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Significance
If microarrays are used to characterize specific conditions, a crucial question is

whether the expression profiles differ in a significant way between the groups consid-
ered. The classical statistical techniques that were designed to answer such questions,
e.g., chi-square tests, cannot be directly applied because the number of variables, usu-
ally thousands of genes, is much greater than the number of experiments, usually tens
of experiments.

Biological Factors
In the normal cell, the RNA polymerase transcribes the DNA into mRNA which

carries the information to ribosomes where the protein is assembled by tRNA during
translation. Most microarrays measure the amount of mRNA specific to particular
genes and the expression level of the gene is associated directly with the amount of
mRNA. However, the real expression of the gene is the amount of protein produced
not the amount of mRNA. Although in most cases, the amount of mRNA accurately
reflects the amount of protein, there are situations in which this may not be true. If
nothing else, this is a fundamental reason why microarray results usually require veri-
fication. Microarrays are tools for screening many genes and focusing hypothesis.
However, conclusions obtained with microarrays must be validated with independent
assays using different techniques from various perspectives.

Array Quality Assessment
It is useful if data analysis is not seen as the last step in a linear process of micro-

array exploration but rather as a step that completes a loop and provides the feed-
back necessary to fine tune the laboratory procedures that produced the microarray.
Thus, array quality assessment is an aspect that should be included among the goals
of the data analysis. It would be very useful if in addition to the expression values
the analysis provides some quality assessment of the arrays used. Such quality mea-
sures will discard the data below a standard as well as the identity of possible causes
of failure in the process.

Current Issues in Microarray Data Analysis
Normalization

We assume that each spot is represented by a value computed from the pixel
intensities. A first pre-processing step is the background correction. This can be
done locally3, using a group of spots (e.g., a subgrid)4 or blank spot5. Once the
background correction has been applied, a usual step in two-channel experiments is
to consider the ratio between the two channels (e.g., experiment/reference). Subse-
quently, one should apply a logarithmic function (log). There are several reasons for
this. First, the log makes the distribution symmetrical. Consider the values 100,

3Only the background local to the spot is considered; good when the background varies con-
siderably from spot to spot.

4Suitable for high density arrays where there are not enough pixels around a single spot to
produce a reliable value.

5Some researchers have noted that a spot containing DNA that is not supposed to hybridize
will often have an intensity lower than the background suggesting that subtracting the back-
ground might overcorrect the values. In order to control this more accurately, one can use spots
containing no DNA or spots containing foreign DNA that should not hybridize.
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1000, and 10,000 (a 16-bit tiff file can contain values between 1 and 65,536). If one
considers the difference (distance) between the middle values and the two extremes,
one is tempted to consider the difference to the right more important than the differ-
ence to the left (10,000 – 1000 = 9000 >> 1000 – 100 = 900). However, from a biologi-
cal point of view the phenomenon is the same, namely there is a ten fold change in
both cases. The log will transform the values into log (100), log (1000), and
log (10,000), which for log base 10 are 2, 3, and 4, rejecting the fact that the
phenomena are the same only that they happen in different directions. Second, if
the log is taken in base 2, subsequent analysis is facilitated, e.g., selecting genes
with a four-fold variation can be done by cutting a ratio histogram at the value
log (ratio) = 2. Furthermore, the log partially decouples the variance and the mean
intensity and makes the distribution almost normal. Replicate genes can be com-
bined by calculating mean, median, or mode and coefficients of variance (cv). This
will produce the average-log-ratios.

One important problem is that various dyes produce different results due to dif-
ferent biochemical properties. The idea of a flip dye experiment was introduced in
order to control such phenomena. In a flip dye experiment, the two samples of
mRNA, A and B are labeled first with cy3 (A) and cy5 (B) and then with cy5 (A) and
cy3 (B). Subsequent hybridization and image analysis will produce two sets of data
that represent the same biological sample. A plot of the expression levels registered
on the two channels for the same mRNA should produce a straight line cy3 = cy5.
One is prepared to accept a small number of genes that are off the straight line of
reference but any general trend suggests a non-negligible influence that should be
corrected. Similar expectations even hold for experiments involving all or most
genes in a genome. It is assumed that most genes will not change. Such expectations
are not warranted if a small subset of genes is considered, especially if the genes are
known to be functionally related.

The final normalization step tries to obtain values that are independent of the
experiment and hopefully can be compared with other values. This can be carried
out in different alternative ways as follows.

Method 1
Divide the values of each channel/experiment by their mean6. This corrects global

intensity problems, such as one channel being more intense than the other, but does
not address nonlinearity of the dye. Variations of this strategy eliminate the values in
the upper and lower 10% of the log ratio distribution (corresponds to differentially
regulated genes) divided by the mean of the remaining genes. The rationale being that
few genes will be differentially regulated but most genes will remain the same. Elimi-
nating the tails of the log ratio distribution theoretically eliminates the differentially
regulated genes and dividing by the mean of the remaining genes bring the two sets of
measurements to a common denominator.

Method 2
Modify the values of each channel/experiment such that certain control spots in

both experiments have the same or similar values. The control spots should span the
entire intensity range.

6The mean can be substituted with the median, mode or percentile if the distribution is noisy
or skewed. One could also subtract the mean and divide by the standard deviation.
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Method 3
Apply iterative linear regression as follows: apply linear regression, find residuals,

eliminate spots that have residuals more than 2 SD away from zero (potential differen-
tially regulated genes), apply regression and continue until the residuals become less
than a given threshold.

Method 4
Apply a parametric nonlinear normalization with or without the previous division

by mean, median or percentile. The exponential normalization fits an exponential
decay of the form: y = a + b · e –cx to the log (Cy3/Cy5) vs log (Cy5) curve7. Sub-
sequently, the values are normalized by subtracting the fitted log ratio from the
observed log ratio. This normalization essentially relies on the hypothesis that the dye
effect can be described by an exponential curve, which may not be true for other dyes.
Furthermore, the fitting of the exponential is computationally intensive involving a
least-mean-square (LMS) minimization.

Method 5
Apply a general nonlinear normalization such as Loess: the values are modified in

order to obtain a linear variation of the two channels (in a flip dye experiment). This is
usually computationally intensive. An excellent correction for the dye nonlinearity
without the high computational cost of Loess can be obtained using an adaptive piece-
wise linearization method.

Figure 2 illustrates the importance of pre-processing and normalizing the cDNA
data labeled with cy3/cy5. The array contains 944 genes spotted in triplicates. The raw
data is present in Fig. 2A. Owing to the different properties of the two dyes, the inten-
sities measured on one channel are consistently higher than the intensities measured
on the other channel. In these conditions, it is likely that any analysis method will
yield erroneous results. Taking the logarithm helps greatly, as illustrated in Fig. 2B,
but the overall intensity difference between the two channels is still present. Dividing
by the mean brings most points in the vicinity of the reference line finally aligning the
data with the reasonable expectation that most genes will not change between the two
experiments. The steps taken here would be an example of the very minimum prepro-
cessing necessary for two-channel cDNA data. Note that there is no correction for dye
nonlinearity, which is rejected in the curvature of the data points distribution. Correct-
ing this nonlinearity would further enhance the accuracy of any subsequent analysis.

It is important to note that the measured variance is dependent on the mean inten-
sity having high variance at low intensity levels and low variance at high intensities.
This can be corrected by using an iterative algorithm that gradually adjusts the param-
eters of a probabilistic model. This approach can be further refined using a Gamma-
Gamma-Bernoulli model.

Normalization is slightly different for oligonucleotide arrays (e.g., Affymetrix’s
GeneChips) designed for gene expression analysis. Here, a gene is represented by a
number of probe pairs (short oligonucleotide sequences) with each pair containing a
perfect match and a mismatch (the same sequence but for a different nucleotide). The

7The reference line in a log(cy3/cy5) vs log(cy5) plot is y = 0 because log(cy3/cy5) = log(cy3)
– log(cy5) = 0 if cy3 equal to cy5, as expected for the same mRNA labeled differently.
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amount of hybridization on the mismatched sequence is thought to be representative
of non-specific hybridization and its intensity is usually subtracted from the intensity
of the perfect match. Subsequently, such differences are averaged for all probes corre-
sponding to a gene and an average difference (AD) is calculated. The higher this AD,
the higher the expression level of the gene. The software provided by Affymetrix also
calculates a call, i.e., a ternary decision about the gene: absent (A), marginally present
(M), and present (P). A conundrum can occur if absent genes have average difference
higher than present genes. Options include ignoring the calls and using only the aver-
age differences of all genes, considering only genes that are declared present, ignoring
the calls and considering only genes with the average difference larger than a thresh-
old or calculating the expression values according to some other model.

Selection of Differentially Regulated Genes and Significance Analysis
The measurements obtained from microarray experiments have multiple sources of

variation. There is approx a 5% probability that the hybridization of any single spot
containing complementary DNA will not reject the presence of the mRNA and a 10%
probability that a single spot will provide a signal even if the mRNA is not present.

Fig. 2. The effects of data normalization. The data represents a cy3/cy5 cDNA array with 944
genes printed in triplicates. (A) Raw data; the data is far from the reference and the scales are different
on the two axes. (B) After log; the data is closer to the reference line but still above it. (C) Replicates
are combined; each gene is represented as the mean of its replicates. (D) Subtracting the mean finally
centers the data; however, the data are still curved reflecting the nonlinearity of the dyes.
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Given this, it is crucial to distinguish between interesting variation caused by differ-
ential gene expression and variation introduced by other causes. Using replicates at
any or all levels (e.g., spots, arrays, mRNA preparations) is the only known method
that allows subsequent discrimination.

Selecting interesting genes can be done in various ways. Two selection methods
are widely used. The first selection method is the fold method. This method involves a
simple comparison between the expression levels in the experiment and the control.
Genes having different values in experiment vs control will be selected. Typically, a
difference is considered significant if it is at least two- or three-fold.

The second widely used selection method is the ratio method. This method
involves selecting the genes for which the experiment/control ratio is a certain dis-
tance, e.g., 2 SD, from the mean experiment/control ratio. Other ad hoc thresholding
procedures have also been used. For example, one can select genes with at least a
two-fold change and for which the difference between the duplicate measurements
does not exceed half their average. These criteria can be expressed in terms of a
ratio mean and SD and therefore this is a variant of the ratio method. An alternative
method selects the genes for which the absolute difference in the average expression
intensities is much larger than the estimated standard error.

More complex methods such as analysis of variance (ANOVA), maximum likeli-
hood approach, gene shaving, assigning gene confidence or significance, bootstrap,
and Bayesian approaches have also been proposed but are not widely used. Other
interesting methods take into consideration that the variance depends on the intensity.
Intensity dependency can be reduced to defining some curves in the green-red plane
corresponding to the two channels. The points inside these curves correspond to genes
that change little between the control and experiment while the points that fall outside
the curves correspond to differentially regulated genes.

If several arrays are available for each condition, differentially expressed genes
can be identified by ranking the genes according to their similarity to an expected
expression profile. False-positives can be controlled through random permutations
that allow the computation of suitable cut-off thresholds.

Another possible approach to gene selection is to use univariate statistical tests
(e.g., t-test) to select differentially expressed genes. Regardless of the particular test
used (e.g., t-test if normality is assumed), one needs to consider the fact that when
many genes are analyzed at one time, some genes will appear as being significantly
different just by chance.

Let us assume we are considering a gene with a value (e.g., log-ratio) v situated in
the tail of the histogram of all such values, possibly indicating that the gene is regu-
lated. The p value provided by the univariate test is the probability that v is where it is
just by chance. If we call this gene differentially regulated based on this value and the
value is there by chance, we will be making a mistake. Therefore, p is the probability of
making a mistake. The probability of drawing the right conclusion in this one experi-
ment will be 1 – p. If there are R such experiments, we would like to draw the right
conclusion from all of them. The probability of this will be prob(right) = (1 – p)R. The
probability of making a mistake will be prob(wrong) =1 – prob(right) = 1 – (1 – p)R.
This is called Sidák correction. Bonferroni noted that for small p, 1 – (1 – p)R  Rp and
proposed p = p/R. Both Bonferroni and Sidák corrections are  not suitable for gene
expression analysis because for large number of genes R, no gene will be below the
corrected p value (e.g., p = p/R for Bonferroni).
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A family of methods that allow less conservative adjustments of the p-values with-
out the heavy computation involved in resampling is the Holm step-down group of
methods. These methods order the genes by increasing order of their p-value and make
successive smaller adjustments.

Bonferroni, Siák and Holm’s step-down adjustment assumes that the variables are
independent. This may not be true for expression data since genes influence each other
in complex interactions. The Westfall and Young (W-Y) step-down is a more general
method which adjusts the p-value while taking into consideration the possible correla-
tions. Duplication, together with a univariate testing procedure (e.g., t-test or
Wilcoxon) followed by a W-Y adjustment for multiple testing are proposed.

Another technique that considers the correlation is the bootstrap method. This
method samples with replacement the pool of observations to create new data sets
and calculates p-values for all tests. For each data set, the minimum p-value on the
resampled data sets is compared with the p-value on the original test. The adjusted
p-value will be the proportion of resampled data where the minimum pseudo-p-value
is less than or equal to an actual p-value. Bootstrap used with sampling without
replacement is known as the permutation method. Both bootstrap and permutation
are computationally intensive.

Data Analysis Techniques

Scatterplots
The scatterplot is probably the simplest tool that can be used to analyze  expres-

sion levels. In a scatterplot, each axis corresponds to an experiment and each expres-
sion value of a given gene is represented as a point. If a gene G has an expression
level of e1 in the first experiment and that of e2 in the second experiment, the point
representing G will be plotted at coordinates (e1, e2) in the scatterplot (see Figs. 2
and 3). In such a plot, genes with similar expression levels will appear somewhere
near the line (y = x). The further from the diagonal, the more significant the variation
between experiments.

The main disadvantage of scatterplots is the fact that they can only be applied to a
very small number of dimensions since they can only be plotted in two or three dimen-
sions. Dimensionality reduction techniques such as Principal Component Analysis are
generally used to extend the usefulness of scatterplots.

Principal Component Analysis
One very common difficulty in many problems is the large number of dimen-

sions. A natural approach is to try to reduce the number of dimensions and thus, the
complexity of the problem, by eliminating those dimensions that are not “ impor-
tant.” Of course, the problem now shifts to defining what is an important dimension.
A common statistical approach is to pay attention to those dimensions that account
for a large variance in the data and to ignore the dimensions in which the data does
not vary much.

This is the approach used by Principal Component Analysis (PCA). The PCA
approach is shown in Fig. 4. The data that includes patterns from two classes, red
crosses and blue circles, is given in the original coordinate system with axes x1 and
x2. If the data is projected on each of the two axes, the clusters corresponding to the
two classes overlap and the classes cannot be separated using any single dimension.
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Fig. 3. Expression levels in two experiments visualized as a scatterplot. Points above the first
diagonal represent genes with expression levels higher in the second experiment whereas points
below the diagonal represent genes with expression levels higher in the first experiment. It is very
easy to identify genes that behave differently from one experiment to another.

Fig. 4. Principal Component Analysis (PCA). If one of the two original axes x or y is eliminated, the
classes cannot be separated. The co-ordinate system found by PCA (p1, p2) allows the elimination of
p2 while preserving the ability to separate the given classes. It is said that PCA performs a dimension-
ality reduction.
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A dimensionality reduction is not possible since both x1 and x2 are required to sepa-
rate the classes.

However, the PCA approach can analyze the data to extract a new coordinate sys-
tem with axes p1 and p2. If the two clusters are projected on the axes of the new coor-
dinate systems one can notice that the situation is different. The projections of the
classes on p2 overlap completely. However, the projections of the two classes on p1

yield two clusters that can be easily separated. In these conditions, one can discard the
second coordinate p2. In effect, we have achieved a dimensionality reduction from a
space with two dimensions to a space with just one dimension while retaining the
ability to separate the two classes.

PCA has been shown to be effective in many practical problems including gene
expression data and is currently available in a number of software tools. The main
limitations of PCA are related to the fact that it only takes into consideration first-
order statistical characteristics of the data. The axes of the new coordinate system are
the eigenvectors8 of the covariance matrix of the patterns. In effect, the transformation
provided by the change from the original coordinate system to PCA, is only a rotation
followed by a scaling proportional to the eigenvalues of the covariance matrix. PCA
only considers the variance and not the classes of data so its results are not always as
useful as in the earlier example.

Cluster Analysis
Two frequently posed problems related to microarrays are finding groups of genes

with similar expression profiles across a number of experiments and finding groups of
individuals with similar expression profiles within a population. The technique most
commonly used for such purposes is cluster analysis.

Cluster analysis techniques are essentially dependent on the definition of a metric
in the multidimensional space of interest. In practice this means establishing a way to
quantitatively calculate how similar two given expression profiles are. Distances such
as Euclidean, correlation, squared Euclidean or Manhattan are frequently used. Once
such a distance is chosen, one can use it to derive a set of clusters including the given
data points. Traditionally, microarray data have been analyzed using hierarchical clus-
tering. Such techniques yield trees of clusters also known as dendrograms. Different
genes are grouped together in clusters using the distance chosen. Different clusters are
also linked together to form the dendrogram based on a cluster distance such as the
average distance between all pairs of objects in the clusters. A combined dendrogram
with gene clustering plotted horizontally and experiment clustering plotted vertically
is presented in Fig. 5.

K-Means Clustering
The k-means algorithm is often used because it is very simple and very fast. Like

any clustering, it can be used to group genes or experiments or any set of homoge-
neous entities described by a vector of numbers. We shall denote such entities as pat-
terns. Similar patterns grouped together by the algorithm are clusters. A set of clusters
including all genes or experiments considered form a clustering.

8An eigenvector of a matrix A is defined as a vector x such as Ax = λx where λ is a scalar.
Eigenvectors represent a set of directions of the space that are only scaled (i.e., not rotated) by the
linear transformation represented by the matrix.
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In k-means clustering the user chooses the value of k, which is the number of clus-
ters to be formed. The program starts by randomly choosing k points as the centers of
the clusters (see Fig. 6A). For each pattern, the program will calculate the distance
from it to all cluster centers. The pattern will be associated with the closest cluster
center. A first approximate clustering is obtained after allocating each pattern to a
cluster. However, because the cluster centers were chosen randomly, it is not said that
this is the correct clustering. The second step starts by considering all patterns associ-
ated to one cluster center and calculating a new position for this cluster center (see
Fig. 6B). The coordinates of this new center are usually obtained by calculating the
mean of the coordinates of the points belonging to that cluster. Since the centers have
moved, the pattern membership needs to be updated by recalculating the distance from
each pattern to the new cluster centers (see Fig. 6C, two patterns move from one clus-
ter to the other). The algorithm continues to update the cluster centers based on the
new membership and update the membership of each pattern until the cluster centers
are such that no pattern moves from one cluster to another. Since no pattern has
changed membership, the centers will remain the same and the algorithm can termi-
nate (see Fig. 6D).

Fig. 5. K-means clustering in GeneSight. The user can choose the number of clusters as well as the
distance used. The colors of the rectangular cells represents the expression values while the colors of
the tree branches are associated to specific gene functions. The program also allows inferring gene
function for previously unknown genes by functional enrichment analysis.
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The k-means algorithm has several important properties. First of all, the results of
the algorithm, i.e., the clustering or the membership of various patterns to various
clusters, can change between successive runs of the algorithm (see Fig. 7). Further-
more, if some clusters are initialized with centers far from all patterns, no patterns will
fall into their sphere of attraction and they will produce empty clusters. In order to
alleviate these problems, care should be taken in the initialization phase. A common
practice initializes centers with k points chosen randomly from the existing patterns.
This ensures that: 1) the starting cluster centers are in the general area populated by
the given data, and 2) each cluster will have at least one pattern. This is because if a
pattern is initialized as a center of a cluster, it will probably remain in that cluster.

A natural question arises regarding the meaning of the k-means clustering results:
if k-means can produce different clusters every time, what confidence can one have in
the results of the clustering? This question can be refined into a number of questions
that will be briefly considered in the following.

One such question is how good is a particular cluster? One way to assess the good-
ness of fit of a given clustering is to compare the size of the clusters with the
intercluster distance. If the intercluster distance is much larger than the size of the
clusters, the clustering is deemed to be more trustworthy (see Fig. 8). Therefore, for
each cluster, the ratio between the distance D to the nearest cluster center and its diam-
eter d can be used as an indication of the cluster quality. In the dendrogram plotted by

Fig. 6. The k-means algorithm with k = 2. (A) Two cluster centers are chosen randomly
and patterns are assigned to each cluster based on their distance to the cluster center. (B) New
centers are calculated based on the patterns belonging to each cluster. (C) Patterns are assigned to
new cluster centers based on distance. Two patterns move from the right cluster to the left cluster.
(D) New cluster centers are calculated based on the patterns in each cluster. The algorithm will
continue trying to reassign patterns. No pattern will be moved between clusters. In consequence,
the centers will not move in the next update and the algorithm will stop.
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GeneSight (see Fig. 5), the length of the branches of the tree are proportional to the
ratio D =d. Thus, taller clusters are better than short clusters9.

Another interesting question is how confident can one be that a gene that fell into a
cluster will fall into the same cluster if the clustering is repeated? This question can be
addressed by repeating the clustering several times and following the particular gene
of interest. In GeneSight, this can be achieved by generating a partition based on a
given clustering. Such a partition will have all genes in a cluster coded with the same
color (see Fig. 9). Repeating the clustering several times will reveal whether the col-
ors remain grouped together. Those genes that are clustered together repeatedly are
more likely to have a genuine connection. This idea can be taken further to its natural
extension that is bootstrapping.

Bootstrapping is a general technique that allows the computation of some goodness
of fit measure based on many repeats of the same experiment on slightly different
datasets all constructed from the available data. The bootstrap is a very powerful
method but is computationally intensive often requiring hours or days of computing
time on state-of-the-art machines.

Fig. 7. K-means can produce different results in different runs depending on the initialization of
the cluster centers. For instance, (A) if the clusters are initialized, (B) the final result will be very
different from the one obtained previously (in Fig. 6.).

Fig. 8. Cluster quality assessment: clusters for which the nearest adjacent cluster is situated at a
distance much larger than their own size are more trustworthy.

9Note that this is specific to GeneSight. Other data analysis programs may not calculate such
quality information and therefore the length of the branches in many publications may have no
particular significance.
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Fig. 9. An example of a partition defined by a clustering. Genes falling in one cluster are coded
with the same color. Repeating the clustering and choosing those colors that tend to stay together
increases the confidence that those genes truly share important features.
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The choice of the number of clusters is another issue that needs careful consider-
ation. If it is known in advance that the patterns to be clustered belong to several
different classes, e.g., benign and malignant, one should then cluster using the known
number of classes. Thus, if there are features that clearly distinguish between the
classes, the algorithm might use them to construct meaningful clusters. It is not neces-
sary to know which pattern belongs to each class but only that there are two different
classes. If the number of existing classes is not known and the analysis has an explor-
atory character, one could repeat the clustering for several values of k and compare the
results, i.e., track the genes that tend to fall in the same cluster all the time. This
approach is heuristic in nature and its utility will vary widely depending on the par-
ticular problem studied.

The complexity of the k-means algorithm must also be considered. It can be shown
that the k-means algorithm is linear in the number of patterns, e.g., genes, N. This
means that the number of computations that need to be performed can be written as
p · N, where p is a value that does not depend on N but does depend on the number k of
clusters chosen by the user as well as the number of iterations. However, the number
of clusters is very small, e.g., 10–20 clusters, in comparison with the number of pat-
terns, e.g., 30,000 genes. One can conclude that k-means has a very low computa-
tional complexity which translates directly into a high speed.

Hierarchical Clustering
Hierarchical clustering aims at the more ambitious task of providing the clustering

that characterizes a set of patterns in the context of a given distance metric. The result
of the clustering will be a complete tree with individual patterns, genes or experiments
as leaves and the root as the convergence point of all branches. The tree can be con-
structed in a bottom-up fashion, starting from the individual patterns and working
upwards towards the root10 or following a top-down approach, starting at the root and
working downwards towards the leaves. The bottom-up approach is sometimes called
agglomeration because it works by putting smaller clusters together to form bigger
clusters. Analogously, the top-down approach is sometime called division because it
works by splitting large clusters into smaller ones.

Unlike k-means, a hierarchical clustering algorithm applied on a given data set and
using a chosen distance will always produce the same tree. However, different hierar-
chical clustering algorithms, e.g., bottom-up and top-down, may produce different
trees. In general, algorithms working by division require less computation and are
therefore faster. However, obtaining the results quicker may not necessarily be a rea-
son for joy because a hierarchical clustering algorithm working by division, or top-
down, may produce results worse than an algorithm working by agglomeration. This
can happen because in dividing the clusters the most important splits, affecting many
patterns, are performed at the beginning before accumulating enough information and
two patterns inadvertently placed in different clusters by an early splitting decision
will never be put together again.

The bottom-up method works as follows. Start with n clusters, each consisting of
a single point (gene or experiment ). Calculate a table containing the distances from
each cluster to every other cluster (for n points this will be of the order of n2 compu-
tations). Then repeatedly merge the two most similar clusters into a single superclus-

10Unlike the real trees, classification trees are usually drawn with the root on top and the
branches developing underneath.
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ter until the entire tree is constructed. A cluster distance is required to assess the
similarity between clusters.

The distance between clusters can be taken to be the distance between the closest
neighbors (known as single linkage clustering) furthest neighbors (complete link-
age), the distance between the centers of the clusters (centroid linkage), or the aver-
age distance of all patterns in each cluster (average linkage). Clearly, the total
complexity of the algorithm and therefore its speed is very much dependent on the
linkage choice. Single or complete linkages require only choosing one of the dis-
tances already calculated while more elaborated linkages such as centroid, require
more computations. Such further computations are needed every time two clusters
are joined, which greatly increases the total complexity of the clustering. However,
cheap is not always better. Simple and fast methods such as single linkage tend to
produce long stringy clusters, when e.g., using a Euclidean distance, while more
complex methods such as centroid linkage or neighbor joining tend to produce clus-
ters that more accurately reflect the structure present in the data but are extremely
slow. The complexity of a bottom-up implementation can vary between n2 and n3

depending on the linkage chosen. In the context of gene expression, one should try
to prune the set of genes of interest as much as possible before attempting to apply
bottom-up clustering with a more complex linkage.

The top-down approach starts by considering the whole set of patterns to be clus-
tered. Subsequently, the algorithm uses any of a large number of nonhierarchical clus-
tering algorithms to divide the set into two clusters. A particular choice of such a
nonhierarchical algorithm is k-means with k = 2. Subsequently, the process is recur-
sively repeated on each of the smaller clusters as they are obtained. The process stops
when all small clusters contain a single pattern.

The top-down clustering tends to be faster but the clusters produced tend to less
accurately reflect the structure presented in the data. Theoretically, the results of a
hierarchical clustering should only depend on the data and the metric chosen. How-
ever, a top-down approach will essentially rely on the qualities of the partitioning
algorithm. For example, if k-means is chosen to divide clusters into subclusters, the
overall result may be different if the algorithm is run twice with the same data. This
can be due to the random initialization of the cluster centers in the k-means division.
The complexity of the top-down approach can require between nlogn and n2 computa-
tions and is therefore intrinsically faster than the bottom-up approach especially when
a complex linkage is involved.

Finally, another approach to building a hierarchical cluster uses an incremental
method. This approach can be even faster than the top-down approach. Such methods
build the dendrogram by adding one point at a time, with minimal changes to the
existing hierarchy. In order to add a new gene, the gene under consideration is com-
pared with each cluster in the tree, starting with the root and following always the
most similar branch according to the distance used. When finding a cluster containing
a single gene, the algorithm adds a branch containing the gene under consideration.
This approach can be lightning fast compared to the others. However, the weakness is
that the results can depend not only on the distance metric (as any clustering) or the
distance metric and some random initialization (as the top-down approach) but also on
the order in which the points are considered.

A few conclusions can be drawn from this discussion of various hierarchical clus-
tering methods. First, various implementations using the same data and the same met-
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ric can still produce different dendrograms if they use different approaches. Second,
merely obtaining a clustering is not, nor is the dendrogram itself the answer to the
researcher’s desires. A dendrogram connecting various genes in a graphically pleas-
ant way can be obtained relatively quickly even if thousands of genes are involved.
The real problem is to obtain a clustering that reflects the structure of the data. A
clustering that reflects well the properties of the data may require more computa-
tions. Therefore, various implementations of hierarchical clustering should not be
judged simply by their speed. Many times, slower algorithms may simply be trying
to do a better job of extracting the data features.

ANOVA
In order to account for the multiple sources of variation in a microarray experiment,

Kerr and Churchill used an ANOVA approach and proposed the following model:

log (yijkg) = µ + Ai + Dj + Vk + Gg + (AG)ig + (VG)kg + εijkg [Eq. 1]

In this model, µ is the overall mean signal of the array, Ai is the effect of the ith array,
Dj represents the effect of the jth dye, Vk represents the effect of the kth variety (a condi-
tion such as healthy or malignant), Gg represents the variation of the gth gene, (AG)ig

is the effect of a particular spot on a given array, (VG)kg represents the interaction
between the kth variety and the gth gene and εijkg represents the error term for array i,
dye j, variety k, and gene g. The error is assumed to be independent and of zero mean.

The ANOVA method uses a classical optimization algorithm to find numerical
values that fit the given data. ANOVA is usually followed by a residual analysis, in
which one studies the residuals, i.e., the differences between the measured values and
the values given by the model. The purpose of this analysis is to show that the model
is appropriate. If the distribution of the residuals is consistent with a random distribu-
tion, the approach is considered to be successful and the model used suitable for the
given phenomenon. If the residuals show any particular shape that is not consistent
with a random distribution, the model is considered to be inadequate for the given
phenomenon. The rationale behind this analysis is that if the model is accurately rep-
resenting the phenomenon, the differences between the predicted values and the real
values should be only due to the noise that is random. If the residuals are not random,
the data contained some feature that is not properly represented in the model and thus
is visible in the residuals.

The ANOVA has several important advantages. First, it provides an explicit quanti-
tative term for each factor considered in the noise. Thus, differences between different
arrays as well as dye effects can be precisely assessed and normalization becomes
unnecessary. Second, it is easy to find differentially regulated genes in a rigorous man-
ner because there is an explicit term that relates to the expression level of the genes.

Among the disadvantages, ANOVA is very sensitive to the experimental design. If
the experiment is not carried out in a manner that is consistent with the model, various
factors will be confounded. In spite of this, the ANOVA is one of the best methods
currently in use for analysis of microarray data.

Supervised Learning
Cluster analysis is currently by far the most frequently used multivariate technique

to analyze gene sequence expression data. Clustering is appropriate when there is no
a priori knowledge about the data. In such circumstances, the only possible approach
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is to study the similarity between different samples or experiments. In a machine learn-
ing framework, this process is known as unsupervised learning since there is no known
desired answer for any gene or experiment.

However, we are now starting to understand the way genes function. The infor-
mation has started to be organized and there are public databases storing functional
information and pathways describing gene interactions. Such information may be
used in the data analysis process. For example, the clustering step can be followed
by a step in which one attaches functional labels to various clusters. This can be
based on the members of the clusters whose function is known. Subsequently, one
can construct a number of hypotheses that attach functionality to genes whose func-
tion is not currently known. Such hypotheses can then be tested. This mechanism is
an effective way to construct a set of reasonable hypotheses from a large number of
expression values and may be the key to establishing structure-function relation-
ships. Furthermore, this approach permits the construction of metabolic pathways
and the discovery of previously unknown functional relationships.

The disadvantage of clustering techniques is related to the fact that there are no
guarantees that the clusters obtained make sense from a biological point of view. In
other words, there is no guarantee that there is a clear biological function attached to
each cluster.

Recently, a number of laboratories addressed the issue of using gene expression
to distinguish between classes of conditions such as leukemia, colon cancer, malig-
nant melanoma, and B-cell lymphoma. In a machine learning framework, this modus
operandi is known as supervised learning and is very suitable for identifying the
function of new genes.

Reviews of various supervised and unsupervised techniques are presented as well
as other results using supervised learning (see Suggested Readings). Other classical
machine learning techniques such as nearest neighbor, boosting, Bayesian classifiers,
support vector machines, singular value decomposition have shown to be successful in
microarray data analysis.

Other Existing Research and Tools
Several recent review articles discuss computational methods and challenges in

this field. Various data analysis methods have been used to extract functional informa-
tion. One favorite target for such studies is the yeast genome.

Some software tools have already been developed for the visualization, manipu-
lation and analysis of gene expression data. GenExplore (Applied Maths) can do
cluster analysis, PCA, discriminant analysis, and SOFMs. ImaGene and GeneSight
(Biodiscovery) offer everything from image processing to data analysis including
clustering and PCA. XDotsReader (Cose, France) offers calibration, normalization,
and statistic analysis for DNA grids. WorkBench, Phylosopher, Impressionist, and
Expressionist (GeneData AG) offer gene expression, sequence comparison, protein
expression analysis, and data management tools. GeneCluster (MIT’s Whitehead
Genome Center); ArrayVision (Imaging Research Inc.); arraySCOUT (LION Bio-
science AG); Stingray (Affymetrix); ArrayAnalyzerDB (MolecularWare, Inc.);
Resolver (Rosetta Inpharmatics); the MicroArray Suite (Scanalytics Inc.); GeneSpring
(Silicon Genetics); Array-Pro (Spotfire Inc.); Cluster, Xcluster, and TreeView
(Stanford); ArrayViewer (TIGR); Axeldb; and MUMmer and Glimmer (IGR) are few
other tools offering various visualization and analysis tools for DNA data analysis.
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DNA array databases and on-line tools include: GeneX, Arrayexpress, SAGEmap,
µArray, ArrayDB, ExpressDB, SMD, KEGG, and MGED (see Suggested Readings).

This wealth of software and resources clearly shows the amount of effort
currently directed towards developing new tools for microarray data analysis. Micro-
arrays have already proven invaluable tools able to shed new light on subtle and
complex phenomena that happen at the genetic level. However, in order to realize its
full potential, the laboratory work using microarrays needs to be complemented by a
careful and detailed analysis of the results. The early years of this technology were
characterized by a wealth of spectacular results obtained with very simple data-analy-
sis tools. Those were some of the low-hanging fruits of the field. A careful analysis
performed with suitable tools may reveal that those low-hanging fruits were only a
very small fraction of the potential crop. Furthermore, it is likely that the most spec-
tacular results, deeply affecting the way we currently understand the genetic mecha-
nism, are further up in the knowledge tree and their gathering will require a close
symbiosis between biologists, computer scientists and statisticians.
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36Knowledge Discovery
from the Human Transcriptome

Kousaku Okubo and Teruyoshi Hishiki

Introduction

The practical definition of a transcriptome is the entire population of mRNAs from
a defined source, such as a cell, cells, tissue, or an organism. The population structure,
the species of mRNA and their abundance in a transcriptome, varies widely depending
on the source. This variation is thought to reflect phenotypic differences between
sources. Therefore, the population structure is crucial to understanding the informa-
tion in the transcriptome data.

The classic analysis of transcriptomes involved liquid hybridization (Rot analysis)
in 1970s (see Suggested Readings, Lewin [1999]), when most transcripts were anony-
mous. Nevertheless, important knowledge was extracted regarding a population struc-
ture. The population appeared to contain three abundance classes and the number of
different transcripts per cell was suggested to be 10,000–20,000.

The situation has changed since the initiation of the human genome project early in
the 1990s. Increasing amounts of data regarding the human transcriptome have been
generated. In these data, many transcripts are no longer anonymous as they have names
or identification codes (IDs), enabling us to compile different data sets and character-
ize individual genes as well as the transcriptome as a mass.

There are two categories of transcriptome data available in the public domain
today. One is population analysis data generated by random sampling identification,
and the other is the collection of the ratio of thousands of individual transcripts across
different populations. The former is usually carried out by determining short sequences
of randomly selected cDNA clones from a library. The latter is generated by microarray
hybridization. We will focus on the available random sampling of public data as an
example of data structure analysis with the goal of building a framework for such
an analysis. Application of the mathematical analysis package, MATLAB (The
MathWorks Inc., Natick, MA, see Website: http://www.mathworks.com/) that
enhances the flexibility in data analysis of transcriptome data will also be discussed.

Data Preparation

To begin mining data for transcriptomes deposited in various forms in the public
domain, we must extract population information from the raw data and transform that
information into a format that we can apply our statistical analysis and visualization
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techniques. The desired data format for a transcriptome is a list of component tran-
script IDs paired with their abundance values in a specific source. If we compile such
data from multiple sources, we will have a matrix of abundance values arranged coor-
dinates of transcript ID × source material (Gene Expression Matrix). To simplify the
analysis, we do not consider variations in splicing patterns and alternative
polyadenylation sites, because discriminative observation is usually not possible.
The methods for extracting population data from each type of data are described in
the following sections.

EST
An expressed sequence tag (EST) is a short stretch, usually 200–500 bp, of nucle-

otide sequence from a clone picked randomly from a cDNA library. On one hand the
tagged portion usually represents the 3' end of cDNA, because cDNA is usually syn-
thesized with primers annealing to the poly(A) stretch at the 3' end of the mRNA. On
the other hand the 5' end of cDNA represents the start site of the transcription. This is
only observed when the mRNA remains intact until cDNA synthesis and when it has
no strong internal structure that stops reverse transcription. Large numbers of ESTs
have been generated (thousands of ESTs per library) from the various projects and
deposited into a single public directory, dbEST, maintained by the National Center for
Biotechnology Information (NCBI). Similar to GenBank, the dbEST data exist as
multiple individual nucleic acid sequences with notations of the source material,
method for data generation, authors and any citations (for the file formats see
Websites: http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html and http://
www.ncbi.nlm.nih.gov/dbEST/). When EST data is used for transcriptome analysis,
one first sorts all human EST entries according to their library of origin by using the
respective annotations as keys. As shown, some libraries are noted as normalized.
This means that differences in the representational frequencies between clones were
intentionally diminished prior to sampling.

Examples of libraries noted as normalized:

NCI_CGAP_Brn41 (Adult brain)
NCI_CGAP_Brn50 (Adult brain)
NCI_CGAP_Brn52 (Adult brain)

You can obtain details about dbEST libraries from the UniGene web pages (see
Website: http://www.ncbi.nlm.nih.gov/UniGene/lib.cgi?ORG=Hs&LID=816). Library
ID (LID)—library source is available from Hs.lib.info, as part of the UniGene files
available from the NCBI ftp website.

Other procedures that will alter the representational frequency and population struc-
ture include the elimination of abundant clones by prescreening with cDNA probes,
and subtraction between two similar libraries to enhance any interpopulation differ-
ences. In commercially available libraries, the population of clones may be biased in
favor of those that do not interfere with proliferation of host bacteria. ESTs contained
within these representationally altered libraries are not suitable for transcriptome
analysis. If this information is not noted, we must refer to the original publications to
determine if the data are suitable for transcriptome analysis.

To transform the EST records from each library into the population analysis format
of transcript ID and abundance, we must cluster ESTs from one library into cognate
sequence classes. This process is similar to shotgun sequence assembly using overlap-
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ping sequences. The results are contained in the UniGene database. In this database,
all EST entries and full-length cDNA entries for major organisms have been clustered
into cognate sequence classes with unique class IDs (e.g., Hs numbers for human).
The correspondence between the UniGene IDs and EST IDs is available (for human
see Website: ftp://ncbi.nlm.nih.gov/repository/UniGene/Hs.data.Z). Thus, beginning
with the EST IDs for a library, we can generate a list of gene IDs with frequency
values. Because UniGene has sequence variants registered separately, some UniGene
IDs represent the same gene. LocusLink maps UniGene entries to unique gene loci
and can be used to integrate multiple UniGene IDs for one gene.

BodyMap
The BodyMap database (see Website: http://bodymap.ims.u-tokyo.ac.jp/) is an EST

database containing a data set for the purpose of population analysis. The libraries
analyzed in the process of building the database are not normalized or amplified. All
the ESTs represent the most 3'cDNA fragments created by cleavage with the restric-
tion enzyme MboI (GATC). The data in BodyMap are summarized as a gene × tissue
abundance matrix that shows how frequently a particular gene sequence is represented
in a specific source. Table 1 shows a part of such a gene expression matrix that covers
approx 20,000 genes × 60 tissues. In BodyMap, the corresponding gene IDs and
UniGene IDs are also provided.

SAGE
The serial analysis of gene expression (SAGE) database (see Website: http://

www.ncbi.nlm.nih.gov/SAGE/) is a collection of very short site-directed tags from
cDNA libraries. The sequence tags consist of the 10 bases that follow the 3'-most
GATC (MboI) or CATG (NlaIII) restriction site of a cDNAs. Tags are read by
sequencing plasmid inserts containing 10–20 concatenated tags to enhance the effi-
ciency of tag collection. The resultant sequences are separated into 10-base tags by
separator sequences that are introduced before concatenation. The 10-base tags are
counted using a 100% match basis because any 10 bases could represent a gene. If
the experiments are carried out as planned and the sequences after the cleavage sites
are random, the 10 bases should be long enough to discriminate among the 30,000–
50,000+ human genes.
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Table 1
A Part of the Gene × Tissue Matrix in the BodyMap Database a

Blood Connective/Muscular Epithelial Cluster ID

B01 B02 B03 B04 B05 C01 C02 C03 C04 C05 E01 E02 E03 E04 E05 BodyMap UniGene Gene name

55 GS08025 cytokeratin 12
2 23 GS06283 Hs.74070 cytokeratin 13

3 3 2 GS03142 Hs.195851 a-actin, vascular
14 1 4 3 2 1 2 11 4 2 2 10 7 GS00244 Hs.180952 b-actin

1 5 1 4 4 1 3 9 9 2 2 4 9 GS00114 Hs.215747 g-actin
1 11 4 GS02049 Hs.172928 COL1A1

2 26 13 GS02285 Hs.179573 COL1A2

aB01 through E05 represents different libraries.



696— Okubo and Hishiki

The publicly available SAGE data (see Website: ftp://ftp.ncbi.nlm.nih.gov/pub/
sage/) is stored in multiple files, each containing a list of 10-base tags with their
frequencies in a specific transcriptome. The corresponding Hs number for each tag
is provided in the same directory. Because the tags are counted on a perfect-match
basis, a sequence alignment program is not necessary, and a simple sort command
followed by uniq -c provided by the UNIX shell is sufficient. Tag frequency and
tag-Hs correspondence tables can be used to create a gene × source matrix.

Sources of Confusions and Errors in Data
Random Fluctuation Errors

The difficulty with interpreting the data arises from the random fluctuations or
chance errors that are inherent in tag counting. Because the number of clones for a
gene is small relative to the size of the sample, the probability to observe x clones for
one gene transcript, p(x), should follow the Poisson distribution:

p(x) = exp(–λ )  · λ x/x ! [Eq. 1]

where λ is the actual (though unknown) number of clones for a gene per N sampled
clones. Figure 1 shows a series of plots of p (x) for x = 0 to 10, with λ increasing from
1 to 15. The MATLAB poisspdf command has been used. Each curve shows the dis-
tribution of the probability to observe x counts for each λ value. For example, given
x = 3, there could be several values for λ with probability larger than 5%.

The confidence limits for λ, for the observation of x clones of a gene may be
obtained as follows. Let α be a significance level (e.g., 0.01), and the lower 1 – α
confidence limit is

L1 = χ2 {[1 – (α/2)], 2 · x}/2, [Eq. 2]

where χ (p, ν) is the chi-square value for the probability p and the degree of freedom
ν, and the upper 1 – α confidence limit is

L2 = χ2 [α/2, 2 · (x + 1)]/2. [Eq. 3]

Chi-square values from standard statistical tables for critical values of the chi-square
distribution, the Excel function CHIINV(p, ν) or the MATLAB function chi2inv(p',ν)
(you should use 1 – p for p'), can be used. If x = 3 and α = 0.01, then

L1 = chi2inv{1 –[1 – (0.01/2)],2 · 3}/2 = 0.3379,

and L2 = chi2inv [1 – 0.01/2,2 · (3 + 1)]/2 = 10.9775.

Therefore, rounding the values yields a 99% confidence interval between 0 and 10 for
the count. The expected ranges of actual counts for different observed counts for α =
0.01 and 0.05, and the results are presented in Table 2.

Confusion in Tag Counting and in Tag to Gene Correspondence
Cluster errors must also be considered because we count the number of unique

tags by clustering the alignments when we use EST data. Errors in clustering have
various causes. First, tag sequences containing repetitive sequences may lead to
joining different clusters. In addition to repetitive sequences such as Alu or L1,
contaminating vector sequences may similiarly act as repetitive units. An example
of the inclusion of a repetitive sequence in a representative cDNA set is shown in
Table 3. Therefore, sequences are clustered after intensive filtering of repetitive
sequences. Nevertheless, there may still be some unmasked repetitive sequence left.
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It must be remembered that exhaustive attempts to remove repetitive sequences with
long margins may lead to loss of unique tags.

Second, clustering errors can be caused by chimeric clones resulting from the
connection of two independent cDNA fragments at the cloning steps. Chimeric
clones can only be identified when an assembly of cognate tags or an alignment to
genomic sequence is made.

The third source of error is contamination by genomic fragments. The canonical
polyadenylation signal (AAUAAA) does not assure distinction from genomic

Fig. 1. Possible observations under Poisson distribution.

Table 2
Confidence Intervals of Possible Actual Occurrence (___) for Observed Counts (x).

Observed counts 1 2 3 4 5 6 7

Actual occurence (λ) α = 0.05 0–5 0–7 0–8 2–10 2–11 2–13 3–14
α = 0.01 0–7 0–9 0–10 0–12 2–14 2–15 3–17

8 9 10 11 12 13 14 15 16
4–15 5–17 5–18 6–19 7–20 7–22 8–23 9–24 10–25
3–18 4–19 4–21 5–22 5–24 6–25 7–26 7–28 8–29

17 18 19 20 21 22 23 24 25
10–27 11–28 12–29 13–30 13–32 14–33 15–34 16–35 17–36

9–30 9–32 10–33 11–34 12–35 12–37 13–38 14–39 14–41
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sequences. Approximately 10% of the transcripts completely lack this hexanucleo-
tide even if one-base is substituted. A stretch of Ts in 3' ESTs representing poly (A)s
may help distinguish such cDNAs; however, when 3' EST sequences are read beyond
the poly (A) tail in the antisense direction, the sequences in such a region are often of
poor quality and are therefore eliminated from the submitted sequences.

The fourth source of errors is the misidentification of SAGE tags. Sequencing
errors are difficult to detect because tags for different genes may differ at only one
base. If the sequence quality is 99.0%, the probability of obtaining a 10-bp sequence
free from error is 90%. Therefore, there is one incorrect tag in every 10 tags. For
example, for 286,089 human SAGE tags, reliable correspondence to an Hs member
was found for less than one third (89,230). The remaining tags could be derived
from a different region of a partially registered transcript, a novel transcript, or an
artifact. This is an excellent example of the inevitable trade-off between efficiency
and robustness of random noise in the information transmission.

In SAGE and BodyMap, transcripts without MboI or NlaIII cleavage sites are not
represented in the data. For example, among 13,739 sequences in the RefSeq data-
base, 398 full-length cDNAs lack MboI sites and 145 sequences lack NlaIII sites.

Analyzing Data for a Single Transcriptome

One of the most commonly asked questions about a population of mRNAs is: what
are its characteristics? Typical answers have included information such as: the most
abundant is gene A, which represents 10% of total tags, followed by B representing
5%; or the 30 most abundant genes comprise 50% of the population; or 500 gene
species were found in 1000 tags. These are informative values, but they are not as
comprehensive as the classical Rot curves because each value only represents a small
fraction of the characteristics of that population.

By introducing a secondary feature to each gene, the abundance rank, we can
graphically represent the entire population. The abundance rank is the relative amount
of a transcript in a transcriptome, i.e., rank = 1 for the most abundant, rank = 2 for the
second most abundant, and so on. The rank is not an inherent feature of a gene, how-
ever, it provides a unique description of a gene in a population.

To obtain a graph called the gene expression profile the frequencies of genes can
be plotted as a function of their abundance ranks. A virtual Rot curve can be derived

Table 3
Inclusion of a Repetitive Sequence in a Representative cDNA Set

A representative sequence containing a repetitive sequence (GS5406):

GANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNAAAGAAGAAAAAAAGAGAAAAATAACTCTTTT
GAACAAACAGACAAATTAGCTAGTAGTATGGAGATGTATACCCTCTATTACACACATAAA
ACCGTAACAAAATTCATTGTGGTGTATTATAATTAGTTTTGTGAATAGAAAAATAAAGCA
CTTATGTTTAAATTTGTTACAGTTGACTTTTAAAGGATAATGTTGAATCACATTGTCAGA
ATTTTTTCCNCCCCCCGTTCAATTTTGTTNTTTTTACCCCCNAAAATGAAATTCNCAAAT
TTATACNTTTTNTTTTGTTTGAANAATNATCCNCCCNTTTAAAAAAA
The masked part includes a repetitive sequence as follows:
TCGGGTTGAGCCCAGGAGGTTGTGGCTGCAGTNAGCTGTGATGTGCCCTTATGCTATAGCCTGGGCA
AGAGCGTGAGACCCTGTCTCAAAGAAGAAAA
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by plotting the accumulated sum of the frequencies of the sequence tags in a popula-
tion as a function of their frequency rank. These curves look similar for all
transcriptomes because the plotted genes are always distributed in small areas close
to the coordinates on a logarithmic scale (see Fig. 2). These log-rank vs log-frequency
plots, or Zipf's plots, were named after a linguist George Kingsley Zipf, who found a
beautiful constraint in the frequency of words in English texts. In either case, the
continuity of abundance across ranks, rather than clustering to form abundance
classes, was suggested. This permits us to easily visualize the difference in mRNA
populations between various transcriptomes.

Interestingly, with populations of differentiated and homogeneous cells, such as
liver and muscle, the curve is very close to the line representing F = 0.1/r, where F is
the frequency and the r is the abundance rank. If this holds true for transcripts with
the lowest rank, an estimate of the number of transcribed genes in liver or muscle is
obtained as a natural number N such that the accumulated sum of 0.1/r with r from 1 to
N equals 1. For N = 12,367, the sum equals 1.0000. Although the value may easily be
affected by attitude of rare transcripts (tail of the curve), such a prediction is the beauty
of the discovery of the constraint.

Useful Tools for Expression Data Analysis of Microarray Data

A set of expression data is essentially a gene by source (e.g., cells and tissues)
matrix of frequency data. Therefore, tools to manipulate large matrices efficiently
facilitate flexible exploration, rather than having tools specialized in expression pro-
filing. MATLAB, a widely used mathematical computing tool in science and engi-
neering, it is one of the best of its kind. The first version of MATLAB was written in
the late 1970s at the University of New Mexico and Stanford University and was
intended for use in courses in Matrix Theory. Version 6 (Release 12) contains col-
lections of tools (toolboxes) built on the MATLAB environment, including Statis-
tics Toolbox and Signal Processing Toolbox, have been developed. Student versions
are sold at a very reasonable price and provide essentially the same environment, but
limit the matrix size.

What is MATLAB?

MATLAB is a software package (see Website: http://www.mathworks.com/
search) that can be used to define and solve mathematical problems. Its application
areas include all fields where problems are defined mathematically. MATLAB pro-
vides the flexibility equivalent to problem specific environments written in languages
such as Fortran or C. Compatibility with these languages and coverage of computing
tasks from data acquisition and analysis to applications development minimizes the
learning curve for applying this tool to gene-expression analysis.

MATLAB integrates mathematical computing, visualization, and a powerful tech-
nical language. It provides users with a combination of a very intuitive interface, lan-
guage, and built-in math and graphics functions. For example, let A and B represent
matrices m × n and n × k. The product of the two matrices is obtained by simply
writing the mathematical expression A * B. To join the rows (horizontal concatena-
tion) of matrices A and B to make a wider matrix enter [A B]. To display a colored
map that represents the distribution of values over the whole matrix A requires only
that the user run a command pcolor(A).
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Fig. 2. The frequency of occurrence (f) of each transcript in 3'EST and SAGE tag (*) collections of
various transcriptomes plotted against the abundance rank (r). The broken line represents f = 0.1/r.
(A) Organs with homogeneous populations of differentiated cells. Gene names for r = 1 – 6 in liver
are given. (B) Cell lines and complex tissues. (C) Compiled data from 51 human EST sets, 31 mouse
EST sets, and 64 SAGE tag sets. Gene names for r = 1 – 6 in compiled human transcriptome (3'EST)
are given. (D) Occurrence of 3'ESTs in normalized libraries. The total tag occurrence for each data
set is given in parentheses. The frequency data were obtained from websites (see Websites: http://
bodymap.ims.u-tokyo.ac.jp/datasets/index.html (3'EST) and ftp://ncbi.nlm.nih.gov/pub/sage/ (SAGE).
The data for liver are the combined data for two human liver libraries. The frequencies of total SAGE
tags are from re-analysis of all available human SAGE tags. Clustering 3'ESTs for two representative
normalized libraries in dbEST, 1N1B and 2NbHM, yielded the data for normalized libraries.
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Expression Analysis with MATLAB

This section provides an example of the use of MATLAB to determine various
expression patterns. In this example, we will use supplemental data (Fig. 2 clusters;
fig2data.txt) that were originally reported in Iyer et al. (1999). This can be down-
loaded from Stanford Genomic Resource (see Website: http://genome-www.
stanford.edu/).

Import and Display Matrix Data
First, import and display an entire matrix. The raw matrix data should be a text

delimited file with tabs or other delimiters (e.g., spaces and |). The command help
formats shows other compatible file formats. Pull down the File menu, start the
Import Wizards and load fig2data.txt The file fig2data.txt has several comment
lines that provide an explanation of the origin of the file. These lines should be
removed. Some text files are impossible to import because of format errors, that are
often hard to detect. In such a case, importing these files into Excel and exporting
the files as a tab-delimited text file is often effective. The wizards will separate the
text file into a data matrix named data and row/column titles named textdata.

The command pcolor(data) will display the matrix. Often only a black window
is visible because the panel is too small to both draw mesh lines and paint matrix
cells. Pull down the Edit menu, start the Current Object Property Editor, and
remove the mesh lines by setting the line style to none. The color-value table (color
bar) for the matrix cells is shown as the colorbar command. Only a blue field will
be visible as the values in the cells are the red/green ratio scanned from the micro-
arrays. The lower limit of the ratio is 0 while the upper limit may be more than 100.
It is necessary to use a logarithmic scale as most matrix cells are in the blue (near 1)
area. Let Fig2 represent a new data matrix, and make a statement  Fig2 = log2(data)
to make a properly scaled matrix. Figure 3 shows the column 1 (0 h) to 13 (unsync)
of Fig. 2 in Iya et al. (1999).

Let X be a matrix, which has been extracted from Fig2 by X = Fig2(:,1:13);. Run
pcolor(X) to display the figure. To reverse the direction of the Y-axis, type
set(gca,'YDir', 'reverse'). The direction can be changed again by set(gca, 'YDir',
normal'). The background color of the figure can be changed to white using the set
gcf,'color','white' command.

Manipulating the Color Map
Readers may want to change the color bar to the familiar red/green representa-

tion, because it is rational to use only two colors rather than to use all three (red,
green, and blue) to show the ratio between two mRNA levels. This is possible by
changing the color map or a table that relates the order in the value to a color. A
color map is a matrix of three columns, where each row represents a color, and the
first, second, and third columns represent the intensities of the red, green, and blue
components, respectively.

We will make a color map with the same number of rows, 64, as the default, but
it will have a red column with a continuum of zeros from the start to the middle and
then increase linearly from 0 to 1. The color map will have a green column that starts
at 1 and diminishes from 1 to 0 in the middle, with a continuum of zeros to the end,
and a blue column with all zeros. Lower values correspond to the intensity of green,
whereas higher values correspond to the intensity of red. The color map has a black
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row with all zeros in the middle, and this can be adjusted so that cells with
red/green ratios close to 1.0 are black. Name the color matrix MAP. To use the
color map, display the figure and then execute colormap(MAP). Figure 4 shows the
resultant representation.

Preparation Before Clustering
MATLAB can be used to cluster by rebuilding a clustered matrix of expression

patterns. In this section, a random permutation (ordering) of the rows is generated
from the original clustered matrix. To start, make a random permutation array of length
517 or the number of rows. A permutation array is a reordered list of serial numbers
indicating the order of the numbered objects. If the i-th element of a permutation array
is j, the j-th object occupies the i-th position in the new list. Let the array p_1 =
randperm(517). With this array, a row permutation matrix that reorders the rows of a
matrix can be simply defined by X_rowrand = X(p_1,:). An example of a matrix with
permutated rows of X is shown in Fig. 5.

Clustering Expression Data
There are two purposes to clustering the data: 1) to search for a set of genes show-

ing similar expression patterns, and 2) to search for similar cells or tissues showing

Fig. 3. Displaying a matrix.
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similar patterns of expression. The first is referred to as row clustering, and the second
column clustering.

This example has time-ordered, noncategorical columns and therefore, only row
clustering will be considered. Column clustering can be done independently and is
accomplished the same way as row clustering after the matrix is transposed. The
MATLAB expression of the transposed matrix A is A.

One of the methods to cluster the rows is hierarchical clustering. This is accom-
plished in three steps: 1) calculating pairwise distances between data points (row vec-
tors); 2) linking the nearest data point or group of data points hierarchically (to make
a tree) with some alternative methods of defining the distance between groups; 3)
cutting the tree into clusters according to a dissimilarity threshold within a cluster or
the desirable number of clusters.

MATLAB users can easily define these tasks and make tests. For example, the
pairwise distance calculation task is carried out with Euclidian distance by Y =
pdist(X_rowrand, 'euclid'), and the linkage and tree generation task with average
distance between data points in two groups as the distance between the groups by Z =
linkage(Y, 'average'). If the dissimilarity threshold is set to 0.95, cutting the tree or
the clustering is T = cluster(Z, '0.95'). The array T has a length of the number of rows
of X, and the i-th element corresponds to the i-th row of X_rowrand; the value of the

Fig. 4. Changing the color map.
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element is the cluster to which the corresponding row is assigned. The number of
clusters is obtained by max(T).

Sort the randomized rows by the cluster array T with [X_14cols index]=
sortrows([T X_rowrand], [1]);. The resultant clustered matrix is obtained by
X_rebuilt = X_14cols(:,2:14);. The sortrows command sorts the rows of a matrix
[T X_rowrand] by the columns indicated by a list [1]. The matrix X_rebuilt is
shown as Fig. 6. The index array directs the permutation of rows of the randomized
matrix, X_rowrand.

To see how similar the reclustered matrix is to the original, a matrix describing
the correspondence of rows between the matrices can be generated by P2 =
spconvert([(1:517)' p_1(index)' ones(517,1)]);. The command spy(P2); plots the
matrix as shown in Fig. 7.

The closer the points are to the diagonal line that run from the upper left to the
lower right of the plot, the greater the similarity between matrices. The figure shows
that the positions of some clusters are interchanged each other but the set of clusters as
a whole is preserved after reclustering.

Fig. 5. A randomly row-permutated matrix.

See
companion CD
for color Fig. 6
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Displaying a Part of the Matrix
To examine the expression matrix more closely, extract a part of the matrix and attach

titles to the rows. For example, extract rows 271–320 from the rebuilt matrix and rows
251–300 from the original matrix. Correspondence between these rows is indicated in
Fig. 7. Display the rebuilt matrix with pcolor(X_rebuilt(271:320,:)). However, before
running that command the value range to adjust the color map must be defined.

By default, the MATLAB color map allocates the smallest value to the first row
of the color map matrix and the largest to the last row without considering the abso-
lute value. Therefore, when a small part of the matrix is displayed, the range of the
value in the whole data must be explicitly defined. Display the original matrix X by
pcolor(X). Run the cax = caxis command. If a semicolon is not included at the end
of the statement, the command will show the content of the cax array, which is the
range of the values of the cells in the whole matrix. Now display the partial matrix
and run colormap(MAP). The colors will change. Type caxis(cax) to adjust the
range of colors. To include more areas of the matrix, run a command such as set(gca,
'Position', [0.15 0.05 0.775 0.970]);.

Fig. 6. The re-clustered matrix.
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To assign titles to each row, make titles from the textdata array that was sepa-
rated when importing. To obtain an array of GenBank EST accession numbers for
the genes, extract the second column as acc = textdata(2:518,2:2)”. A version that
has gone through randomization and clustering, acc_rebuilt, can be obtained with
acc_rebuilt = acc(p_1(index)). The labels and their locations on the Y-axis can be
changed. Define a label set and the order of labels by set(gca, 'YtickLabel',
acc_rebuilt(271:320)). Set the number of labels to 50 by set(gca, 'Ytick', 1:50).
The font size can be changed to 8 points with set(gca,'Fontsize',8). Now display the
color bar by colorbar. Compare Fig. 8, which shows the original matrix with Fig. 9,
which shows the rebuilt matrix.

Rows can also be extracted by cluster. As an example, rows that belong to clus-
ters whose serial numbers are larger than 150 will be extracted. Use the array T that
relates rows of the randomized matrix X_rowrand to the cluster serial number as the
result of cluster function. Let an array T_sort represent row-to-cluster correspon-
dence in X_rebuilt. It is obtained by T_sort = sort(T);. An array of the row indices
for clusters with a serial number larger than 150 is obtained by find(T_sort > 150);.
With this array, rows are extracted by X_rebuilt(find(T_sort > 150),:), and the
titles are extracted by acc_rebuilt(find(T_sort > 150));.

Fig. 7. Comparison of two indices.
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Fig. 8. A portion of the original matrix.

Fig. 9. The corresponding portion of the re-clustered matrix.
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Analyzing Data for Multiple Transcriptomes and Future Prospects

Abundance matrices constructed from random sampling data are typically of very
sparse low sensitivity. For example, matrices constructed from the dbEST and SAGE
only contain values in approx 5% of the cells. This makes the random sampling data
unsuitable for clustering of genes by source distribution patterns and clustering of
sources by mRNA. Nevertheless, the entire matrix is useful for selecting genes on the
basis of distribution patterns especially for transcripts with high ranks in some tissues.
Absolute abundance data is more reliable than the absolute intensities of hybridization
signals because hybridization signals are dependent both on the concentration of
labeled cRNA/cDNA molecules and their stereostructure in solution. For these rea-
sons, total abundance levels of transcripts obtained from random sampling data will
continue to provide reliable clues for predicting gene functions from expression pat-
terns. Examining correlations between absolute abundance levels and gene character-
istics such as GC content and primary transcript length may be worthwhile.

One goal of transcriptome data mining is the systematic annotation of gene func-
tions. Microarray experiments have revealed that transcripts with high similarity
in tissue distributions share some functional properties. However, discovering the
properties shared by a group of known transcripts is experts' work, and such human
efforts cannot keep pace with the rate of production of transcriptome data. More-
over, manual annotations are typically not reproducible or objective and must be
repeated because the knowledge available regarding genes increases daily.

To overcome the inconvenience of manual annotation, developing a system
for computing with function is a central issue of biomedical research. Computing with
function is defined as executing computation operations whose inputs or outputs are
descriptions of the functions of biomolecules. Efforts for formal representation of bio-
chemical knowledge by KEGG  and EcoCyc have pioneered this effort. Gene Ontol-
ogy (see Website: http://www.geneontology.org) also facilitates such computations
by introducing controlled and structured terminology for describing gene function.
Although such efforts have proven effective for simple organisms, the same task in
complex organisms represents ontological challenges where most proteins are embed-
ded in regulatory networks that cannot be represented as lower order structures.
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Appendix
CD Contents

What is Included on the CD?

The CD that comes with this book includes:

1. All Figures and Tables with legends from the various chapters, many of which
are in color. This is an excellent source of illustrative material for presentations.

2. Several bioinformatics software packages that the readers can install on their own
computer workstations or servers.

3. Several useful basic tables and charts for understanding genome properties.

The CD is organized into folders and subfolders. The readers should be able to load
the CD into the CD-drive of any IBM-Personal Computer or Apple Macintosh and
browse through the folders.

The color figures can be found in the Color Figures folder, organized into sub-
folders by chapter.

The software packages can be found in the Programs folder, organized into sub-
folders by the name of each package. For each program subfolder, there is a ReadmeCD
file that provides further information about the software, including how to install it, use
it, and where up-to-date versions can be downloaded from the Web. There is also infor-
mation on licensing and registration, and restrictions that may apply.

BioDiscovery
This folder contains software packages for microarray analysis that may be installed

on IBM-PC computers. Installation instructions are included in the file named
Readme.pdf. You will need to use the Acrobat Reader utility to read the file (see
Section “Adobe Acrobat Reader”). The BioDiscovery software was kindly provided
by Sorin Draghici, author of Chapter 35.

ClustalX
This folder contains the graphical interface versions of the Clustal multiple

sequence alignment program. Versions for both IBM-PC (clustalx1.81.msw.zip) and
Macintosh (clustalx1.81.PPC.sea.Hqx) are included. The files in the packages will
need to be unpacked with common unzipping utilities. ClustalX versions for various
flavors of UNIX are also available from the original source FTP website (see
Website: ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/), described in the readme file.
Permission to include ClustalX on this CD was kindly provided by Julie Thompson
and is described by Steven Thompson in Chapter 31.

1
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Ensembl

This folder contains the files needed to install the Ensembl package on a UNIX
server. Installation instructions are located in the additional docs subfolder in the
file named EnsemblInstall100.pdf. You will need to use the Acrobat Reader utility
to read the file (see Section “Adobe Acrobat Reader”). The source code subfolder
contains the required source code for both Ensembl and Bioperl. Note that the files
in the source code folder are in UNIX format. Please use BINARY FTP mode to
transfer those files to your UNIX server. Up-to-date versions of Ensembl and Bioperl
are available at their respective Websites (see Websites: http://www.ensembl.org/
and http://www.bioperl.org). The Ensembl software was kindly provided by James
Stalker, author of Chapter 25.

MicroAnalyser

This folder contains a software package for microarray analysis that may be installed
on Macintosh computers. Up-to-date versions of the software are available (see Website:
http://imru.bham.ac.uk/MicroAnalyser/). Permission to include the MicroAnalyser soft-
ware on this CD was kindly provided by Adrian Platts.

Oligo

This folder contains demo versions of the Oligo primer design and analysis soft-
ware for both IBM-PC and Macintosh computers. This software was kindly provided
by Wojciech Rychlik, author of Chapter 21.

Sequencealign

This folder contains a PowerPoint demonstration of sequence alignment. It was
kindly contributed by David S. Wishart, author of chapter 27.

Singh_perl_scripts

This folder contains perl scripts for statistical analysis that were generously con-
tributed by Gautam Singh, author of Chapters 22 and 23. They can be used for solving
the problems described in Chapter 23.

Staden
This folder contains the Staden Sequence Analysis Package and the Gap4 Viewer

software that can be installed on an IBM-PC computer. For up-to-date versions see
Website: http://www.mrc-lmb.cam.ac.uk/pubseq/. This software was kindly provided
by Roger Staden, author of Chapters 20 and 24.

TreeView
This folder contains the TreeView tree drawing software for both IBM-PC

and Macintosh computers. TreeView is a free program for displaying phylogenies.
Up-to-date versions, including UNIX versions, can be found (see Website: http://
taxonomy.zoology.gla.ac.uk/rod/treeview.html). Please visit the Website to register
TreeView if you wish to use it. Permission to include TreeView on this CD was
kindly provided by Roderic D. M. Page.

WWW
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Adobe Acrobat Reader

In several of the folders on the CD, there are information files that may be in PDF
format. To read PDF format files, you will need to have the free Acrobat Reader utility
installed on your computer. If you do not already have Acrobat Reader installed, you can
download it (see Website:: http://www.adobe.com/products/acrobat/readstep.html).

Other Sources for Bioinformatics Software

There are many sources available for downloading software that may be useful.
Here are two of our favorites: EBI FTP Server (see Website: http://www.ebi.ac.uk/
FTP/) and IUBio Archive for Biology data and software (see Website: http://
iubio.bio.indiana.edu/).

WWW
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2 Appendix
A Collection of Useful Bioinformatic Tools and Molecular Tables

The Genetic Code
2nd Position

U C A G

UUU Phe UCU Ser UAU Tyr UGU Cys U
UUC Phe UCC Ser UAC Tyr UGC Cys C

U
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

CUU Leu CCU Pro CAU His CGU Arg U
CUC Leu CCC Pro CAC His CGC Arg C

C
CUA Leu CCA Pro CAA Gin CGA Arg A
CUG Leu CCG Pro CAG Gin CGG Arg G

AUU Ile ACU Thr AAU Asn AGU Ser U
AUC Ile ACC Thr AAC Asn AGC Ser C

A
AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

GUU Val GCU Ala GAU Asp GGU Gly U
GUC Val GCC Ala GAC Asp GGC Gly C

G
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

The codons are read as triplets in the 5' → 3' direction, i.e., left to right.
Termination codons are in bold.
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IUPAC Nucleotide Codes

Code Members Nucleotide

A A Adenine
C C Cytosine
G G Guanine
T T Thymine (DNA)
U U Uracil (RNA)
Y C or T(U) pYrimidine
R A or G puRine
M A or C aMino
K G or T(U) Keto
S G or C Strong interaction (3 H bonds)
W A or T(U) Weak interaction (2 H bonds)
H A or C or T(U) not-G
B G or T(U) or C not-A
V G or C or A not-T
D G or A or T(U) not-C
N G,A,C or T(U) aNy base

IUPAC Amino Acid Codes

3-Letter Code  1-Letter Code Amino Acid

Ala A Alanine
Arg R Arginine
Asn N Asparagine
Asp D Aspartic acid
Cys C Cysteine
Gln Q Glutamine
Glu E Glutamic acid
Gly G Glycine
His H Histidine
Ile I Isoleucine
Leu L Leucine
Lys K Lysine
Met M Methionine
Phe F Phenylalanine
Pro P Proline
Ser S Serine
Thr T Threonine
Trp W Tryptophan
Tyr Y Tyrosine
Val V Valine
Asx B Aspartic acid or Asparagine
Glx Z Glutamic acid or Glutamine
Xaa X Any amino acid



Bioinformatic Tools and Molecular Tables— 721

Converting Base Size of a Nucleic Acid → Mass of Nucleic Acid

Number of Bases Mass of Nucleic Acid

1 kb ds DNA (Na+) 6.6 × 105 Da
1 kb ss DNA (Na+) 3.3 × 105 Da
1 kb ss RNA (Na+) 3.4 × 105 Da
1.52 kb ds DNA 1MDa ds DNA (Na+)
Average MW of a dsDNA 660 Da
Average MW of a ss DNA 330 Da
Average NW of an RNA 340 Da

Converting Base Size
of a Nucleic Acid → Maximum Moles of Protein

Molecular Amino
DNA Weight (Da) Acids 1 µg 1 nmol

270 bp 10,000 90 100 pmol or    6 × 1013 molecules 10 µg
1.35 Kbp 50,000 450 20 pmol or 1.2 × 1013 molecules 50 µg

2.7 Kbp 100,000 900 10 pmol or    6 × 1012 molecules 100 µg
4.05 Kbp 150,000 1350 6.7 pmol or    4 × 1012 molecules 150 µg

Average MW of an amino acid = 110 (Da).
3 bp are required to encode 1 amino acid.

Sizes of Common Nucleic Acids

Nucleic Acid Number of Nucleotides Molecular Weight

lambda DNA 48,502 (dsDNA) 3.2 × 107

pBR322 DNA  4361 (dsDNA) 2.8 × 106

28S rRNA 4800 1.6 × 106

23S rRNA (E. coli) 2900 1.0 × 106

18S rRNA  1900  6.5 × 105

16S rRNA (E.coli)  1500  5.1 × 105

5S rRNA (E. coli) 120  4.1 × 104

 tRNA (E. coli)  75  2.5 × 104

Mass of Nucleic Acid ↔ Moles of Nucleic Acid

Mass Moles

1 µg/ml of nucleic acid 3.0 µM phosphate
1 µg of a 1 kb DNA fragment 1.5 pmol; 3.0 pmol ends
0.66 µg of a 1 kb DNA fragment    1 pmol
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Sizes of Various Genomes

Organism Approximate Size (million bases)

Human 3000.0
M. Musculus (mouse) 3000.0
Drosophila (fruit fly) 135.6
Arabidopsis (plant) 100.0
C. elegans (round worm) 97.0
S. cerevisiae (yeast) 12.1
E. coli (bacteria) 4.7
H. influenzae (bacteria) 1.8

Genomic Equivalents of Species

µg quantity Number
Source pg/haploida for Genome of Genomes

Organism of DNA Genome Avg.b Equivalence  × 106

Human diploid  3.50  3.16  10.0  2.86
Mouse diploid  3.00  3.21  8.57  2.86
Rat diploid  3.00  3.68  8.57  2.86
Bovine haploid  3.24  3.24  9.26  2.86
Annelid haploid  1.45  1.45  4.14  2.86
Drosophila diploid  0.17  0.18  0.486  2.86
Yeast haploid  0.016  0.0245  0.0457  2.86

apg/haploid genome was calculated as a function of the tissue source. Genomic equivalence
was calculated given that 10 µg of human genomic DNA contains 2.86 × 106 genome copies.

bAverage of all values given in each tissue for that species.
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Appendix
Simple UNIX Commands

The following tables contain a brief list of simple but useful UNIX commands1.
These commands can be used to move around the file system, examine files, and copy,
delete, or rename files. They can also be used to do housekeeping on a user’s account,
and to communicate with other users on the local system or on remote systems.

Directory Operations

Command Action

pwd present working directory (show directory name)
cd change directory: cd /path/name
cd change to your home directory: cd
mkdir make (create) new directory: mkdir Name
rmdir remove directory (if empty): rmdir Name
quota check disk space quota: quota -v

File Operations

Command Action

ls list files
cp copy files: cp /path/name newname
rm remove (i.e. delete) files: rm name
mv move or rename files: mv name newname
more page file contents (spacebar to continue): more name
cat scroll file contents: cat name
less better pager than more? (q to quit): less name
vi visual text editor (:wq to save and quit): vi name
pico pico text editor (Ctrl-X to quit): pico name
chmod change mode of file permissions: chmod xxx name

3

1Most commands have options. To see what options are available, use the man command to
open the manual pages for that command, e.g. type man ls to open the manual for the ls command.
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Manual Pages

Command Action

man open the man pages for a command: man command

Communications

Command Action

write write messages to another user’s screen
talk talk split-screen with another user: talk username
mail UNIX email command
pine send or read E-mail with pine mail system
telnet connect to another computer via the network
ftp file transfer over the network
lynx text-based Web browser

System Operations

Command Action

df show free disk space
du show disk usage
ps list your processes
kill kill a process: kill ###
passwd change your password
date show date and time
w who is doing what on the system
who who is connected to the system
ping ping another computer (is it alive?)
finger get information on users
exit exit, or logout, from the system

X Windows

Command Action

clock & display a clock (&: run in background)
cmdtool & command tool window
filemgr & file manager
mailtool & email program
perfmeter & system performance meter
seqlab & SeqLab interface for GCG
setenv DISPLAY for setting the DISPLAY environment variable
shelltool & shell tool window
textedit & text editor
xterm & X terminal window
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Index

A
Ab initio model, 569
ABI, 328, 590
Accession number, 112, 161, 310, 315, 329, 349, 423, 439, 455, 465–469, 706
ACMG, 204, 205
Activator proteins, 96, 100
Affymetrix, 641–643, 665, 670, 671, 683
Affymetrix GeneChip, 641, 643
AFLP, 639
Align sequences, 397, 405, 447
Allele frequency, 209, 215, 217, 222, 223
α-helices, 18
Alu, 156, 157, 160, 162–167, 339, 389, 456, 696
Alzheimer’s disease, 174, 179
American College of Medical Genetics, 204
Amino acid, 6–8, 14, 15, 17–22, 36, 39, 45, 51, 52, 62, 66, 93, 94, 102, 106–109, 117, 178,

179, 181, 213, 214, 315, 318, 319, 321, 341, 353, 363, 365, 373, 396, 400, 403, 408,
409, 439, 443–448, 452, 456, 460, 461, 470, 472, 473, 481, 483, 484, 486, 492, 497,
501, 514, 526, 532, 539, 542, 543, 545, 548, 551–553, 561, 562, 569, 573, 574, 578,
579, 583, 584, 589, 601, 610, 612, 618, 621, 622, 632, 720, 721

Amplified Fragment Length Polymorphism, 639
Analysis of variance, 672, 685
Analysis pipeline, 414, 425, 426
Analyzing sequences, 325, 393, 409
Ancestral gene, 141
Ancestral sequence, 443, 460
Annotation, 121, 151, 156, 159, 160, 165, 166, 310, 311, 413–415, 417, 431–435, 439–441,

455, 459, 466–469, 516, 533, 548, 592, 597, 598, 602, 603, 607, 609, 611, 617–619,
621, 622, 631, 694, 708, 709

ANOVA, 672, 682
Apache Web server, 278
API, 414, 415, 422, 423, 429
Application programming interface, 414
Argument, 238–241, 285, 293, 303, 304, 372, 599
ArraySuite, 648
ARS, 378, 387
Assortative mating, 219, 220, 222
Automated annotation system, 413
Autonomously replicating sequence, 387
Autosomal dominant, 173, 178, 187–189, 191, 192, 223
Autosomal recessive, 173, 178, 179, 189, 191–193, 201, 223

B
Backup administration, 277
Balance coefficient, 644, 645, 647, 650
Balanced differential expression value, 650, 651
Barrier functions, 30
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Base accuracy estimates, 327
Base composition, 155, 160, 377, 400, 403, 452
Base pair, 8, 11–13, 21, 46, 75–78, 81, 87, 89, 93, 94, 96, 103, 109, 111–113, 115, 116, 124,

136, 175, 177, 180–182, 397, 533
Basic Local Alignment Search Tool, 344, 450, 460, 472, 486, 520
Bayes theorem, 359, 360, 371
BDE, 650–653, 660, 663
Beads on a string, 45, 101, 127, 128, 133, 136
Bernoulli model, 514, 670
β-pleated sheets, 18, 21
Binary fission, 6
Binding motifs, 377, 491, 613
Binding sites, 8, 58, 100, 102, 110, 126, 128, 132, 135, 357, 375, 492, 497, 509, 514, 523,

525–533, 535–538, 548
Bio-Perl, 414
Bioadmin, 285, 291, 292, 294, 295, 298–302, 304
Biochemical reactions, 25, 46, 171
Biochemistry, 1, 188, 570, 599
Biodiscovery, 683, 686, 715
Bioinformatics, 5–8, 14, 20, 21, 23, 166, 180, 233, 283, 285, 287–289, 291, 293, 295–297,

299, 301, 303, 305, 313, 344, 357, 373, 413, 431, 440, 442, 454, 459, 460, 486, 491,
518, 520, 521, 530, 553, 554, 556, 562, 563, 632, 633, 637, 640, 656, 657, 659, 662,
663, 687, 688, 690–692, 709, 715, 717

Bioinformatics resource, 283, 297, 440, 454
Bioinformatics software, 233, 283, 285, 287–289, 291, 293, 295, 297, 299, 301, 303, 305,

715, 717
Bioinformatics tools, 283
Bioperl, 422–424, 429, 716
BIRCH system, 285, 291, 297, 304
BLAST, 55, 59, 66–68, 126, 159, 160, 343, 415, 439, 440, 442, 445, 446, 449, 450, 452–460,

463, 466, 468–472, 474, 476–478, 483–486, 511–514, 520, 521, 592–595, 600, 613,
625, 626, 628, 629, 631, 632, 708

BLAST2, 472
BLOCKS, 7, 9, 11, 13, 15, 21, 68, 78, 141, 143, 146, 275, 277, 280, 373, 432, 449, 452, 461,

470, 472, 486, 511, 562, 632
BLOSUM, 362, 445, 446, 448–450, 457, 459, 461, 470, 472, 473, 484, 543, 557, 561, 589,

594, 602–604, 607–609, 612, 619–621
BodyMap database, 695
Boolean operator, 466, 467, 588
Bootstrapping, 624, 678, 687
Bottle-necking, 217, 221
Bottom-up method, 680
Branch migration, 85, 89
BRCA2, 415–421

C
Cambrian explosion, 142
Canadian College of Medical Geneticists, 204
Cancer, 35, 44, 59, 126, 173, 181, 390, 469, 485, 683, 684, 687, 689, 690, 709
Candidate gene, 178, 179
CAP3, 327, 332, 338, 344
5' Capping, 103
Carcinogenic, 655
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Case-sensitive, 236, 309, 401
Cat command, 239
CCMG, 204
cd command, 240, 309
cDNA, 57, 62, 127, 201, 387, 467, 468, 471, 476, 483, 538, 546, 639–644, 651, 663, 665–667,

670, 671, 684–689, 693–698, 708, 709
cDNA array, 640, 641, 643, 644, 651, 671, 688
Celera, 160, 177, 450, 639
Cell biology, 61
Cell division, 6, 11, 43, 44, 45, 48, 51, 52, 62, 65, 75, 83, 142, 143, 145, 170, 195
Cell junctions, 31, 33, 34, 47
Cell organelles, 3, 25, 26, 28, 46, 50
Cell signaling, 3, 49, 55, 57, 59, 61, 63, 65, 67, 69, 71
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Limited Warranty and Disclaimer

Humana Press Inc. warrants the CD-ROM contained herein to be free of defects in materials and workmanship for a
period of thirty days from the date of the book's purchase. If within this thirty day period Humana Press receives written
notification of defects in materials or workmanship, and such notification is determined by Humana Press to be valid, the
defective disk will be replaced.

In no event shall Humana Press or the contributors to this CD-ROM be liable for any damages whatsoever arising
from the use or inability to use the software or files contained therein.

The authors of this book have used their best efforts in preparing this material. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness. Neither the authors nor the publisher
make warranties of any kind, express or implied, with regard to these programs or the documentation contained within
this book, including, without limitation, warranties of merchantability or fitness for a particular purpose. No liability is
accepted in any event, for any damages including incidental or consequential damages, lost profits, costs of lost data or
program material, or otherwise in connection with or arising out of the furnishing, performance, or use of the programs on
this CD-ROM.

System Requirements for CD Software
BioDiscovery
The following hardware and software is required to successfully install and run BioDiscovery software:

• Operating System: Micrsoft Windows 9x, 2000, or NT4.
• Processor: An IBM-PC or equivalent with a Pentium 500 MHz or higher. (Pentium 800 or higher recommended.)
• Monitor: A SVGA or higher video system; 1024x768 or higher recommended.
• Random Access Memory (RAM): At least 256 MB of RAM; 512MB or more recommended.

NOTE: Program performance may suffer without adequate RAM. Since virtual memory contained on the hard disk
will not increase performance, it is highly recommended that your system have a sufficient amount of RAM installed.

• Hard Drive: At least 70 MB of free hard disk space; 150 MB recommended.
NOTE: The amount of hard disk space listed above does not include the Java Runtime Environment, which may
also need to be installed. If you do not have the Java 1.3 Runtime Environment, you will need an additional 10 MB
for this installation.

• CD-ROM: A CD-ROM Drive is required to install the program.

ClustalX
Versions for both IBM-PC (Windows) and Macintosh are included. The files in the packages will need to be unpacked

with common unzipping utilities.

Ensembl
Running the Ensembl web site is rather taxing on hardware. At a minimum you will need:

• A UNIX-like OS (e.g., Tru64, Solaris, Linux, etc).
• 8 Gigabytes of free hard disk to hold the full MySQL databases, and about the same again for downloading and

unpacking the data.
As with most systems, the more memory and processor speed you have, the better. As an indication for those looking to

purchase machines, our webservers are 3 Compaq DS20s, with 2Gb main memory and 2 Alpha EV6 500MHz processors.

MicroAnalyser
This software may be installed on Macintosh computers running Mac System 9 or Mac OS X.

Oligo
Demo versions of the Oligo primer design and analysis software will run on both IBM-PC (Windows) and Macintosh

computers.

Sequencealign
This folder contains a PowerPoint demonstration of sequence alignment that will run on both IBM-PC (Windows)

and Macintosh computers with Microsoft PowerPoint.

Singh_perl_scripts
This folder contains perl scripts for statistical analysis that can be run on any computer on which perl is installed.

Staden
The Staden Sequence Analysis Package and the Gap4 Viewer software can be installed on an IBM-PC computer

running Microsoft Windows 98 or later.

TreeView
Versions of TreeView for both IBM-PC (Windows) and Macintosh computers are included.
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Features

The genomic revolution that has spawned microarrays and high throughput technologies has produced
vast amounts of complex biological data that require integration and multidimensional analysis. In Introduction
to Bioinformatics: A Theoretical and Practical Approach, leading researchers and experts introduce the key
biological, mathematical, statistical, and computer concepts and tools necessary for physical and life scientists
to understand and analyze these data.

For physical and computer scientists, the book provides a sound biological framework for understanding
the questions a life scientist would ask in the context of currently available computational tools. Here, the basic
cellular structure and the biological decoding of the genome, the long-range regulation of the genome, the
in silico detection of the elements that impact long-range control, and the molecular genetic basis of disease as
a consequence of replication are explained. Reviews of clinical human genetics, the various clinical databases,
and pertinent issues in population genetics complete this tutorial.

For life scientists, a complete discussion of the UNIX operating system, which is commonly used to support
advanced computational tools, offers biologists graphical-user-interface comfort in a command-line environ-
ment, plus an understanding of the installation and management of UNIX-based software tools.

It is in the applications sections that the book provides a common meeting ground for life and physical
scientists. Here they will find examples of the management and analysis of DNA sequencing projects, the mod-
eling of DNA as a statistical series of patterns, various methods of pattern discovery, protein visualization, and
the use of multiple sequence alignment to infer both functional and structural biological relationships. An
accompanying CD contains several full and limited-trial versions of the programs discussed in the text, as well as
a complete set of illustrations from each chapter specifically prepared for use as illustrative instructional
material for lectures and presentations.

Cross-disciplinary and highly instructive, Introduction to Bioinformatics: A Theoretical and Practical
Approach offers life, mathematical, computer, and statistical scientists an integrated foundation for using today’s
many new computational advances to elucidate the nuances of both genetic code and integrated biological
systems.

• Understandable introduction to bioinformatics for
both life and physical scientists

• Introduction to computer and biostatistical principles
suitable for life scientists

• Overview of relevant biological principles and
systems suitable for the physical scientist

• Review of state-of-the-art bioinformatics tools
and methods

• CD containing color graphics, lecture material,
and software ready for use

• DNA sequence assembly and analysis using the
Staden software suite

• Analysis of microarray data using biostatistical
techniques

• Numerous examples of practical applications
• Resources for Whole Genome analysis
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